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1 Chapter

Introduction

Research data of the arts and humanities is usually stored in collections such

as museums, archives and libraries. Similar to the traditional counterparts, the

landscape of digital collections can be characterized as distributed system. In

combination with the autonomy of their owning institutions and the focused

research communities and disciplines, the geographical and logical1 distribution

resulted in the development of numerous collection-specific and standardized

export schemata (compare e.g. Polfreman 2005; Vierkant 2013).

Despite the typically negative connotation of the term heterogeneity in database

and data integration research—in the particular context of the arts and humanities,

heterogeneity on the structural and semantic levels correspond to the diversity of

the disciplines, its research questions and communities. For this reason, hetero-

geneity must not exclusively be considered as integration problem, but requires

a more sophisticated perspective: As discussed in Gradl (2014), the preliminary

work to this thesis, heterogeneity can be classified in technological and domain

aspects—facilitating:

• the dedicated allocation of technological and domain experts to respective

tasks, and

• the determination between technical integration, which can o�en be solved

by means of traditional data integration approaches—and context-related

integration.

1 diversification of the context and content (e.g. object types, sources, coverage)
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Ideally, technical heterogeneity problems such as conflicting access protocols or

data encodings are solved in a generic fashion, which allows the abstraction from

technical aspects. Initial steps towards this goal have been taken by the work in

Gradl (2014) by providing the theoretical foundation required to separate the prob-

lems of model (i.e. schema) and metamodel (i.e. schema languages) integration—

allowing semantic integration to be performed on the basis of schemata in the

sense of regular tree grammars and thus abstracting from the primarily technical

task of converting between formats such as Extensible Markup Language (XML) or

JavaScript Object Notation (JSON).

Objectives and goals of this thesis

The contextual objective of the presented thesis builds on this preliminary, the-

oretical work and focuses on the semantic extension of schemata, which Gradl

(2014, 34-37) introduced as labeling functions, and on the execution of concept

mappings (Gradl 2014, 41-42)—transforming source data into their conceptually

equivalent target forms. Whereas Gradl (2014) provided a means for the descrip-

tion of data and semantic correlations on the schema-level, this thesis focuses on

the description of instances and their transformation.

The approach presented in this thesis is based on the hypothesis that the data

integration problem in the particular context of the arts and humanities can be

interpreted and solved on the theoretical foundation of formal languages. The

recognition of a provided input, its transformation into an internally rewri�en rep-

resentation and the generation of output are typical tasks of language applications,

which form the conceptual base of this thesis.

Despite the contextual focus, the concept and implementation of the trans-

formation framework is intended to be developed as an autonomous and widely

context-neutral component, which can be reused and extended.

Structure of the thesis

A�er this introduction, chapter 2 provides an overview of the application domain

of the arts and humanities and the characteristics that are relevant for this thesis:

digital collections and the contained research data. A short glance over abstract
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use-cases within the domain shows the dynamic character that is required of any

integrative solution in the arts and humanities.

Chapter 3 then introduces the theoretical foundation of the rule framework,

which consist in the basics of formal language theory, the structure and behavior

of language applications mainly with respect to lexical, syntactical and semantic

analysis of input data, as well as the preliminary work in (Gradl 2014), which

introduces a formal metamodel for the specification of schemata and mappings.

The discussion of foundations for the conceptual work in this thesis is continued

with chapter 4, which presents an overview of ANTLR, a supporting framework

for the creation of language applications that is used for the task of language

recognition in this thesis.

A�er a discussion of the primary problems that the concept of this thesis is

intended to solve, the conceptual work in chapter 5 is initiated by providing an

overview of the logical architecture of the rule framework as a form of language

application. The phases of data description and data transformation are separated

primarily to provide a high level of expressiveness, while keeping the complexity of

language specifications at a reasonable level. Important aspects of the implemen-

tation of the rule framework and the prototypical web application are presented in

chapter 6, a�er which chapter 7 concludes the conceptual work by presenting an

initial proof-of-concept by implementing exemplary language specifications and

transformation rules and evaluating the runtime performance of the system.

Chapter 8 concludes this thesis by providing a summary of the central building

blocks of the developed concept and presenting future tasks and extension points.
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2 Chapter

Context and motivation

As a branch of academic disciplines, the arts and humanities include numerous

specific fields—each focusing on particular aspects related to human constructs

and culture. With regard to the integrative goals of this thesis and the motivating

research context, specific conclusions can be inferred from the characteristics of

the academic landscape of the arts and humanities.

In section 2.1 those characteristics of the arts and humanities are introduced,

which are of particular relevance for data integration—the primary motivation for

the concept of the data transformation framework in this thesis. Section 2.2 then

presents a classification of abstract use-cases—providing a contextual base for the

conceptual work.

2.1 Application domain

From a holistic perspective, the application domain of the arts and humanities

as well as the landscape of digital collections are characterized by their high de-

grees of distribution, heterogeneity and autonomy. O�en referenced as orthogonal

dimensions of information integration (see Leser & Naumann 2007, 50), these

characteristics typically originate from a logical and geographical distribution of

institutions and data sources. Without the existence of superior authorities focus-

ing on the consolidation and coordination of data structures and data processing

practices, the additional aspect of autonomy further promotes the development of
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heterogeneity on various abstraction levels (Sheth & Larson 1990, 185-189). Despite

the negative connotation of the term heterogeneity when reducing data integration

to its subset of technical problems, the semantic, context-specific aspects of het-

erogeneity o�en reflect the diversity and complexity of the respective application

domain. However, from a traditional perspective (compare e.g. Lenzerini 2002,

Sheth & Larson 1990), the task of data integration o�en consists in the unification

of heterogeneous data in terms of a globally integrative schema.

As indicated by the following sections, traditional integration approaches are,

however, not applicable to an integrative solution for the holistic context of the

arts and humanities—especially if detailed perspectives on an integrated set of

research data are required.

2.1.1 Digital collections

Comparable to traditional collections like museums, archives or libraries, digital

collections contain objects such as drawings, music or texts, which are o�en2

provided in terms of exhibitions, education- or research-oriented activities. In

digital collections, objects are stored in digital forms, which are o�en encapsulated

or referenced by metadata records—allowing descriptions of the objects in terms

of e.g. aggregated information or annotations. Aside from new opportunities to

enrich objects without a need to modify the original, physical resource, digital

collections especially provide the benefits of location- and time-independence if

web-based access mechanisms are provided.

As premise for integrative services, digital collections are required to provide

resources though machine-accessible interfaces, of which a prominent and stan-

dardized example is available in terms of the Open Archives Initiative - Protocol

for Metadata Harvesting (OAI-PMH) (Lagoze et al. 2002). OAIster3 is an exam-

ple of an aggregation service for OAI-PMH-accessible, digital collections, which

was instantiated as research project at the University of Michigan in 2002 and is

currently maintained by the Online Computer Library Center (OCLC) (Hagedorn

2003). Although OAIster requires the registration of repositories by the contribut-

2 o�en because there are private collections without public accessibility
3 h�p://oaister.worldcat.org/

http://oaister.worldcat.org/
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ing organizations, its search engine currently provides access to "over 30 million

records contributed by over 1,500 organizations"4—indicating the amount of digital

collections that are of potential relevance for research questions in the arts and

humanities.

2.1.2 Data schemata

Irrespective of whether they have been created as additional form of access to

traditional collections or they exist only in virtual form, digital collections are

typically owned by autonomous institutions—focusing on particular academic

disciplines or research communities. As a consequence, heterogeneity between

collections exists in terms of the used schemata and the context- and discipline-

specific knowledge that is required to understand the usage of the schemata and

the contained data.

Scholars of the individual disciplines usually focus on a specific set of concepts

and the subset of properties that is relevant for their particular research question.

Situated within such academic contexts, the digitization and description of research

objects in digital collections is influenced by the context-specific requirements. As

an example, consider photographs and descriptions of churches being produced

by scholars with backgrounds in art history, theology and architecture. It can

be assumed that the concepts addressed by the photographs and descriptions

will di�er due to (1) the relevance of individual properties and (2) the level of

applicable knowledge (e.g. in relation to the theological symbolism or period-

related architectural facets). As a consequence, di�erent custom or standardized

data and metadata schemata might qualify for these context-specific descriptions.

Only few studies of the use of data and metadata standards in the arts and

humanities exist. An example can be found in the work of Polfreman (2005), who

presents findings based on the document collection of the Arts and Humanities

Data Service (AHDS). As such, the analyzed data originated from a broad context

of visual and performing arts, archaeology, history, literature, language and lin-

guistics. The analysis concluded in a list of metadata standards5, which includes

4 according to h�p://www.oclc.org/oaister/about.en.html
5 accessible at h�p://www.ahds.ac.uk/metadata/arts-humanities-metadata-formats.htm

http://www.oclc.org/oaister/about.en.html
http://www.ahds.ac.uk/metadata/arts-humanities-metadata-formats.htm
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generic schemata like Dublin Core (DC), Machine Readable Cataloguing (MARC)

or Metadata Object Description Schema (MODS) as well as discipline- and/or

resource-type specific standards such as Categories for the Description of Works of

Art (CDWA), Text Encoding Initiative (TEI) header and Visual Resources Association

(VRA) core. In contrast, the 2012 Census of Open Access Repositories in Germany

(Vierkant 2013) analyzed 141 repositories of scientific publications, which total in

overall 704,121 records. The analysis was conducted with respect to the structure

and content of the repositories and—among other findings—concluded that DC

was the only metadata format that has been widely adopted—thus deserving to be

called a standard. (Vierkant 2013, 21)

A general conclusion on the use and applicability of such standards or custom

schemata is not possible from a holistic perspective of the arts and humanities

because each specific research or collection context might have di�erent require-

ments. In addition, these requirements are o�en only identifiable by experts of the

respective field or context.

Two exemplary records are presented to illustrate the wide spectrum of com-

monly utilized schemata: Listing 2.1 shows a complete record6, which follows the

constraints of simple DC and belongs to the data set of Pangaea, a data publisher

for earth and environmental science7. The record illustrates a context-specific

adaption of a standardized schema (DCMI 2012) e.g. in that it encapsulates non-

atomic content in the creator, coverage and subject elements, which each follow a

context-specific substructure.

< o a i _ d c : dc xmlns : dc= " h t t p : / / p u r l . o rg / dc / e l ements / 1 . 1 / " xmlns : x s i = " h t t p : / /
www. w3 . org / 2 0 0 1 / XMLSchema−i n s t a n c e " xmlns : o a i _ d c = " h t t p : / / www.
o p e n a r c h i v e s . org / OAI / 2 . 0 / o a i _ d c / " x s i : schemaLocat ion = " h t t p : / / www.
o p e n a r c h i v e s . org / OAI / 2 . 0 / o a i _ d c / h t t p : / / www. o p e n a r c h i v e s . org / OAI / 2 . 0 /
o a i _ d c . xsd " >

<dc : t i t l e > I c e r a f t e d d e b r i s (& gt ; 2 mm g r a v e l ) d i s t r i b u t i o n i n sed iment
c o r e PS2646−5< / dc : t i t l e >

<dc : c r e a t o r >Grobe , Hannes < / dc : c r e a t o r >
<dc : s o u r c e > A l f r e d Wegener I n s t i t u t e , Helmhol tz Center f o r P o l a r and

Marine Research , Bremerhaven < / dc : s o u r c e >
<dc : p u b l i s h e r >PANGAEA< / dc : p u b l i s h e r >
<dc : date >1996−02−29< / dc : date >
<dc : type > Datase t < / dc : type >

6 h�p://ws.pangaea.de/oai/?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:pangaea.de:doi:
10.1594/PANGAEA.50542

7 h�p://www.pangaea.de/

http://ws.pangaea.de/oai/?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.50542
http://ws.pangaea.de/oai/?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.50542
http://www.pangaea.de/
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<dc : format > t e x t / tab−s e p a r a t e d−v a l u e s , 1148 data p o i n t s < / dc : fo rmat >
<dc : i d e n t i f i e r > h t t p : / / d o i . pangaea . de / 1 0 . 1 5 9 4 / PANGAEA. 5 0 5 4 2

< / dc : i d e n t i f i e r >
<dc : i d e n t i f i e r > d o i : 1 0 . 1 5 9 4 / PANGAEA. 5 0 5 4 2 < / dc : i d e n t i f i e r >
<dc : l anguage >en < / dc : l anguage >
<dc : r i g h t s >CC−BY : C r e a t i v e Commons A t t r i b u t i o n 3 . 0 Unported < / dc : r i g h t s >
<dc : r i g h t s > Acces s c o n s t r a i n t s : u n r e s t r i c t e d < / dc : r i g h t s >
<dc : c o v e r a g e >LATITUDE : 6 8 . 5 5 6 6 6 7 ∗ LONGITUDE : −21 .210000 ∗ DATE / TIME

START : 1994−09−19 T14 : 5 6 : 0 0 ∗ DATE / TIME END : 1994−09−19 T14 : 5 6 : 0 0 ∗
MINIMUM DEPTH , sed iment / rock : 0 . 0 m ∗ MAXIMUM DEPTH , sed iment / rock :
1 1 . 5 m< / dc : c o v e r a g e >

<dc : s u b j e c t >ARK−X / 2 ; AWI_Paleo ; Denmark S t r a i t ; G r a v i t y c o r e r ( K i e l type )
; I c e r a f t e d d e b r i s ; IRD−Counting ( Grobe , 1 9 8 7 ) ; P a l e o e n v i r o n m e n t a l
R e c o n s t r u c t i o n s from Marine Sediments @ AWI ; P o l a r s t e r n ; PS2646 −5;
PS31 ; PS31 / 1 6 2 < / dc : s u b j e c t >

< / o a i _ d c : dc >

Listing 2.1: PangaeaDC example

On the other hand, listing 2.2 shows a shortened8 TEI document9 that has

been taken from the Deutsches Textarchiv (DTA)10. Following the TEI guidelines

(Burnard & Bauman 2014), the document contains a teiHeader with metadata

elements such as title, author and editor within the title statement and references

to bibliographic resources in the source description. In addition, the document

contains a digitized version of the original textual resource (text element) along

with structural information and annotations.

< TEI xmlns = " h t t p : / / www. t e i−c . org / ns / 1 . 0 " >
< t e i H e a d e r >

< f i l e D e s c >
< t i t l e S t m t >

< t i t l e type = " main " > A b r i ß der neues ten S t a a t s w i s s e n s c h a f t der
vornehmsten Europ ä i s c h e n Re i che und R e p u b l i c k e n < / t i t l e >

< t i t l e type = " sub " >zum Gebrauch i n s e i n e n Academischen Vor l e sungen
< / t i t l e >

. . .
< / f i l e D e s c >

< / t e i H e a d e r >
< t e x t >

< f r o n t > . . . < / f r o n t >
<body >

< d i v n= " 1 " >
<head >< h i r e n d i t i o n = " #b " >< h i r e n d i t i o n = " #g " > V o r b e r e i t u n g . < / h i >< / h i >

< / head >

8 the original document contains around 759k characters
9 h�p://www.deutschestextarchiv.de/book/download_xml/achenwall_staatswissenscha�_1749
10 en: German Textarchive (DTA), see h�p://www.deutschestextarchiv.de/

http://www.deutschestextarchiv.de/book/download_xml/achenwall_staatswissenschaft_1749
http://www.deutschestextarchiv.de/
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. . .
< d i v n= " 2 " >

<head > . 1 . < / head >
< l b >< / l b >
<p>

< h i r e n d i t i o n = " # i n " >D< / h i > e r B e g r i f f der &#x017F ; ogenannten < h i
r e n d i t i o n = " # f r " > S t a t i s t i c , < / h i > das < l b >< / l b > i &#x017F ; t , der <
h i r e n d i t i o n = " # f r " > S t a a t s w i &#x017F ;&# x017F ; en&#x017F ; c h a f t
e i n z e l n e r Rei−< l b >< / l b > che < / h i > wird &#x017F ; ehr v e r &#x017F ;
c h i e d e n t l i c h angegeben , und man< l b >< / l b > t r i f f t u n t e r der
gro&#x017F ;&# x017F ; en Menge S c h r i f t e n davon < l b >< / l b > n i c h t
l e i c h t e i n e e i n z i g e an , welche i n der Zahl < l b >< / l b >und
Ordnung i h r e r T h e i l e mit der andern . . .

< / p>
< / d i v >
. . .

< / body >
< / t e x t >

< / TEI >

Listing 2.2: DTA TEI example

The complexity of other schemata that are common in the arts and humanities

(see e.g. the list of (Polfreman 2005)) can be expected to range between the simple

metadata standard of DC and the encapsulation of a digitized object within a record

in TEI. CDWA and VRA could for example be considered as metadata standards as

the described resource is not encoded within a particular record. However, both

standards allow a faceted description of objects and as such o�en result in the

creation of detailed information.

2.2 Use-cases

The process of designing integrative data integration systems according to Lenzerini

involves the execution of an extensive requirements analysis, which is intended to

provide details about the concepts contained in the integrated local schemata and

leads to the derivation of a global schema. The appropriateness of such a global

schema can be determined according to four requirements expressed in Batini

et al. (1986, 337):

• Completeness: The schema includes all concepts that are contained in the

local schemata and that are relevant to the considered application domain.
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• Correctness: Any local concept that is represented by the global schema must

be reflected with equivalent semantics.

• Minimality : Concepts with identical semantics are represented only once.

• Understandability : Labels of elements are chosen in a fashion that prevents

ambiguities and enhances overall understandability.

Resulting from the consideration of the arts and humanities as application

domain of data integration, the methodological execution of an extensive require-

ments analysis and the subsequent derivation of appropriate unifying schemata

is prevented by the complexity and size of the domain: If the design of a global

schema aims a the requirement of completeness, (1) a large amount of concepts

have to be included within the schema that are irrelevant in specific use cases

and (2) the understandability and correctness are potentially impacted by the

complexity of the schema.

In addition, the preliminary work in Gradl (2014, 22-23) identified generic

use-cases for the integration of heterogeneous data in the context of the arts

and humanities—reflecting the need for alternatives to the traditional integration

approach as of Lenzerini (2002)—from an abstract level:

• Broad Search: A large set of heterogeneous collections is selected as po-

tentially relevant and needs to provide means for answering queries. The

contextual intersection of all selected collections is limited due to the disci-

plinary breadth.

• Deep search: Collections that are relevant for a particular community or

research question are identified. �eries over the integrative view of the

semantically related collections are expected to provide means for utiliz-

ing the semantic cohesion e.g. in the form of search facets or appropriate

visualization techniques.

• Data integration: Materialized data integration is o�en required for migrating

data between di�erent systems or the application of long-running analyses

and visualization techniques. The relevant set of collections is required to be

determined by domain experts with respect to particular research questions

and ranges between a large set of unrelated and smaller sets of tightly

associated collections.
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Aside from typical characteristics of distributed systems, the application domain

of the arts and humanities requires an integrative system that especially respects

the dynamics of individual use-cases. In particular, the set of collections and hence

the utilized schemata, the purpose and the execution of any data transformation

and integration have to be specifically adaptable to the context needs and hence

determinable by domain experts.
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3 Chapter

Theoretical foundation

The concept of a data transformation framework in this thesis is largely based on

the theoretical foundation of formal languages. The work in Gradl (2014), which

provides the contextual base of this thesis introduces the definition of schemata as

an extended form of regular tree grammars. As the exemplary records presented in

section 2.1.2 showed, the terminal nodes of such schemata (the element values) can

contain non-atomic content, which could be further decomposed and processed if

the implicit syntax and semantics are explicated.

Since the conceptual work in this thesis proposes means for the formal de-

scription of such non-atomic context based on language specifications, section 3.1

provides an overview of the basic terminology and concepts of formal language

theory. In section 3.2 the structure and behavior of language applications are

introduced. Section 3.3 concludes this chapter with a discussion of the theoretical

foundation of schema and mappings as of Gradl (2014).

3.1 Formal language theory

Formal language theory focuses on structural pa�erns and as such the lexical and

syntactical features of languages and allows the definition of formal language

specifications: the grammars (Parr 2013, 57-82). A central characteristic of a

formal language thereby consists in its exact specification, which facilitates the

implementation of algorithms for the validation and processing of input with
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respect to the defined language.

3.1.1 Basic Terminology

For every formal language, an alphabet forms a finite set of atomic symbols—

elements, which cannot be decomposed in a meaningful way. Valid exemplary al-

phabets could be formed as the set of lowercase latin characters {a, b, c, d, . . . , y, z}
or a set of digits {0, 1, 2, . . . , 9}. Based on a defined alphabet A, a token x over A

can be formed by concatenating any finite set of elements of that alphabet:

• x ∈ A∗ allows any token over A, including the empty token.

• x ∈ A+ denotes any non-empty token over A.

Considering an alphabet A = {a, b}, then the language over the alphabet A is

defined as infinite set of tokens A∗ = {ε, a, b, aa, bb, ab, ba, aaa, bbb, aba . . . }—if

no further syntactical constraints are specified. Essentially, a language L over A

can be defined as any set of tokens, which can be formed from the elements of A∗,

or: L ⊆ A∗.

In literature the concept of a token is o�en referred to as word or string (see

e.g. Chomsky 1956, 114-115; Crespi-Reghizzi 2009, 8). Since the concept of a

word, however, generally addresses concatenations over an alphabet that expose a

meaning in the sense of natural languages and string o�en relates to any character

stream e.g. in common programming languages, the term token is preferred in

this thesis in order to prevent ambiguities in the conceptual and implementation-

related sections. Based on the fundamental understanding of a formal language

as L ⊆ A∗, further constraints can be introduced to specify token combinations,

which are considered valid over L. Such valid combinations of tokens are—again

referring to natural languages—called sentences.

In order to detail the definition of a formal language L, the set of valid to-

kens could be further restricted by mathematically narrowing the set defini-

tion e.g. in the form of L1 = {ε, a, b, aa, bb, ab, ba} for a finite language or

L2 = {a, ab, abb, abbb, abbbb, . . . } for an infinite language. For both finite and infi-

nite languages, token production functions can be utilized to define more complex

restrictions on the set of valid tokens for a language. Although equivalent, a more

precise specification of the above L2 can be formalized as L2 = {abi : i ≥ 0}.
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In so�ware development practice, simple languages are o�en constructed im-

plicitly by implementing parsers that process provided input strings. Examples can

be found in configuration file readers, where configuration keys are followed by an

’=’ symbol, the assigned value of the key and a terminating newline character. A

suitable parser could sequentially process all lines of a configuration file, split the

content of every line removing the ’=’ symbol and assigning the first substring to a

key field, the second substring to a value field of a property object.

As a third alternative, a formal language can be defined as a finite set of rules,

called grammar (Cooper 2012, 11). The rules of a grammar define production

functions that generates exactly the set of valid sentences of a language. Chomsky

(1956, 114) defines a grammar as "a device of some sort that produces all of the

strings that are sentences of L and only these".

3.1.2 Language derivation

Chomsky (1956, 117) presents his original definition of a parse-structure grammar

as triple 〈V,Σ, F 〉, with V as finite vocabulary, a finite set of initial strings Σ ⊆
V and a finite set of rewrite rules X → Y , where X,Y ⊆ V . Whereas this

original definition provides an adequate base for the description of unrestricted

type 0 grammars, Chomsky also introduces the distinction between terminal and

nonterminal symbols of grammars to reflect intermediary steps in the production

of sentences. As a result, a generative grammar can be adapted from Chomsky

(1956, 117) and Parkes (2008, 30-31) in terms of a quadruple 〈N,T, P, S〉, where:

• N is a finite set of nonterminal symbols, which reflect intermediary states of

language production and do not occur in the ultimately produced sentences.

• T constitutes the finite set of terminal symbols—valid tokens, which are used

to form sentences

• P is the finite set of production rules of the form x→ y, with x ∈ (N ∪T )+,

y ∈ (N ∪ T )∗, if the grammar is not further restricted (type 0 grammar) and

• S ∈ N as start symbol is the designated root of the grammar, with which

the generative language production process begins.

The classification and distinction between grammars of the Chromsky hierarchy

is based on the distinction of certain pa�erns in P , which not only impact the
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expressiveness and power of the produced languages, but also the complexity of

its algorithmic processing.

3.1.3 Classification of formal languages

Grammars and the languages they produce have been originally classified in

Chomsky (1956). Since then, the classification has remained unchanged and can be

found in recent textbooks and publications11 due to the precision and simplicity of

distinction between the grammars and the ability to assign the types of recognizers

that are required to parse a generated language.

Grammar Types of rules Type of recognizer

Type 0
(unrestricted)

x→ y, with x ∈ (N ∪ T )+, y ∈ (N ∪ T )∗ Turing machine

Type 1
(context-
sensitive)

x→ y, with x ∈ (N ∪ T )+, y ∈ (N ∪ T )+,
|x| ≤ |y|

Restricted form of turing
machine (e.g. linear bounded
automation)

Type 2
(context-free)

x→ y, with x ∈ N , y ∈ (N ∪ T )∗ Push-down automation

Type 3
(regular)

w → x, or w → yz, with w ∈ N , x ∈
(T ∪ ε), y ∈ T , z ∈ N

Finite state automation

Table 3.1: Chromsky classification of grammars (based on Chomsky 1956, 113-124; Crespi-Reghizzi 2009, 87-91;
Parkes 2008, 36)

Type 3 grammars Regular grammars constitute the most restrictive type of

grammars in the Chromsky hierarchy and allow a single nonterminal on the le�-

hand side of production rules and either ε, a single terminal or a single terminal

followed by a single nonterminal on the right.

Regular grammars and expressions have been widely adopted and expose su�i-

cient expressiveness e.g. in the context of semi-structured data as shown in Murata

et al. (2005) and Gradl (2014). Due to the simplicity of the production rules in type

3 grammars, recognizers for any regular grammar can be based on finite automata

(Crespi-Reghizzi 2009, 94-95). However, regular tree grammars show limitations

e.g. for constructs such as precedence in an arithmetic operation 2 + 3 ∗ 4 or the

11 compare e.g. Crespi-Reghizzi (2009), Parkes (2008) or Murata et al. (2005)
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validation of token order: the semantics of a nested statement like (a, b, (c, d))

cannot be exactly reflected by means of a regular grammar (Parr 2013, 24).

Type 2 grammars Context free grammars extend the type of allowed production

rules compared to type 3 grammars: while the le�-hand side is still required to be

a single nonterminal element x ∈ N , the right-hand side allows any combination

of terminal and nonterminal symbols—including ε.

Context-free grammars have evolved to become the common theoretic core of

language applications with a need for a “more powerful notation than regular

expressions that still leads to e�icient recognizers” (Cooper 2012, 86).

Type 1 and 0 grammars As the name indicates, unrestricted grammars allow

any element with the exception of the empty element ε on the le�-hand side of a

production rule x ∈ (N∪T )+ and anything (including ε) on the right y ∈ (N∪T )∗.

Context sensitive grammars can be distinguished from type 0 grammars only

by the characteristic that ε is not allowed to occur on either side. In addition,

the length of the le�-hand side of the rule needs to be less or equal to the length

of the right-hand side. Type 0 grammars depend on turing machines in order to

detect whether a sentence belongs to an unrestricted language, type 1 grammars

are exposing less complexity and can be solved on the basis of linear bounded

automation Parkes (2008, 36).

As suggested by Crespi-Reghizzi, unrestricted and context-sensitive grammars—

while being mathematically and logically interesting—can be considered as "almost

irrelevant for language engineering and computing" (Crespi-Reghizzi 2009, 91). This

view is confirmed by Ghosh and Parr, who rather introduce practical variations to

context-free grammars in order to cope with the context-sensitive features of actual

significance in a Domain Specific Language (DSL): context-sensitive validation in

Ghosh (2011, 271-272) and semantic predicates in Parr (2013) both show a�empts

to include information about the context of parsed phrases in order to resolve

ambiguous sentences in context-free grammars.
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3.2 Language applications

Traditional forms of language applications are formed by compilers—i.e. computer

programs, which parse source code specified in terms of a computer language

and translate the instructions within this code into machine executable code.

Cooper (2012, 1) understands compilers more generally as "computer programs

that translate a program wri�en in one language into a program wri�en in another

language", indicating that compilers can be considered as a kind of unidirectional

translator between a human-readable source language and a target language.

Compilation is performed against human readable source code and results in

immediately executable binary code or an intermediate representation. In the

la�er case, a runtime environment12 is needed to interpret such intermediate

representations at the execution of the program. Instead of translating into an

executable target language, interpreters execute the instructions encoded within

the source code.

Despite the focus on the complex tasks of source code compilation or inter-

pretation, the meaning of language applications can be interpreted from a wider

perspective according to (Parr 2010, 13) as "any program that processes, analyzes,

or translates an input file." Although applications or components e.g. for processing

configuration files or importing data from external files are typically not defined

as language applications, they are based on the (o�en implicit) specification of a

language providing rules, which input should be considered as valid and how it

should be further processed.

3.2.1 Compilers and data structures

Compilers have developed into large and complex computer programs, which can

be structured into the coherent structural elements of the front end, optimizer and

back end—each encapsulating an particular type of logics (compare Parr 2010,

20-21; Cooper 2012, 6-21):

• The front end aggregates the functionality required to recognize languages:

Any input that is provided as potential sentence of the implemented language

12 common examples are the Java Virtual Machine (JVM) and Microso�’s .NET Framework



3 Theoretical foundation 18

is processed in a chain of lexical analysis, syntax analysis and the generation

of an Intermediate Representation (IR) of the provided input.

• The task of an optimizer can be summarized as semantic analyzer, which col-

lects information about a provided IR, annotates and/or rewrites it according

to the needs of a surrounding application and functional goal and—in the case

of an interpreter—executes the instructions encoded in the IR. The optimiza-

tion thereby consists in the o�en iterative annotation and transformation

of the IR, which finally results in the generation of an either executable or

exportable output.

• The back end of traditional compilers generate output for the hardware

abstraction layer—including the selection of the executed instructions, the

allocation of registers and the scheduling of the instructions (Cooper 2012,

16-21).

The exchanged data structure is called an IR, which is usually modified multiple

times during a compilation process—until a final representation is provided as

output. The choice of IRs depends on multiple factors such as the goal of the

current stage of compilation or—abstracting from compilers—the type of language

applications in general.
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analysis, profile data from previous executions, and maps to let the debugger
understand the code and its data. All of these facts should be expressed in a
way that makes clear their relationship to specific points in the ir.

5.2 GRAPHICAL IRS
Many compilers use irs that represent the underlying code as a graph. While
all the graphical irs consist of nodes and edges, they differ in their level of
abstraction, in the relationship between the graph and the underlying code,
and in the structure of the graph.

5.2.1 Syntax-Related Trees
The parse trees shown in Chapter 3 are graphs that represent the source-
code form of the program. Parse trees are one specific form of treelike irs.
In most treelike irs, the structure of the tree corresponds to the syntax of the
source code.

Parse Trees

As we saw in Section 3.2.2, the parse tree is a graphical representa-
tion for the derivation, or parse, that corresponds to the input program.
Figure 5.1 shows the classic expression grammar alongside a parse tree for
a × 2 + a × 2 × b. The parse tree is large relative to the source text because it
represents the complete derivation, with a node for each grammar symbol in
the derivation. Since the compiler must allocate memory for each node and
each edge, and it must traverse all those nodes and edges during compilation,
it is worth considering ways to shrink this parse tree.

Goal → Expr

Expr → Expr + Term
| Expr - Term
| Term

Term → Term × Factor
| Term ÷ Factor
| Factor

Factor → ( Expr )
| num
| name

(a) Classic Expression Grammar

Expr

Expr

Term

Goal

Term

Factor

Factor

<num,2>

<name,a>

+ Term

Factor

<name,b>Term

Factor

<name,a>

Term

Factor

<num,2>

×

×

×

(b) Parse Tree for a×2+a×2×b

I FIGURE 5.1 Parse Tree for a×2+a×2×b Using the Classic Expression Grammar.

(a) Parse tree reflecting language derivation
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Minor transformations on the grammar, as described in Section 3.6.1,
can eliminate some of the steps in the derivation and their corresponding
syntax-tree nodes. A more effective technique is to abstract away those
nodes that serve no real purpose in the rest of the compiler. This approach
leads to a simplified version of the parse tree, called an abstract syntax tree.

Parse trees are used primarily in discussions of parsing, and in attribute-
grammar systems, where they are the primary ir. In most other applications
in which a source-level tree is needed, compiler writers tend to use one of
the more concise alternatives, described in the remainder of this subsection.

Abstract Syntax Trees

The abstract syntax tree (ast) retains the essential structure of the parse tree Abstract syntax tree
An AST is a contraction of the parse tree that omits
most nodes for nonterminal symbols.

but eliminates the extraneous nodes. The precedence and meaning of the
expression remain, but extraneous nodes have disappeared. Here is the ast
for a × 2 + a × 2 × b:

b

×

a

×

2

a 2

×

+

The ast is a near-source-level representation. Because of its rough cor-
respondence to a parse tree, the parser can built an ast directly (see
Section 4.4.2).

asts have been used in many practical compiler systems. Source-to-source
systems, including syntax-directed editors and automatic parallelization
tools, often use an ast from which source code can easily be regener-
ated. The S-expressions found in Lisp and Scheme implementations are,
essentially, asts.

Even when the ast is used as a near-source-level representation, represen-
pair

c1 c2
AST Designed for Editing

AST for Compiling

constant

(c1,c2)

tation choices affect usability. For example, the ast in theRn Programming
Environment used the subtree shown in the margin to represent a complex
constant in fortran, written (c1,c2). This choice worked well for the
syntax-directed editor, in which the programmer was able to change c1 and
c2 independently; the pair node corresponded to the parentheses and the
comma.

This pair format, however, proved problematic for the compiler. Each
part of the compiler that dealt with constants needed special-case code
for complex constants. All other constants were represented with a single

(b) AST

Figure 3.1: Common graphical IRs (Cooper 2012, 226-227)

Cooper (2012, 223-243) distinguishes three classes of IRs:

• Graphical IRs include all graph- or tree-like data structures that encapsulate

the knowledge of a language application at a certain phase. Common variants

include parse trees and abstract syntax trees.
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• Linear IRs represent linear sequences of instructions, which are sequentially

executed e.g. by assemblers. Entries in the sequence can contain multiple

instructions, which are executed in parallel.

• Hybrid IRs combine properties of graphical and linear IRs.

Figure 3.1 introduces two prominent forms of graphical IRs, which are o�en found

in compiler engineering and language applications in general: Parse trees typically

represent the derivation of production rules when processing input (Cooper 2012,

89-94). Every nonterminal node of the parse tree represents a grammatical rule,

the terminals relate to the originally parsed tokens. An initial optimization step

o�en consists in the reduction of the size of IRs that need to be held in memory.

An AST reflects such a reduced form, which should be (Parr 2010, 77):

• dense by including only relevant nodes,

• convenient by being optimized for tree traversal and

• meaningful by focusing on instructions and actions that result from the

original parse tree, not the syntactical structure of the parse.

3.2.2 Language application abstraction

Irrespective of being explicitly or implicitly defined, language applications im-

plement the syntactical and semantic rules of a language by performing tasks

according to sentences of the specified language. To provide a broad overview of

language applications and their functionalities, figure 3.2 combines the perspective

on the structure of compilers as presented in Cooper (2012, 6-21) and the discussion

of the types of language applications in Parr (2010, 20-21).

Abstracting from the concept of compilers, language applications realize the

functional building blocks of front ends, optimizers and back ends as required by

the application domain. Parr classifies four categories of language applications

(Parr 2010, 21-22):

• Reader : A reader implements the front end of a language application by scan-

ning and parsing provided input, thus determining whether the input is valid

with respect to the implemented language. Readers are o�en components

of other computer applications and can take the form of configuration file

readers, source code analyzers etc.
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Interpreter

Reader

Front End

Build IR

Syntax Analysis

Back End

Output 

Generator
Lexical Analysis

Optimizer

Execute IR

Semantic Analysis

(Optimize IR)

IR

IR

IR

Input OutputIR

Translator

Generator

Figure 3.2: Language application abstractions (based on Parr 2010, 20-21; Cooper 2012, 6-21)

• Interpreter : In addition to the functionalities provided by a reader, interpreters

execute the instructions encoded in a provided input. The IR created in the

front end is processed in terms of a possibly iterative semantic analysis in

order to determine the meaning of syntactical components, a�er which the

instructions are executed.

• Generator : A generator traverses an IR in order to generate output in a

di�erent language. Such generators can be found in compilers, where code

in a target language such as machine code is generated.

• Translator : A translator implements the complete language processing pipeline

including language recognition in the front end, interpreting and rewriting

IRs in optimizing phases and generating an output in terms of a target

language.

The categories allow the definition and classification of language applications

aside from source code compilers and interpreters and illustrate that language

implementation does not necessarily equal the construction of a compiler. As a

result of the abstraction from the clearly defined subtasks within the compilation

process, custom business logic is implemented in terms of the optimizer, a�er the
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traditional tasks of the front have been completed by generating an appropriate

type of IR. Whereas the subsequent tasks of semantic analysis, the reaction to

recognized sentences or the translation into a target language are part of the

domain-specific logic, the phase of language recognition can be considered as a

common characteristic of any language application: Languages are formal concepts

and describe valid constructs over an alphabet specified in terms of grammars.

With respect to the recognition of languages, the determination of the validity

of the lexical and syntactical structure of a provided input can be identified as

essential phases.

3.2.3 Lexical analysis

Lexical analysis constitutes the first task executed by a reader in order to understand

a provided input and focuses on the character level. A lexer (or scanner) reads input

in terms of a stream of characters and produces a stream of tokens (Cooper 2012,

26). Every recognized token is assigned to a syntactic category in order to reflect

the syntax at the character level, the lexical structure (Parr 2010, 43).

A simple processing form for western languages could be based on a four-step

algorithm:

1. Look for the next whitespace in the character stream

2. Group all alphanumeric characters to the le� of the whitespace from le� to

right into a token

3. Find a lexical category that matches the identified token, e.g. ID if the pa�ern

[a-zA-Z] is matched or NUMBER if [0-9] is matched.

4. Put the recognized token on the token stream and proceed with 1 until the

end of the character stream

Properties of the analysis are o�en defined in terms of language specifications,

such as the collection of lexical categories, the processing orientation (e.g. right-

to-le� for arabic languages) or the types of whitespaces to ignore (the newline

character can be ignored e.g. when processing Java source code or JSON, but is

required e.g. for parsing Python since it represents the command terminator).

Lexers are generally considered as a simple task of language recognition as they

are typically built upon few grammatical rules that are required to reflect lexical
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properties. In addition, lexers e.g. for di�erent western languages or programming

languages show similarities with respect to the lexical rules and can thus o�en be

reused.

3.2.4 Syntax analysis

In contrast to lexers, parsers focus on an analysis of the syntax of a provided input

and as such need to determine, if the stream of tokens presented by the lexer forms a

valid sentence with respect to the language specification. For this purpose, parsing

requires a machine-readable specification that allows to determine the validity of

provided input. Formal language specifications are grammars, which can—aside

from the theoretical interpretation—be understood as "executable programs wri�en

in a domain-specific language (DSL) specifically designed for expressing language

structures" Parr (2010, 38).

From a formal perspective, the goal of syntax analysis consists in the application

of production rules on the provided input on the basis of an underlying grammar

in order to derive an IR. As the Chromsky classification of grammars in table 3.1

indicated, the complexity of recognition depends on the type of grammar that

is required to generate the desired language. Especially due to the syntactical

limitations of regular grammars and the high complexity to recognize context-

sensitive and unrestricted grammars, context-free grammars have evolved to form

the theoretical base of many modern language processing applications (compare

Cooper 2012, 85-89, Crespi-Reghizzi 2009, 30-33).

Two primary classes of parsers for context-free languages can be distinguished

(Parr 2010, 38-48, Cooper 2012, 96-140):

• The functionality of bo�om up or LR parsing is mainly characterized by

building parse-trees from the leaves to the root. As initial step in bo�om up

parsing, each token of the parsed stream is represented as a leaf. Iterations

of the parser match production rules based on the topmost nodes of each

stage and associate the parent nonterminals.

• Top down or LL parsers build parse trees from the root by applying the

production rules le� to right. At each iteration of the parse, subtrees that

rewrite the current nonterminals are appended.
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Although according to e.g. Cooper (2012, 95) bo�om-up parsing is applicable to

more types of languages, top-down parsing has gained more practical relevance

due to more e�icient implementations. Top-down parsing is one of the functional

building blocks of this thesis and will be further discussed in subsequent sections.

3.3 Preliminary work

The primary focus in Gradl (2014) consists in the creation of a theoretical model

for the representation and integration of semi-structured schemata that are used

by the digital collections of the arts and humanities. The traditional approach to

the schema-level integration of semi-structured data is characterized in Lenzerini

(2002, 233-234) from a theoretical perspective, based on the formalization of a data

integration system I = 〈G,S,M〉, where

• G represents the global schema utilized to present a unifying view over

heterogeneous data,

• S constitutes the source schema of a data source, whose data should be

presented in terms of the global schema and

• M typically describes a set of value correspondences, of which each repre-

sents an associated pair of elements of the source and global schema.

This traditional approach to data integration reduces the complexity of the data

integration problem by defining a system-wide integration view to which all local

sources are mapped. Due to the limitations of such an approach with respect to

the support of discipline- or research-specific views on data, the work in Gradl

(2014) provides a theoretical approach for the representation of heterogeneous

schemata and their interrelations: Based on the abstraction from technical aspects

of heterogeneity, the technology-independent definition of schema is reducing

the complexity by separating the integration problems into technological and

context-related aspects.

3.3.1 Conceptual architecture

With a focus on XML documents and schema languages, Murata et al. (2005,

663) and Zhang et al. (2008, 424-425) showed that a formal description and anal-
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ysis of XML schemata can be based on the foundation of regular tree grammars.

Abstracting from the syntactical specifics of XML, Gradl (2014) proposed the

modeling architecture as shown in figure 3.3, which is based on the four layer

modeling architecture of the Model-driven architecture (MDA). Despite the focus

of the MDA on so�ware development and particularly the generation of platform-

independent models and their semi-automatic and incremental transformation to

implementation-oriented models (see e.g. Bézivin 2005; Atkinson & Kühne 2003),

the adaption of the architecture facilitates the formalization of semi-structured

data.
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Figure 3.3: Four layer modeling architecture (based on Bézivin 2005, 178; Atkinson & Kühne 2003, 38)

Buneman generically introduces semi-structured data as graph-or-tree-like struc-

tures, which conform to an inherent layout. In contrast to structured data, semi-

structured data is considered self-describing, which means that the definition of

an external schema is not required: The structural and schematic information nec-

essary for processing is embedded within the data (Buneman 1997, 117). However,

for processing semi-structured data, external schemata provide benefits e.g. with

respect to data validation. Formal schema languages (M2) can be defined based on

the basic constraints of semi-structured data (M3). Prominent examples, such as
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the W3C XML Schema13 or JSON schema14 allow the specification of domain-level

schemata (M1)—constraints to which data instances need to conform and can be

validated against.

3.3.2 Schema metamodel

Based on the matching-oriented foundation in Zhang et al. (2008, 695-697) and the

formal perspective in Murata et al. (2005, 663-665), schemata can be interpreted

in terms of finite structures 〈N,T,R, P 〉—a regular-tree grammar with the finite

sets of nonterminals (N ) and terminals (T ), the root symbol (R ∈ N ) and the set

of production rules (P ). Due to the generalization from strings to trees, regular

tree grammars allow production rules of the form n→ tec, where

• n ∈ N ,

• t ∈ T and

• ec ⊂ N reflects the content model that is defined over the set of non-

terminals.

Based on actual schemata and documents of the arts and humanities such as the

TEI and DC examples presented in section 2.1.2, the above definition for schemata is

considered to represent the parsing-oriented view, which allows an initial validation

and processing of external data, but does not necessarily reflect the full extent of

the semantic structure and content that is encoded within a document. In the case

of the DC example, at least the elements of creator, coverage and subject contained

non-atomic content, which could be further decomposed according to additional

semantic rules:

• creator contains the full name of creators, which could (in the particular

example) be resolved to subordinate last and first name elements.

• The content of coverage can be split at the ’*’ character to produce key/value

pairs of individual properties

• subject is formed as list of subjects, which could be separated at the ’;’ symbol

in order to receive multiple atomic subject elements.

13 see h�p://www.w3.org/XML/Schema
14 see h�p://json-schema.org/

http://www.w3.org/XML/Schema
http://json-schema.org/
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To facilitate the representation of substructures or alternative elements within

the formal definition of a schema, Gradl (2014, 34-37) proposes a semantic exten-

sion—resulting in the definition of a schema as 6-tuple S = 〈N,T,R, P,E, F 〉,
where N , T , R and P form grammatical components and as such the parsing-

oriented view as introduced above. The components of L and F provide the

semantic extension of the original structure of the schema, where:

• L forms a set of labels and

• F is a set of labeling functions x→ lel, where:

– x ∈ (N ∪ L),

– l ⊆ L and

– el := {I, op} defining a function over a set of input values I ⊆ N and

an operation of the arity |I|.
In order to prevent the introduction of logical cycles, a particular label can be

produced by exactly one labeling function. As a result of the domain and co-

domain of the labeling functions, sub-trees ar generated for which a root node

xr ∈ N is selected from the set of non-terminal symbols, any subsequent node

xs 6= xr, xs ∈ L is a label and the edges are constituted by a function f ∈ F .

Gradl (2014) provides further details on the static structure and the extensions

of schemata and further introduces a derivation strategy (Gradl 2014, 44-49) for

composite schemata and collection-specific adaptions of generic base schemata.

In contrast to the concept of labeling functions, which are of particular interest for

the concept in this thesis, the aspects of derivation extend the expressiveness of

the metamodel and are not within the focus of this thesis.

3.3.3 Mappings

For the creation of unifying views over heterogeneous semi-structured data, map-

pings between the relevant source schemata and the selected target schema need

to be evaluated and applied. Data that is specified in terms of local schemata are

transformed into the corresponding representation of the integrative view. Figure

3.4 shows the common understanding of mappings as set of value correlations—

i.e. pairs of source and target elements, which have been semi-automatically or

manually selected as equivalents.
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Figure 3.4: Value correlations, mapping and data transformation (based on Leser & Naumann 2007, 125)

Sheth & Larson (1990, 192) defines mappings as functions for the correlation

of source and target objects—thus indicating that the associations of individual

elements might not su�ice to represent related objects. To address the semantic gap

between value correlations and semantically associated objects, Gradl (2014, 41-

42) introduces the notion of concept mappings cm = 〈ESS
, EST

, f〉 as correlation

between a set of source elements ESS
and a set of target elements EST

, where:

• ESS
= {eSS ,i . . . eSS ,j} | eSS

∈ (NSS
∪ LSS

)

• EST
= {eST ,k . . . eST ,l} | eST

∈ (NST
∪ LST

)

• f : ESS
→ EST

A schema mapping MSS ST
is then defined as a set of concept mappings

cm1 . . . cmn defined over a source and target schema SS and ST . Aside from the

previously introduces labeling functions, the mapping functions f of concept map-

pings form another use-case for the concept of the data transformation framework

in this thesis.
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4 Chapter

ANTLR

ANother Tool for Language Recognition (ANTLR)15 is a parser generator, which

creates Java, C# or C++ source code for scanning, tokenizing and parsing input

with respect to the constraints of a formal language specification. The ANTLR

project has been initiated by Terence Parr16, a professor of computer science,

analytics, and health informatics at the University of San Francisco. The latest

stable release17 of ANTLR has been released on April 6, 2014 under the permissive

terms of the revised Berkeley So�ware Distribution (BSD) license.18

As this thesis is primarily oriented on particular use-cases of data transforma-

tion, this section provides a broad picture on ANTLR and its role in language

applications. Due to the complexity of ANTLR with respect to its implementation

and theoretical background, the discussion thereby focuses on aspects that are of

particular relevance for the concept of this thesis. More detailed information on

ANTLR from a practical perspective are presented in Parr (2013). The theoretical

background is thoroughly introduced in Parr & Fisher (2011) and Parr (1993).

15 h�p://www.antlr.org
16 h�p://parrt.cs.usfca.edu/
17 v4.2.2: h�ps://github.com/antlr/antlr4/releases
18 h�p://opensource.org/licenses/BSD-3-Clause

http://www.antlr.org
http://parrt.cs.usfca.edu/
https://github.com/antlr/antlr4/releases
http://opensource.org/licenses/BSD-3-Clause
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4.1 Overview

ANTLR is as a generic framework that facilitates the implementation of language

applications, i.e. so�ware that reads, parses and transforms input. For data to be

processable by means of an ANTLR generated parser, common language pa�erns of

that data need to be identified and specified in terms of a context-free grammar, to

which the data is required to conform. Typical use-cases for language applications

range from the interpretation of configuration files, the transformation of data

between JSON and XML formats to more complex tasks such as the implementation

of code compilers.

grammar Properties;

file : prop+ ;
prop : key ’=’ value NEWLINE;
key : ID;
value : STRING

| NUMBER;

ID : [a-zA-Z][a-zA-Z0-9]+;
STRING : ’"’ (~’"’)* ’"’ ;
NUMBER : [0-9]+;
NEWLINE : ’\r’? ’\n’

WS : [ \t]+ -> skip;

Listing 4.1: Simple ANTLR grammar example

As an initial example, listing 4.1 presents a grammar specified in terms of the

Extended Backus–Naur Form (EBNF), a standard notation for the explication of

context-free grammars and the required base format of ANTLR: Rules noted in

lowercase characters (file, prop, key and value) specify syntactical instructions that

are utilized by a parser in order to (1) validate a provided input and (2) generate

the parse tree. The uppercase rules instruct the lexer on how to tokenize an input

character stream and assign one of the lexical categories ID, STRING, NUMBER or

NEWLINE. The WS . . . -> skip rule instructs the lexer not to recognize the specified

whitespaces as tokens. In this particular case, only concatenations of spaces

and tabulators are skipped, as the line-feeds are required as terminal tokens of

each property assignment. The presented grammar thus contains all information

required for the ANTLR tool to generate the basic language recognition components
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for an application that needs to process data against the constraints of a grammar.

Figure 4.1 provides a first overview of the basic principles of the ANTLR frame-

work and the relation between the building blocks of the ANTLR tool and runtime.

In addition, this overview also indicates where the boundaries of a generic lan-

guage support are found and custom domain logic has to be applied to complete a

language application as introduced in section 3.2.2. Figure 4.1 shows the two pri-

mary packages of ANTLR and provides an overview of their usage within language

applications based on the grammar in listing 4.1:

Language Application
ANTLR Tool

grammar Properties;

file  : prop+ ;

prop  : key '=' value NEWLINE;

key   : ID;

value : STRING

      | NUMBER;

ID      : [a-zA-Z][a-zA-Z0-9]+;

STRING  : '"' (~'"')* '"' ;

NUMBER  : [0-9]+;

NEWLINE : '\r'? '\n'

WS      : [ \t]+   -> skip; Semantic Analysis

Syntax Analysis

Lexical Analysis

PropertiesLexer.java

PropertiesLexer.tokens

PropertiesParser.java

Properties.tokens

PropertiesBaseListener.java

PropertiesListener.java

ANTLR Runtime

…

Base
Runtime

Error
Recovery

ATN DFA

Tree
Traversal

Business knowledge 

and logic

Figure 4.1: Overview of ANTLR components and their usage

• The ANTLR Tool19 primarily contains the functionality to generate the source

code of the lexer and parser of a provided grammar. As such, the tool

is typically used as standalone application, whereas the generated code

for language recognition is incorporated as part of the designed language

application.

• The ANTLR Runtime20 contains the runtime support of the framework and

comes with a variety of components and buildings blocks, of which some of

the most important can be concluded as:

– Base runtime (org.antlr.v4.runtime): in comparison to generated lexers

and parsers, the abstract base implementations Lexer and Parser in

the runtime package contain the generic functionality necessary for

lexical and semantic analysis. In total the base runtime contains 38
19 see h�p://mvnrepository.com/artifact/org.antlr/antlr4
20 see h�p://mvnrepository.com/artifact/org.antlr/antlr4-runtime

http://mvnrepository.com/artifact/org.antlr/antlr4
http://mvnrepository.com/artifact/org.antlr/antlr4-runtime
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classes including functionality such as parsing error recovery as well as

sophisticated character and token stream handing.

– Augmented transition network (ATN) (org.antlr.v4.runtime.atn) and De-

terministic finite automaton (DFA) (org.antlr.v4.runtime.dfa) contain the

implementations of the formal aspects of state machines (DFA) and an

appropriate, graph-theoretically based operational structure (ATN) to

represent a grammatical derivation (Parr & Fisher 2011; Parr 2013,

9-16).

– Tree traversal (org.antlr.v4.runtime.tree) with interfaces and stub imple-

mentations of the visitor and listener pa�erns assist with the implemen-

tation of a semantic analysis. In contrast to the extensive support of

the lexical and syntax analysis, however, the semantic analysis needs to

be implemented mainly in context of the specific business knowledge

and logic.

Among other auxiliary packages, ANTLR primarily consists in a tool, which—

based on the formal language specification of a context-free grammar—generates

the source code required to lexically and syntactically analyze a provided character

input against the underlying grammar. The generated source code is intended to

be imported into a domain-specific Java project and to be compiled along with

the incorporating application, which is then enabled to validate and process input

according to the original grammar. Whereas the tasks of lexical and syntactical

analysis as well as the generation of an IR are completely solved by means of the

generated parser and lexer classes in combination with the ANTLR runtime, further

semantic processing or translation is considered domain-specific and needs to be

solved by the application—in the case of this thesis: the concept and implementation

of rule framework in chapters 5 and 6.

4.2 Language recognition

The overall process of language recognition in terms of ANTLR is shown in figure

4.2. Based on the exemplary grammar introduced in the previous section (see

listing 4.1), the language recognition pipeline is initiated by a lexer, which receives

an input character stream. The lexer finishes by producing a token stream, which
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is then semantically analyzed by the parser. Following a narrow understanding as

e.g. expressed in Crespi-Reghizzi (2009, 5) and Parr (2013, 10-11), the recognition

against a formal language specification concludes with the generation of an IR—

i.e. in the case of ANTLR a parse tree: The separation of language recognition as

lexical and syntactical analysis on one hand, and the semantic aspects of language

processing—i.e. determining an encoded meaning and reacting appropriately—

also facilitates the distinction between generic functionality implemented by the

ANTLR framework and domain-specific components of a language processing

application.

Language Recognition

Token Stream (with lexical categories)key1 = "value1"

key2 = 12

Character 

stream

key1 = "value1" \n key2 = 12 \n

Syntax Analysis

Lexical Analysis
ID STRING NEWLINE ID NUMBER NEWLINE

Parse tree

file

key1 "value1"

key "=" value "\n"

key1 "value1"

key "=" value "\n"

propprop

Figure 4.2: Lexical and syntax analysis in language recognition

In the remainder of this chapter, the primary building blocks of language recog-

nition based on ANTLR are introduced as grammars, lexical analysis and syntax

analysis.

4.2.1 Grammars

Grammars for ANTLR are based on the EBNF (ISO/IEC 1996), a notation for the

formal specification of context-free grammars. In ANTLR, lexer and parser rules

can be specified in combined or separated grammar files following the convention

that lexer rules start with an uppercase le�er and parser rules start with a lowercase

le�er. The introductory grammar in listing 4.1 contained both types and resulted

in the generation of both a lexer and a parser.

ANTLR grammars are based on four fundamental language pa�erns required

to build context-free-languages (ISO/IEC 1996, 3-5; Parr 2013, 62-68): sequence,
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Syntax Usage

r : . . . define rule r

r : . . . | . . . | . . . define rule r with alternatives

x match token or subrule x

x y z match sequence of tokens or subrules

(. . . | . . . | . . . ) subrule with alternatives

x∗ repetition symbol (zero or more occurrences of x)

x+ repetition symbol (one or more occurrences of x)

x? optional symbol (zero or one occurrence of x)

v except symbol (e.g.: v[0-9] match anything but digits)

Table 4.1: Common notation elements in ANTLR grammars (based on Parr 2013, 67; ISO/IEC 1996, 1-2)

choice, token dependency and nested phrases. Table 4.1 shows the core notation for

the specification of ANTLR grammars.

Sequence The language pa�ern of sequences addresses syntactical elements

which have to occur in a particular order. The Properties grammar in listing 4.1

included various sequences—both in lexer and parser rules.

• The grammar rule prop (prop : key ’=’ value NEWLINE;) for example specifies

a sequence of key, followed by a ’=’, value and finally NEWLINE.

• The lexer rule ID (ID : [a-zA-Z][a-zA-Z0-9]+;) dictates that a token of the

lexical category ID must start with alphabetic character, followed by one or

more alphanumeric characters.

Choice Alternatives in languages are specified with the help of the | operator.

The introductory Properties grammar contained exactly one alternative, indicating

that the nonterminal value (value : STRING | NUMBER;) could be represented by a

terminal of the STRING or NUMBER lexical category.

Token dependency If a particular token must be followed by a counterpart

token in the stream, there exists a dependency between these token. An example

can be found in array declarations of the form [1, 20, 16, 2], where an opening

bracket needs to be answered by its closing counterpart. A matching parser rule
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could be specified as array : ’[’ NUMBER (’,’ NUMBER)+ ’]’, also ensuring the proper

sequence of commas and NUMBER tokens.

Nested phrases Parr (2013, 65) introduces a nested phrase as a “self-similar

language structure”—i.e. a phrase, whose sub-phrases conform to the structure

of the parent phrase. Nested phrases require a parser to provide a capacity for

recursive rules—an exemplary nested array could be specified as array : ’[’ (NUMBER

| array) (’,’ (NUMBER | array))+ ’]’.

Listing 4.2 shows of a complete ANTLR grammar that is based on the four basic

language pa�erns and specifies the lexical and syntactical constraints of JSON.

grammar JSON;

json : object
| array
;

object : ’{’ pair (’,’ pair)* ’}’
| ’{’ ’}’ // empty object
;

pair : STRING ’:’ value ;

array : ’[’ value (’,’ value)* ’]’
| ’[’ ’]’ // empty array
;

value : STRING
| NUMBER
| object // recursion
| array // recursion
| ’true’ // keywords
| ’false’
| ’null’
;

STRING : ’"’ (ESC | ~["\\])* ’"’ ;

fragment ESC : ’\\’ (["\\/bfnrt] | UNICODE) ;
fragment UNICODE : ’u’ HEX HEX HEX HEX ;
fragment HEX : [0-9a-fA-F] ;

NUMBER : ’-’? INT ’.’ INT EXP? // 1.35, 1.35E-9, 0.3, -4.5
| ’-’? INT EXP // 1e10 -3e4
| ’-’? INT // -3, 45
;
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fragment INT : ’0’ | [1-9] [0-9]* ;// no leading zeros
fragment EXP : [Ee] [+\-]? INT ; // \- since - means "range" inside [...]

WS : [ \t\n\r]+ -> skip ;

Listing 4.2: ANTLR grammar for parsing JSON input

4.2.2 Lexical analysis

In the theoretical context of compiler engineering, the tasks of parsers and lexers

are clearly distinguished as the task of a lexer being to “transform a stream of

characters into a stream of words in the input language” (Cooper 2012, 25), while

the task of a parser consists in determining whether a “stream of classified words

produced by the scanner is a valid sentence in the programming language” (Cooper

2012, 83). In practice, the distinction between lexical and syntactical analysis is

not as exact because—depending on the particular language—e.g. strings that

are considered legal sentences of a language might be irrelevant for parsing or

individual characters could be relevant for parser rules an thus considered as

tokens.

For this reason, the line between lexers and parsers in ANTLR is more of a logical

character than an enforced distinction and lexer rules in ANTLR can instruct more

complex tasks than accumulating characters to words. In general, an ANTLR-

generated lexer transforms a character stream into a stream of tokens as specified

in terms of lexer rules of the underlying grammar. Whereas a valid and simple

implementation of such lexer rules could be based on whitespace- and punctuation-

separated characters to words, the lexers in ANTLR can be perform sophisticated

analysis—thus possibly reducing the required complexity of parsers.

4.2.3 Syntactical analysis

ANTLR generated parsers follow the LL(*) parsing paradigm introduced in Parr

& Fisher (2011). In general, LL(*) parsers follow the top-down principles of LL(k)

parsing by (1) processing provided input from le�-to-right—constructing the le�-

most derivation. In contrast to the most common form of LL parsers with one

lookahead token (Cooper 2012, 95), ANTLR parsers allow a lookahead until the
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end of the token stream and as such the predictive parsing of input—an extension

to DFA-based parsing: Whereas the la�er transitions from state to state based of

the next token, predictive parsing allows decisions based on the next k tokens and

allows the specification of recursive rules (like expr : expr ’+’ expr; in a calculator

application). Internally, ANTLR works both with DFA and ATN. Parsing is initiated

by building paths in a DFA a�empting to proceed with 1 lookahead token. Upon

detecting ambiguities in the grammar when applying DFA, ANTLR switches to the

LL(*) parsing strategy, looking forward in the token stream until the ambiguity

can be resolved.

As the complex features of ANTLR parsers are best described in the context of

a practical parsing problem, many of the features are discussed in the concept

and evaluation chapters of this thesis, which will however still not utilize the full

capabilities of ANTLR e.g. with respect to the error detection and recovery mecha-

nisms, semantic predicates and embedded actions. For an in-depth discussion of

the theoretical background of the LL(*) parsing strategy please see Parr & Fisher

(2011), for an introduction to additional functionalities provided by ANTLR see

Parr (2013).

4.3 Tree processing

Whereas the primary concern of language recognition consists in the identification

of valid sentences within a provided character stream, language applications need

to process the parser-generated, intermediate representations to execute necessary

actions and generate domain-oriented functionality. In compilers, such processing

is typically associated with the functionalities of optimizers and compilation back

ends. Abstracting from the specifics of source code compilation, intermediate

representations of processed input have been completely validated against the

specifications of a language and are presented in a decomposed and structured

form for easier subsequent processing.

The representation produced by an ANTLR parser obtains the form of a parse

tree—a finite, directed tree, where each parsed grammatical symbol is represented

by a node and applied production rules are captured by the edges of the tree. As

such, a parse trees contain the complete information of the grammatical derivation
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for a provided input (Cooper 2012, 226)—at the expense of the resources of the

execution system, which needs to allocate memory for each of the nodes and edges.
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Figure 4.3: Tree traversal on the base of the listener pa�ern

Based on parse-trees generated by ANTLR parsers, further processing of provided

data is facilitated as the unstructured input has been lexically and syntactically

analyzed, validated against a defined language specification and transformed into

a structured, intermediate representation. Parse-tree processing can be specifically

implemented with respect to the required functionality of a domain. However,

ANTLR provides listeners and visitors as tree-walking mechanisms (Parr 2013,

17-19):

• With the help of the listener pa�ern (see figure 4.3), parse trees are com-

pletely walked—notifying any a�ached listener about entering and exiting

nonterminal nodes and visiting terminal nodes. The ANTLR generated base

listener implementation defines method stubs for every possible enter. . . ,

exit. . . and visit. . . event of the grammar, which can be implemented as

needed by the language application.

• The listener pa�ern defines visit. . . methods for every nonterminal and termi-

nal node of the grammar. Whereas in the listener pa�ern, parse-trees are

automatically traversed, visitor implementations need to explicitly call sub-

ordinate visit. . . methods to perform the traversal—thus allowing potentially

more e�icient implementations of the tree traversal.

For the conceptual work and especially the implementation in this thesis, the

visitor pa�ern is applied because of its reduced algorithmic overhead. For further

development of the rule framework in terms of a productive application, the runtime

benefits of the visitor pa�ern should to be evaluated on the basis of real-world use

cases.
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5 Chapter

Concept

Based on the understanding of language applications as programs that react on

the basis of input sentences, languages can be found in various formats, protocols

and files—i.e. any input that conforms to formal language specifications in terms

of grammars and thus can be processed by a recognition component of a language

application. With the following concept, this thesis focuses on the application of

the language theoretical foundation on the task of integrating research data stored

in distributed and heterogeneous digital collections.

Various transformation languages such as the �ery/View/Transformation

(QVT) and ATLAS Transformation Language (ATL) have been designed to allow

the generic specification of model transformation functions. Other transformation

languages can be identified in the Extensible Stylesheet Language Transformations

(XSLT), the standard language for XML data transformation, AWK, a generic text

processing language or Perl, an interpreted, general-purpose programming lan-

guage. The main characteristic of these transformation languages consists in their

expressiveness and complexity, which are required e.g. for model transformations

in the context of so�ware engineering or the Extract, transform, load (ETL) process

in data warehouses. In the particular context of the arts and humanities, data

definition and the design of transformation rules are both tasks, which cannot be

performed—as in typical integrative scenarios—for the whole application domain

in an extensive analytical phase, but requires a stepwise, continuous explication

of knowledge about collections and their data. For reasons of the ease-of-use and
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the acceptance of a developed system, domain experts of the arts and humanities

should not be required to learn complex general-purpose languages to order to be

able to describe the structure of data or a concept mapping function.

For this reason, the presented concept focuses on the creation of an rule frame-

work, which (1) allows a generic transformation of data provided by digital col-

lections and (2) reduces the complexity of the specification of functions for data

transformation. A�er a discussion of the domain-specific problems in section

5.1, an overview of data processing in terms of the rule framework is presented

in 5.2. The so called data processing pipeline shows the fundamental idea of a

classification of the rule framework into two phases: the data description, which

is detailed in section 5.3 and the data transformation phase, which is the focus of

section 5.4. The conceptual work is concluded by the summary of the designed

components and their interrelation in section 5.5.

5.1 Problem definition

The primary objective of this thesis consists in the design of a framework, which

facilitates the specification and application of data transformation rules for research

data of the arts and humanities. The discussion of the context in chapter 2 and the

conceptual frame of the modeling architecture in section 3.3 allow the derivation

of integration problems, which are intended to be solved in terms of the rule

framework.

The following discussion not only provides an overview of these problems, but

especially shows the similarities between the use-cases—thereby facilitating the

conception of the rule framework as a reusable solution.

5.1.1 Labeling vs. mapping functions

With respect to the metamodel developed in Gradl (2014), which forms the formal

framework for the representation of schemata and mappings21 in this thesis, two

primary application classes of the rule framework can be distinguished:

21 see also section 3.3
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• A mapping function ESS
→ EST

transforms a set of elements of the source

schema SS into semantically equivalent elements of the target schema ST
(Gradl 2014, 42).

• A labeling function x→ lel produces a label l from a nonterminal node or

label x ∈ (N ∪ L) (Gradl 2014, 35).
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Figure 5.1: Concept mapping examples (Gradl 2014, 44)

A mapping function is assigned to a concept mapping, which forms a logical

construct to consolidate value correspondences between the sets of source and

target elements that describe a particular semantic concept. Figure 5.1 illustrate

the idea of concept mappings based on three examples.

a) The title of a document is represented by an element Title in the source

schema—the language of the title is determined by a subordinate element.

In the target schema the distinction between languages is reflected in the

name of the elements, thus resulting in the distinctive concepts of Title_en

and Title_de.
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b) Despite the intuitive association of the Person element in both schemata,

the generation of the target element depends on the parent Creator source

element for specifying the Type1 sub-element. For this reason, Creator and

Person are the semantically equivalent concepts.

c) Two di�erent identifier elements of the source schema are mapped to the one

existing target element. The mapping function would need to either select

the appropriate identifier based on the instance (e.g. use Identifier1 if not

empty, otherwise use Identifier1) or generate two target Identifier elements.
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Figure 5.2: Labeling vs. mapping functions example

Whereas mapping functions contain instructions to transform data from a source

to a specified target representation, labeling functions operate within one particular

schema with the purpose to semantically enrich original data based on the specifi-

cations of domain experts. According to the above definition adapted from Gradl

(2014, 35), labeling functions can produce subtrees, with only the roots xr ∈ N
selected from nonterminal elements of the original regular-tree grammar. Label-

ing functions can be interpreted as transformation functions between the static,

parsing-oriented structure of a schema (the regular-tree-grammar component,

see section 3.3.2) and its enriched version incorporating the semantic extension.

Figure 5.2 illustrates this interpretation based on an exemplary extension of the

DC schema in its context-specific usage by Pangaea.
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In conclusion, the use-cases and requirements on the data transformation frame-

work can be summarized as generic support of data transformation functions of

the form ES → ET , where ES forms the set of source elements and ET the set

of target elements. In order to support both function types, the sets can be part

of the same or di�erent schemata. If ET , ES ⊆ S are part of the same schema,

ES ∩ ET = ∅ in order to prevent circular dependencies.

5.1.2 Data vs. query integration

The developed concept needs to address the integration of heterogeneous data

by the generation of unifying views, which are utilized to harmonize data. The

preparatory work in Gradl (2014) distinguished between materialized and virtual

forms of data integration (Poulovassilis 2009, 586) and identified the la�er as

preferable for integrative use-cases within the domain of the arts and humanities.

The primary arguments for the preference of the virtual form, which can also be

referred to as data federation, can be summarized as Gradl (2014, 2, 40):

• Data preservation: In order to be considered citable in academic contexts,

data needs to remain in its original and genuine form.

• Semantic flexibility : The suitability of unifying perspectives on data depend

on the academic context of the federated collections and the scholar. To

prevent an information loss induced by traditional global schema approaches

(Lenzerini 2002), data needs to be dynamically federated with respect to the

particular context.

The support for virtual data federation resulted in the creation of the integration

metamodel, which has been introduced in 3.3 and—by separating data integration

into a technical and context-dependent problems—allows the abstraction from

the technical aspects (e.g. protocol and encoding heterogeneity) and a focus on

those aspects, which require the interaction with domain experts. In addition, the

developed metamodel does not prevent materialized integration as it might be

beneficial in particular use-cases—e.g. when long-running analyses are executed

on data.

Data integration addresses such use-cases, which require the combination of

data from di�erent sources for a unified processing or for the migration of data
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into new or external systems. The implementation of use-cases that require a

search within heterogeneous data depends on a unified view only for the time

that is required to execute a query. As identified in section 2.2, the formulation

and execution of queries depends on the set of relevant data sources, the set of

schemata used by these data sources as well as the coherence of these schemata

in terms of semantic associations—the concept mappings. �eries thus cannot be

executed on a harmonized index, but require a virtual integration of data, which—in

order to provide a convenient user experience—has to be performed in terms of

milliseconds.

For the concept of the rule framework, a query can be understood as a semi-

structured document for which similarity measures can be applied in order to

find documents. This interpretation correlates with the basic ideas of some classic

information retrieval models, such as the vector space model: A promising approach

based on structure-aware indexing and the consideration of both structure and

query terms as dimensions of the vector space can be found in Liu et al. (2004).

However, no particular implications on the applicability of specific retrieval models

need to be drawn. Essentially, a query on semi-structured data can be considered

as a set of partial queries, which each target the content of one or more nodes of

the document tree and need to be combined in order to produce the overall query.

5.2 Language processing overview

In so�ware development, general purpose programming languages allow developers

to implement applications that are specifically targeted at particular use-cases and

users. Although requirements and circumstances of so�ware development projects

vary and are typically gathered within dedicated analysis and design phases, the

expressiveness of programming languages such as Java or PHP facilitates the

realization of supporting systems. Adapting this principle to the task of data

transformation in the context of this thesis, the rule framework can be based on

the assumption that rules for data integration can be formulated in terms of a

general-purpose transformation language if that language satisfies requirements

for expressiveness.

However, as discussed in the previous section, with an increasing complexity of
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a data transformation language, the technical knowledge required to formulate

appropriate transformation rules increases as well—thus possibly reducing the

acceptance of the developed concept and system. In order to reduce the complexity

of data transformation function specifications, the presented concept is based on

the hypothesis that an appropriate description and decomposition of transforma-

tion input reduces the expressiveness required of the transformation language. For

this reason, the phase of data description is identified as an additional step, which

allows the description of data in terms of a DSL. This data description is considered

optional: atomic content cannot be decomposed and is therefore an immediate

input to transformation functions. However, the following concept o�en assumes

the existence of data descriptions in order to conceptualize the rule framework

with particular respect to this more complex cases.

Instead of requiring the description of specific details in terms of a general-

purpose language, the domain experts are enabled to describe data in terms of the

definition of DSLs. Such meta-programming facilities (Ghosh 2011, 118) allow users

to be more productive within their specific domain because the complexity of the

environment can be encapsulated: An expert of a particular discipline or collection

is enabled to express the information, which is required to describe data, the syntax

and semantics, in terms of a technology-agnostic notation: context-free-grammars

in EBNF.
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Figure 5.3: Overview of the transformation rule framework
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Figure 5.3 shows the overall concept of the transformation rule framework,

which forms a combination of the application of DSLs for the description of data

and a transformation language for the formulation of transformation rules. The

building blocks within the framework are summarized in two interpreters, one for

the validation and processing of input against a DSL and one for the validation and

processing of a transformation function against the transformation language. Both

are conceptualized as autonomous language application components accomplishing

the following tasks (Parr 2010, 22-26):

• Process input utilizing grammatical rules—identifying tokens and token types

in terms of a lexical analysis.

• Construct an IR as a result of the syntax analysis.

• Traverse the IR to extract information or perform transformations to rewrite

the IR according to the needs of the concluding back end (semantic analysis

or optimization).

In contrast to the typical structure of compilers, the back end of the rule frame-

work needs to combine two parse trees, one with encoded transformation instruc-

tions and the other with a decomposed and structured version of the input. The

back end finally concludes individual transformation tasks by:

• interpreting input sentences executing the encoded transformation instruc-

tions and

• generating the output as output tree that forms a representation of the input

in a target structure (mapping function) or that is included under the input

element in the same structure (labeling function).

In summary, two separate language applications are combined in the rule frame-

work in order to reduce the overall complexity for the application domain: The

specification of the data description language as well as the formulation of opera-

tions to transform data require an in-depth knowledge of the collection and hence

the input of a domain expert, but abstract from technical aspects of the execution.

The specification of the data transformation language, however, can be considered

primarily as technical task and requires a so�ware development background in

order to implement the operations required to transform the data.
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5.3 Data description

The specification of data with respect to syntactical and semantic constraints is

accomplished by means of element-specific DSLs. The identification of language

pa�erns is considered as domain specific task, which requires knowledge about the

particular context of the data: the collection, discipline and usage. As a consequence,

a goal of the rule framework consists in the specifiability of languages by domain

experts.

A�er an overview of the fundamental idea for the specification and application

of DSLs in terms of the rule framework in section 5.3.1, the specification of the

required runtime behavior of the data description component in 5.3.2 provides

conceptual details for the implementation of the framework.

5.3.1 Conceptual basics

The discussion of the context in chapter 2 introduced the heterogeneity of the

research data and digital collections as well as the dynamic integration use-cases

as primary characteristics of the application domain, which prevent the utilization

of traditional data integration approaches based on system-wide global schemata.

As a consequence, the semantic associations between schemata are specified in

terms of direct mappings between source- and target schemata, which allow an

immediate relation of concept representations in the schemata.

Assuming normalized schemata, the content of any terminal node of the parsing-

oriented view on schemata (N,T,R, P ) contains atomic content and data inte-

gration could rely on semantic associations and operations on the M1 modeling

layer (see figure 3.3 on page 24): Considering e.g. atomic values in a field cre-

ator_last_name, which are associated to the atomic author_LName field in a target

schema, the task of integration consists in placing the atomic content specified in

terms of the source schema into an instance that conforms to constraints of the

target schema. Such schema-integration scenarios are common in structured data

integration (see e.g. Sheth & Larson 1990, 218-220).

With respect to semi-structured data—and in particular the research data of the

arts and humanities—the assumption of atomic terminal nodes does not hold: As

the Pangaea DC and the DTA TEI examples in section 2.1.2 showed, substructures or
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unstructured content is o�en encoded within the elements of semi-structured data.

Whereas the specification of DC contains no restriction of the content of its 15

core elements (compare DCMI 2012), the TEI guidelines specifically define the text

element as container for digitized or digital texts: "A full TEI document combines

metadata describing it, represented by a <teiHeader> element, with the document

itself, represented by a <text> element" (Burnard & Bauman 2014, 150). In order to

utilize explicable semantic on non-atomic content, Gradl (2014) introduced the

extension of the static, parsing-oriented perspective on schemata by a semantic

extension, which produces subtrees under defined nonterminal elements—based

on labeling functions that are executed on instances.

5.3.1.1 Instance-level perspective

In contrast to the schema-level, element values of semi-structured data do not

necessarily follow a defined model and can occur in terms of atomic values, semi-

structured or unstructured text. In addition to a missing formal definition on

the schema-level, the collection- and domain-specific notation and interpretation

of data prevents the definition of a common instance-based language for the

description of data. The reasoning is thereby similar to the argument against the

definition of static, global schemata (see section 2.1.2): to fulfill the requirements

for expressiveness and flexibility as needed for research-specific use-cases, the

grammar of such a unifying language would need to be either

• too complex in order to include all possible syntactic pa�erns and results in

a large language specification, in which problems such as the ambiguity of

grammatical rules can hardly be identified, or

• abstracting from specific syntactical aspects to control the complexity of

the language and potentially result in insu�icient level of expressiveness for

specific use-cases of the language.

Aside from the expressiveness and customization requirements from research

use-cases, the specification of the syntax and semantics of data—beyond the

schema-level constraints—significantly depends on the particular objectives of a

language designer:

• Collection orientation as intuitive motive of data description focuses on an
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explication of knowledge about collection-specifics of data in general. The

resulting description is generic in a sense that it is not primarily influenced by

particular data integration use-case, but allows the reuse of the description

for multiple tasks and mappings.

• Task orientation: When processing complex data such as natural language,

concrete tasks facilitate the identification of relevant syntactical and seman-

tic pa�erns and produce less ambiguity for further processing of that data.

A particular task on natural texts could be found in the detection of named

entities, which benefits from a task-oriented description of data.

• Mapping orientation is expected to be the main focus if data needs to be inte-

grated under a target schema. If the target schema for a particular use-case

is known, mapping-oriented descriptions facilitate a virtual or materialized

integration under that schema.

5.3.1.2 Derivation of an example

In favor of a domain-motivated example for the specification of a language in

terms of ANTLR grammars, this thesis to this point did not provide an extensive

illustration of a generic grammar. In this section, the derivation of lexical and

syntactic pa�erns of a particular DSL is presented. To improve understandability

and to indicate that specific grammars could be designed by domain experts, the

following steps document the definition of the PangaeaCoverage grammar, which

is part of the use-case further detailed in section 7.1. An exemplary content of the

coverage element of a Pangaea DC dataset is presented in listing 5.1.

<dc : c o v e r a g e >
LATITUDE : −70 .339167 ∗ LONGITUDE : −11 .656833 ∗ DATE / TIME START : 1988−02−25

T17 : 4 9 : 0 0 ∗ DATE / TIME END : 1988−02−25 T17 : 4 9 : 0 0 ∗ MINIMUM DEPTH ,
sed iment / rock : 0 . 0 m ∗ MAXIMUM DEPTH , sed iment / rock : 1 0 . 2 m

< / dc : c o v e r a g e >

Listing 5.1: Pangaea coverage example input

As an inital step, the basic language structure could be implemented in a grammar

as shown in 5.2:

• The substructure (substruct) of the coverage is composed of at least one

subelement (subelem)
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grammar PangaeaCoverage;

substruct : subelem+;

subelem : key ’: ’ value ’*’;
key : ID;
value : ID;

WS : [ \t\r\n]+ -> skip;
ID : ~(’:’|’*’)+;

Listing 5.2: Pangaea coverage grammar – step 1

• The subelem rule identifies a key/value-pa�ern.

• Both key and value of a subelement are of the lexical category ID

• IDs are defined to be any character everything but ’:’ and ’*’—the separating

characters.

• Whitespaces are not removed from IDs because they are part of keys and

values (e.g. 10.2 m), they are however removed between tokens as specified

by the WS lexer rule.
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Figure 5.4: Parse tree of the Pangaea Coverage grammar (step 1)

Figure 5.4 shows the resulting parse tree when recognizing the exemplary cover-

age in listing 5.1 against the defined grammar—showing that the grammar resulted

in parser errors starting short a�er the DATE/TIME START terminal node.

The grammar in listing 5.3 corrects the erroneous first version by composing

the parser rule data as three ID tokens separated by colons—the symbol, which

is also used as key/value separator. Assigning the date alternative before ID in

the value rule, date receives a higher precedence and is recognized before an ID.

The parse tree in figure 5.5 shows that one parse error remains because the last

element within the substructure of the coverage element does not end with an

asterisk. The grammar in listing 5.4 removes the error by allowing an alternative
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grammar PangaeaCoverage;

substruct : subelem+;

subelem : key ’: ’ value ’*’;
key : ID;
value : date

| ID;

date : ID ’:’ ID ’:’ ID;

WS : [ \t\r\n]+ -> skip;
ID : ~(’:’|’*’)+;

Listing 5.3: Pangaea coverage grammar – step 2

within the subelem rule without the terminating ’*’ symbol.

·DATE/TIME·END

value

·DATE/TIME·START

<missing·'*'>

1988-02-25T17

:· :·

subelem...

<missing·':·'>

subelem

key*

substruct

1988-02-25T17 9

<missing·'*'> value

subelem

key valuekey

0·

key

·MAXIMUM·DEPTH,·sediment/rock

value

date

*

0.0·m·

:·

00·

:·key

substruct

*

10.2·m·MINIMUM·DEPTH,·sediment/rock

...

: :

subelem subelem

:·

1988-02-25T17

·DATE/TIME·END

subelem

49

value value

...

key <missing·'*'>

value

latitude

subelem

LATITUDE DATE/TIME·END

end

value

subelem

·*·

value

subelem

1988-02-25T17:49:00

start ·*·

value

-70.339167

subelem

-11.656833

:·

·*·

LONGITUDE

1988-02-25T17:49:00

:· DATE/TIME·START

·*·

:· :·

...

longitude

substruct

...

Figure 5.5: Parse tree of the Pangaea Coverage grammar (step 2)

Although the presented grammar validly parses the provided input, further

modifications can be performed to further improve the language specification and

the generated IR:

• Named parser rules: The sub-elements are explicitly labeled according to

their content, which facilitates the identification of input parameters by

consuming data transformation rules.

• Irrelevant alternative: The additional otherElem rule catches unspecified and

key/value-pairs, which is required for a language specification, if other keys

are presented in di�erent instances.

• Date lexer rule: The date is now correctly processed at the lexer level.

• Whitespaces in IDs: the lexer rule for IDs removes whitespace from the start

and end of the token.
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grammar PangaeaCoverage;

substruct : subelem+;

subelem : key ’: ’ value ’*’
| key ’: ’ value;

key : ID;
value : date

| ID;

date : ID ’:’ ID ’:’ ID;

WS : [ \t\r\n]+ -> skip;
ID : ~(’:’|’*’)+;

Listing 5.4: Pangaea coverage grammar – step 3

The grammar that results from the above modifications is shown in listing 5.5,

the parse tree in figure 5.6.
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Figure 5.6: Parse tree of the Pangaea Coverage grammar (step 4)

5.3.2 Runtime behavior

On the formal foundation of language specifications in terms of context-free gram-

mars, the rule framework processes input data according to the conditions and

requirements expressed by domain experts. As a result of the discussed specificity

and diversity of the research data in digital collections, the data description com-

ponent of the designed rule framework is required to process multiple languages

in a generic and extensible fashion.

In order to be able to parse, interpret and process data according to specified

rules, intermediate tasks need to be accomplished as shown in figure 5.7.
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grammar PangaeaCoverage;

substruct : subelem+;

subelem : (longitude | latitude | start | end | minDepth | maxDepth |
otherElem) SEPARATOR?;

longitude : ’LONGITUDE’ ’: ’ value;
latitude : ’LATITUDE’ ’: ’ value;
start : ’DATE/TIME START’ ’: ’ value;
end : ’DATE/TIME END’ ’: ’ value;
minDepth : ’MINIMUM DEPTH, sediment/rock’ ’: ’ value;
maxDepth : ’MAXIMUM DEPTH, sediment/rock’ ’: ’ value;

otherElem : key ’: ’ value;

key : ID;
value : DATE

| ID;

ID : ~(’ ’|’:’|’*’) ~(’:’|’*’)+ ~(’ ’|’:’|’*’);
DATE : YEAR ’-’ MONTH ’-’ DAY ’T’ HOUR ’:’ MIN ’:’ SEC;
SEPARATOR : ’ ’? ’*’ ’ ’?;

fragment YEAR : [1-2][0-9][0-9][0-9];
fragment MONTH : [0-1][0-9];
fragment DAY : [0-3][0-9];
fragment HOUR : [0-2][0-9];
fragment MIN : [0-6][0-9];
fragment SEC : [0-6][0-9];

WS : [ \t\r\n]+ -> skip ;

Listing 5.5: Pangaea coverage grammar – step 4

5.3.2.1 Parser & Lexer generation

The implementation of language application font-ends consists in the creation of

components for the lexical and syntactical analysis of sentences with respect to the

implemented language. Based on such lexers and parsers, (1) the syntax and se-

mantics of a provided input can be validated and (2) an intermediate representation

is created to facilitate further processing of the input.

The introductory discussion of the features and principles of the ANTLR frame-

work in chapter 4 distinguished compile-time (parser generation) and run-time
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Figure 5.7: Data description functionality overview

(lexing and parsing) components of ANTLR, which are—in contrast to the typi-

cal usage—both employed during the execution of the rule framework. A�er a

grammar has been designed and published to the rule framework, a two-phase

compilation process is initiated:

1. The ANTLR tool is used to create the Java source code of the lexer and parser

for the designed language. If the process fails, the user is informed and

provided with hints to complete the grammar.

2. With the help of the Java compiler22, the generated source code is compiled

to executable Java byte-code.

This compilation process is executed from within the rule framework. Immedi-

ately a�er the process, the language recognition logic becomes available for data

translation: compiled class files are therefore not saved to the default classpath of

the rule framework, but to an external directory. A file-based classloader is utilized

to load the classes as needed, leading to two main benefits:

• Data description logic is loaded (and potentially unloaded) on demand. This

reduces both the memory footprint of the rule framework and increases

22 see h�p://docs.oracle.com/javase/7/docs/api/javax/tools/JavaCompiler.html

http://docs.oracle.com/javase/7/docs/api/javax/tools/JavaCompiler.html
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startup time.

• Without the need to restart the rule framework, parser and lexer classes can

be loaded immediately a�er their generation.

Compared to typical language processing applications as discussed in Parr

(2013, 83-108) and Cooper (2012), the data description component of the designed

rule framework is required to expose a dynamic functionality with respect to the

handling of language specifications:

Dynamic code integration In general, compiler or parser generators create

language recognition code from a language specification. In the particular example

of ANTLR, lexical and syntactical constraints of a language are collected in terms

of text files23. Upon execution of the ANTLR tool, provided grammar files are

parsed and processed to generate the source code of the lexer, parser and auxiliary

classes—or resulting in the output of errors that occurred upon grammar processing.

The standard method of incorporating the ANTLR-produced source code consists

in the import of the source files into a so�ware project and compiling the language

recognition functionality along with the application. Despite the intuitive character

of the standard approach, the rule framework is required to be able to dynamically

integrate new language interpretation functionality without requiring a restart or

recompilation of the so�ware.

Language modifiability One particular reason for the dynamic code integra-

tion consists in the necessity to handle a larger set of languages. Whereas the

traditional method is satisfactory for implementations of a small set of languages

that are not subject to frequent changes, the developed rule framework intends to

facilitate the creation and adaption of domain-specific languages. For this reason

an implementation is required, which—at the runtime of the rule framework (1)

generates Java source code from language specifications, (2) compiles the source

code files and (3) loads the compiled classes.

As a negative side-e�ect of the language modifiability requirement and the

resulting dynamic integration of language recognition code, the implementation of

the generated base ANTLR visitor and listener interfaces are prevented: In typical

23 ANTLR grammar file extension: .g4
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language processing scenarios based on ANTLR, the implementation of a language

is concluded by implementing the generated base visitor or listener interfaces.

Implementing these interfaces, the traversal of the tree by means of the provided

ANTLR functionality results in calls to exit and enter methods for the specific

nodes. By separating the logic of data description and data transformation, this

side-e�ect is, however, rendered irrelevant as section 5.4 will show.

On-the-fly applicability Language specifications are expected to be developed

by experts of a particular academic domain or digital collection. In order to pro-

vide a convenient user experience, graphical interfaces need to be designed and

implemented with particular respect to usability considerations.

Particularly if these interfaces are provided in terms of a web-based application,

users should receive immediate feedback on a provided grammar—without the need

to restart the application hosting the rule framework. Instead, the grammar should

be executable e.g. in terms of provided sample data—indicating the applicability

and eventual shortcomings of the specification.

5.3.2.2 Language application execution

Although the overall goal of the rule framework is completed by combining the

data description and data transformation component, the phase of data description

alone forms an autonomous language processing application with defined input

and output parameters:

• Any stream of characters can be provided as input to the data description

component, which (1) validates if the input can be processed in terms of a

specified language and (2) renders the input in terms of a parse tree.

• The output of the language application consists in a modified tree, which

has been optimized with respect to the specified semantics of a consuming

functionality—in the case of this thesis: the data transformation component.

Following the terminology of Parr (2013) and Cooper (2012), the functionality of

the data description runtime can be classified in the phase of language recognition,

containing the lexical and syntactical analysis of an input and the subsequent se-

mantic analysis, generating an intermediate representation with respect to external
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specifications.

With the help of the ANTLR framework, the lexical and syntactical analysis

of unstructured content can be facilitated as shown in the example in section

5.3.1.2. As the rules for the analysis are based on an identification and expression of

language pa�erns by domain experts, produced parse trees encapsulate additional

information, which can be exploited by data transformation.

Primarily to facilitate the further processing in terms of data transformation,

but also in order to reduce the memory footprint and processing load of the

rule framework, an additional task of semantic analysis is introduced to the pro-

cess of data description—creating a variation of the parse tree—according to the

needs of the subsequent transformation functions. As further detailed in the

section on data transformation in section 5.4, transformation functions refer to

input parameters with the ’@’-symbol followed by a element-rooted selector.

To retrieve the longitude value in the Pangaea coverage parse tree in figure 5.6,

@substruct.subelem.longitude.value is specified in the data transformation function.

Semantic analysis in this context can be summarized as receiving the input parame-

ter specifications of all data transformation functions, which are executed a�er the

data description process executes and to use this information in order to generate

a AST that is—in order to simplify the selection in data transformation—optimized

with respect to the label-based selection of the nodes.

ANTLR parsers are intended to be traversed by listeners or visitors, which im-

plement the specifically generated interfaces in order to make sense of grammar

rules. Implementing the base class of the org.antlr.v4.runtime.tree.ParseTreeListener,

a generic listener implementation can react only to four generic events by imple-

menting the following four base methods:

• void visitTerminal(TerminalNode node): Called by the parser when a leaf of

the parse tree is walked.

• void visitErrorNode(ErrorNode node): If the parser was able to recover from

errors in the input, a parse tree that—among regular terminal and nontermi-

nal nodes—contains error nodes is generated. The parser calls this method

when walking such error nodes.

• void enterEveryRule(ParserRuleContext ctx): Called when the parser arrived

at any nonterminal, non-error node and before any of its child nodes are



5 Concept 57

walked.

• void exitEveryRule(ParserRuleContext ctx): Like the enterEveryRule with the

exception that the method is called a�er child nodes have been walked.

Figure 5.8 shows the runtime processing within the data description phase, which

combines the information of the parse tree with the hierarchical input parameter

definitions of depending data transformation functions in order to produce an AST

that can be considered as dense, convenient and meaningful with respect to further

processing (Parr 2010, 77).
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Figure 5.8: Data description runtime processing

The semantic transformation of the input parse tree to the optimized AST in-

volves three steps upon the traversal of the parse tree:

1. enterEveryRule(-): compare the provided nonterminal node (called context)

with the child nodes of the current root of the transformation parameter

definition tree. If the context matches the name of a child input parameter,

create a nonterminal node and push it to the current root of the AST.

2. exitEveryRule(-): if the provided context matches the currently regarded

parent, move up both in the AST and the transformation parameter definition

hierarchy.

3. visitTerminal(-): create a terminal node and assign it to the topmost nonter-

minal.
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5.4 Data transformation

As discussed in the previous section, the definition of syntactical and semantic

features of data is facilitated through DSLs that can be specified at the nonter-

minal nodes and labels of the schema metamodel. With the help of a DSL that

is specifically designed for a particular context and purpose, the application of

transformation in this section is based on source data, which has been decomposed

and preprocessed according to the specifications of domain experts. Based on

a generated AST, data needs to be further processed in order to complete the

language processing pipeline of the rule framework by producing output versions

of original data—again based on the specific definition of a domain experts. Like

data descriptions, transformation rules can be specified in collection-, task- or

mapping-oriented fashion24 to produce specific results.

The focus of section 5.4.1 consists primarily in the derivation of a powerful and

extensible data transformation language, which satisfies the best practices of DSL

design. Based on the defined data transformation language, section 5.4.2 then

discusses the required capabilities of an implementation within the rule framework.

5.4.1 Language design

The primary purpose of the data transformation language—in the context of this

thesis—is to provide the capabilities for explicating functions that transform a

provided input in terms of an AST as specified in section 5.3.2.2. Although existing

model transformation languages such as the ATL or QVT provide specifications that

could serve as blueprint for the implementation of a data transformation language

within the rule framework, the data transformation language in this thesis is

constructed as a specifically designed DSL—mainly to address the abstraction

requirements discussed in Ghosh (2011, 23):

• Minimalism: Only include elements in the language, which are implemented

in the framework. Generic languages generate a substantial implementation

overhead, which is prevented by limiting the language specification to the

required and intended implementation.

24 see page 47
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• Distillation: The DSL should contain only essential and required constructs

to improve understandability and—like in the requirement above—reduce

implementation overhead.

• Extensibility : As the language is implemented with respect to the minimalism

requirement above, some required functionality might not be included in

initial versions of the language, which should hence be easily extensible.

• Composability : Language elements should be designed to be composable

with other elements to create higher-order abstractions.

Based on these best-practices for the creation of a DSL, the design of the trans-

formation language in this thesis has a focus on simplicity while still providing the

expressiveness required to allow the flexible definition of transformation functions—

transforming an input AST to possibly hierarchical output elements.

5.4.1.1 Fundamental language pa�erns

In language application scenarios such as compiler engineering, grammatical rules

can o�en be derived from existing sentences of the language or existing specifica-

tions (Parr 2013, 58-61). This principle has been shown to be applicable for the

specification of data description languages in section 5.3.1.2), where grammars can

be based and tested on the data they are intended to define.

For the construction of the data transformation language, central requirements

need to be derived from the main purpose of the language: the specification of

functions for the transformation of elements of semi-structured data.

Element assignment

In its basic form, an assignment eS → eT specifies the relation of a source and

target element. Although this simple assignment is not required to be specified in

terms of a transformation function as such value correspondences could be specified

on the schema-level, it nevertheless forms the base of the data transformation

language.
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output1 = @input1;
output2 = @input2.subvalue;
output3 = "String constant";
output4 = 12;

Listing 5.6: Element assignment syntax

Listing 5.6 shows the syntax of a simple element assignment. For improved

readability, the right-to-le� assignment operator (output = input) is preferred over

the function notation (input→ output):

• Although domain experts are not assumed to be experienced programmers,

common programming languages use the right-to-le� assignment operator.

• Operations are performed on the input before a result is assigned to an

output. The output-first notation allows an easier navigation through more

complex expressions.

Mainly for the reason of improved readability input elements are annotated

with a preceding @ symbol (as metaphor for ’the data (at) the element’), which

facilitates the disambiguation of input elements (output1 and output2) and con-

stants (output3 and output4). Following the example of common programming

languages, statements are closed with a terminating semicolon with the additional

parsing benefit of whitespaces as line-breaks and -feeds between tokens becoming

irrelevant.

Object assignment

The previous listing indicated that assignments can refer to subelements of a

provided input element, which provide an initial step to to support the idea of

concept mappings and hence to allow semantic associations. Since specified output

elements could consist of subelements, the semantics of an object assignment are

introduced to the data transformation language.

Listing 5.7 reflects an example assignment, where the two individual input

elements (@input1 and @input2) are assigned to the according subelements of an

object object.
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output = {
subelement = @input1;
subelement = @input2;

};

Listing 5.7: Object assignment syntax

Please notice that the example in listing 5.7 cannot be equivalently replaced by

two individual assignment statements: Whereas the object assignment results in

the creation of one object with the properties subelement1 and subelement2, two

individual statements of the form output.subelement1 = @input1; output.subelement2

= @input2; raise an ambiguity because either one output with both properties or

two output objects could be intended. In order to prevent such output assignment

ambiguities, the notation output.subelement = @input is not allowed in the data

transformation language.

Transformation commands

With the help of element and object assignments, grammatically decomposed and

preprocessed input data can be assigned to corresponding output elements. Data

integration o�en requires the application of operations that change input data by

performing transformations such as aggregation or data cleansing.

Listing 5.8 introduces the command syntax to the data transformation language.

Calls to transformation commands show similarity to common programming

languages and follow the form COMMAND(arg1, arg2, ..., argn); with a syntactically

unlimited list of arguments. Commands can be used as assignment source or

recursive argument of other commands.

output1 = CONCAT(@input1, ’\t’, @input2);
output2 = {

minimum = MIN(@input3, 0);
maximum = MAX(@input3, 100);

};
output3 = IF( EQ(@input4, ’matchString’),

@input5.subelement1,
@input5.subelement2

);

Listing 5.8: Transformation command syntax
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Extensibility is a requirement of particular importance to the concept of the

data transformation language. Whereas standard commands as in the example

above are supported by a core implementation of the rule framework, the set of

available commands must be extensible with respect to new and potentially complex

functionality. Without necessary changes to the syntax and semantics to the data

transformation language, existing text analysis and processing functionality25 can

be injected26 to the framework e.g. by creating wrappers that accept calls in terms

of the presented command syntax—improving the overall functionality of the data

transformation engine.

Multiplicity

Both previous examples implicitly assumed single occurrences of assigned input

elements, which results in the creation of one equivalent output element in the

target schema. The existence of multiple instances of an input element depicts a

commonly found pa�ern of semi-structured documents.

The XML Schema language allows the restriction of the multiplicity of elements

with the minBounds and maxBounds keywords. Additionally XML prevents the

existence of multiple a�ributes with the same name under the same element

and hence contains. Whereas in XML, multiplicity is reflected by the creation

of multiple instances of the same element, the language specification of JSON

identifies arrays as means to reflect multiplicity.

For the concept of the data transformation language, multiplicity is resolved

at the place of an input element selection and must be implemented as an array

assignment for the following reasons:

• Language applications can later decide what to do with array vs. element list

• Commands are n-ary operators

• For cases where a set of input elements needs to be transformed to a smaller

set or one individual element, commands can be implemented e.g. to create

output1, output2 etc.

25 e.g. Heideltime or OpenNLP
26 dependency injection receives further a�ention in chapter 6
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Object scopes and filters

Multiplicity introduces a new challenge that needs to be solved in terms of the

data transformation language. Consider the JSON example in listing 5.9, which

represents an enriched version of DC: By means of a data description language, the

original creator element has been decomposed into its components of LastName

and FirstName.

{
" Dub l inCoreEnr i ched " : {

" T i t l e " : " Sed imento logy and s u s c e p t i b i l i t y o f c o r e MD88−769" ,
" C r e a t o r " : {

" LastName " : " B a r e i l l e " ,
" F i rs tName " : " G i l l e s "

} ,
" C r e a t o r " : {

" LastName " : " Grousse t " ,
" F i rs tName " : " F r a n c i s "

} ,
" C r e a t o r " : {

" LastName " : " L a b r a c h e r i e " ,
" F i rs tName " : " Monique "

}
}

}

Listing 5.9: Multiplicity and scoping example

Based on the semantics of object assignments, a potential concept mapping to

an exemplary Author element with the sub-elements LName and FName would be

defined as shown in listing 5.10. Based on the previously introduced multiplicity

resolution concept, the assignment result in the generation of one Autor element

with one FName sub-element, containing an array of first names ["Gilles", "Francis",

"Monique"] and one LName sub-element with the set of last names ["Gilles", "Fran-

cis", "Monique"]. The collection of all selected input elements is expected and can

e.g. be compared to the XML Path Language (XPath) expression /Creator/FirstName

on an equivalent XML document.

Author = {
FName = @Creator.FirstName;
LName = @Creator.LastName;

};

Listing 5.10: Incorrect object assignment example
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In order to facilitate the intended behavior, a scope parameter is introduced

to the language as shown in listing 5.11. The example has been extended by an

additional Addr sub-object, which is produced from the equivalent sub-object of the

input element—thus requiring the consideration of an @Address scope subordinate

to the main @Creator scope.

Author = @Creator {
FName = @FirstName;
LName = @LastName;
Addr = @Address[@Type=="business"] {

Street = CONCAT(@Street, ’ ’, @Number);
City = CONCAT(@ZipCode, ’ ’, @City);

};
};

Listing 5.11: Object assignment example

If the scope parameters is accompanied by an optional scope filter as in listing

5.11, a filter is applied when selecting input subtrees from a provided AST.

5.4.1.2 Language definition

Based on the language pa�erns identified in the previous section, a grammar can be

derived in order to implement the data transformation language. ’Implementation’

at this point refers to the general concept of language applications and is completed

with the compilation of a lexer and parser—allowing the lexical and semantical

analysis of input sentences.

Listing 5.12 shows the data transformation language defined in terms of an

ANTLR grammar.

grammar DataTransformation;

/** Parser rules ----------------------------------------------------- **/
func : stmt+;

stmt : output ’=’ (object | assign) ’;’;
output : selector;

/** Object assignments (optional scope) **/
object : scope? ’{’ stmt+ ’}’;
scope : ’@’ selector (’[’ scopeFilter ’]’)?;
scopeFilter : ’@’ selector ’==’ filterExpr;
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/** Element assignments **/
assign : input

| command
| value;

input : ’@’ selector;
command : function ’(’ assign (’,’ assign)* ’)’;

/** Reused rules **/
selector : ID (’.’ ID)*;
function : ID;
value : NUMBER

| STRING;
filterExpr : NUMBER

| STRING;

/** Lexer rules ----------------------------------------------------- **/
ID : LETTER (LETTER|DIGIT)*;
NUMBER : ’-’? (DIGIT+ (’.’ DIGIT*)?);
STRING : ’"’ (’\\"’|.)*? ’"’;

fragment LETTER : [a-zA-Z];
fragment DIGIT : [0-9];

WS : [ \t\r\n]+ -> skip;

Listing 5.12: Grammar of the data transformation language

Please note that this language specification can be extended by further compo-

nent and represents a premature version—e.g. the scopeFilter rule should probably

allow more complex boolean expressions. However, the language specification

shows the general applicability of an ANTLR based processing for data transfor-

mation.

Commands have been chosen to be not literally specified in terms of the data

transformation grammar for reasons of extensibility: If new functions are imple-

mented and made available to the rule framework, the transformation language

would have to be recompiled on every change. Instead, the enterCommand event is

required to trigger a check, whether a specified command is supported.

The modification and recompilation of the transformation language results in

di�erent and possibly conflicting dialects of the data transformation language. By

associating specified transformation functions with an exact version of the data

transformation language, future languages could be implemented without altering

the behavior of previously specified functions.
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5.4.2 Runtime behavior

As indicated in the overview to this section (see figure 5.3 on page 44), the primary

runtime behavior at the transformation stage of the processing pipeline is charac-

terized by its input: the input parse tree and the transformation function—as well as

its purpose: the creation of an output parse tree. The required runtime functionality

is reflected by the two main activities transformation function compilation and parse

tree combination as shown in figure 5.9.
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Figure 5.9: Runtime behavior of data transformation

5.4.2.1 Transformation function compilation

Data transformation functions are sentences of the language defined in the previous

section. As such, the processing of data transformation functions can be compared

to that of data description:. Whereas the language definition in the data description

phase depends on the schema definition of the processed data, one global grammar

for data transformation functions exists (as specified in section 5.4.1.2).

The parse tree in figure 5.10 shows the result of the semantical analysis of the

exemplary data transformation function in listing 5.11 on the basis of the grammar

specified in the previous section. Similar to the handling of data description

functions, the task of language recognition ends with the generation of a parse
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tree, which is then walked and processed in subsequent steps.
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Figure 5.10: Data transformation parameter collection

Figure 5.10 also shows the functionality of the data transformation parameter

collection, which is required in the data description phase in order to generate

ASTs.

5.4.2.2 Function execution

The execution of data translation functions depends on two input parse trees:

• The function tree with the semantics of data transformation—i.e. rules, to

which the rule framework needs to respond.

• The input tree, which contains the input parameters in hierarchical form.

Terminal symbols of the input tree correspond to values, which are intended

to be inserted in place of the input parameters of the function tree. Non-

terminal symbols reflect the structure of parsed input, which is utilized to

select the values.

The order and logic of a data transformation function is thus represented by

a function tree. Traversing the function tree, the two primary tasks consist in

(1) identifying input placeholders in the function and replacing them with input

values found in the input tree and (2) executing rules such as assignments and
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commands to render output values. The data transformation grammar as specified

in section 5.4.1.2 produces functions, which are intended to be processed in terms

of a depth-first, pre-order logic, which can be verified on the basis of the function

tree presented above.

The concept for an interpreter of data transformation functions is based LIFO

stacks, which are further referenced as stacks—with respect to the basic computing

terminology and the corresponding Java type—and both relate to the common

language application pa�ern of symbol tables (see e.g. Parr 2013, 138-145):

Output label stack Labels of output parameters are put on this stack as soon

as the le� hand side of a statement is processed. Keeping output parameter labels

on a separated structure in memory is required because a statement can create

multiple output parameters as indicated in section 5.4.1.1 (Multiplicity)

Output parameter stack The output parameter stack serves as container for

output parameters within the current scopes and is an extended form of a symbol

table for nested scopes as discussed in Parr (2010, 161-169). The pa�ern is typically

used for interpreting or compiling programming languages, which allow scoped

fields: e.g. class variables are hidden by method variables. An extension of the

typical form of the symbol table is required in order to reflect the combination of

input and function trees: Whereas in the context of programming languages, "each

function has its own scope that is nested within a global or class scope" (Parr

2010, 161), in the context of the data transformation functions of this thesis, each

selected subtree of the input tree to which an assignment is applied has its own

scope and the output parameter scope receives the following characteristics:

• Each entry in the stack consists of a list of output parameters, reflecting the

current object scope applied to the input tree.

• Each entry in the list of output parameters of a particular scope represents

a subtree of the original input tree, which has been selected by the scope

selector—based on the parent scope subtree or subtrees.

Command stack Output parameters are (1) labeled according to the topmost

item of the output label stack and (2) assigned the value of the right hand of the
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’=’ operator, which is a choice of the alternatives command, value, input and object.

Whereas constant and input values can be assigned to output parameters, object

assignments result in the creation of output parameter hierarchies—i.e. the parent

parameter as nonterminal node is assigned child nodes, which are then recursively

processed. Command assignments di�er from other alternatives since it (1) like

values and inputs result in the assignment of values to output parameters and

(2) requires a possibly nested calculation based on values, inputs or subsequent

commands. Command stacks at the instances of generated output parameters can

be utilized to support nested commands:

• Commands are executed per identified subtree of the current scope.

• Commands change the application target of subsequent assignments—i.e.

assignments then target arguments passed to the current command and not

the output parameters of the current scope.

Table 5.1 summarizes the actions, which are required of the rule framework upon

entering and/or exiting specific nodes of the function parse tree.
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Rule Enter/Exit Functionality

stmt enter Put the label of the subordinate output rule on the output label
stack

exit Remove the topmost entry from the output label stack

object enter For every item in the topmost entry in the output parameter
stack: add a new child output parameter with the name of the
current topmost label on the output label stack; every parameter
contains a reference to its corresponding item in the input AST

exit Remove the topmost entry from the output parameter stack

command enter Create a new command parameter and put it in the command
stack of every output parameter in the topmost entry in the
output parameter stack

exit Remove the topmost entry from every command stack, execute
the specified command for every item in the topmost entry of
the output parameter stack and assign the result (1) if available
to the next entry in every respective command stack or (2)
create a terminal output parameter with the value set to the
respective result and assign it to the respective parent

input exit For every referenced subtree of every item in the topmost entry
of the output parameter stack, lookup the reference path and
set the determined value like in exitCommand (1) to the next
entry in every command stack or (2) create a subordinate termi-
nal output parameter for every output parameter in the topmost
entry of the output parameter stack

value exit Assign the specified constant like exitCommand and exitInput
to (1) to the topmost entry in every command stack, if avail-
able, or (2) create a subordinate terminal output to the current
parameter items in the topmost entry of the output parameter
stack

Table 5.1: Function tree dependent actions for data transformation
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5.5 Conclusion

Based on the phases of data description and data transformation, the concept

presented a generic rule framework, which facilitates the domain-specific descrip-

tion of the language of data and the subsequent formulation of transformation

functions. Based on this task separation, the complexity of the resulting languages

could be reduced by employing

• a standardized form for the specification of context-free grammars in terms

of the EBNF for the definition of descriptive DSLs, and

• an expressive transformation language, which provides extension points for

both an easy syntactical and a functional extension.

Figure 5.11 concludes the conceptual work of this thesis by showing the applica-

tion of the rule framework in the context of schema metamodels.

Rule framework

Data desc. Data transf.

Pangaea DC

Title

Creator

Subject

Description

Coverage

...

PangaeaCreator-DSL

PangaeaSubject-DSL

PangaeaCoverage-DSL

fTrans

fTrans

fTrans

Schema (RTG) Output parameter 

subtrees

ROOT

Latitude Longitude ...

ROOT

Subject*

ROOT

FirstName LastName

fTrans

Figure 5.11: Rule framework application overview

Applications embedding the functionality of the rule framework need to decide

about the further processing of the generated output parameter subtrees. For the

particular example in figure 5.11, the original input elements of the schema (as

regular tree grammar) could be used as ROOT of the subtrees—implementing the

labeling functions. The specified transformation could also be specified in terms of

a concept mapping, which results in the subtrees presenting the actual structure to

be set in terms of the target schema. As this transformation can be performed on

data and structured queries, the rule framework is applicable for the integration

problems defined in section 5.1.

Three further extension points should be explicitly detailed at this point:



5 Concept 72

• Iteration: The rule framework can be applied in an iterative fashion as is.

Assuming the application of the example in 5.11 in terms of labeling functions,

the produced labels (e.g. Latitude, Longitude) can form the base nodes

(compare the definition of the metamodel in section 3.3.2) for a further

application of the rule framework.

• Reuse of descriptions: Figure 5.11 shows an additional, unused transforma-

tion function a�er the application of the PangaeaSubject DSL to show the

re-usability of data descriptions for collection-, task- or mapping-oriented

transformation functions.

• Multiple descriptions: Although not further detailed, the mapping of elements

in the schema with the desired data descriptions and hence entry points to

the rule framework is not limited to exactly one DSL.
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6 Chapter

Implementation

The developed prototype is primarily contained in two coherent Java projects:

the rule framework (transformation), which contains the implementation of the

designed concept and a Java-based web application (transformation-testapp), which

is intended to show the application of the framework within user-oriented views.

The rule framework is implemented as generic component, which combines the

following functionality:

• Grammar generation: During the runtime of the rule framework—e.g. as

component of a Java web application—a user can provide a context-free

grammar, which is (1) converted to Java source code, (2) compiled to Java

bytecode and (3) accessed in terms of a dynamic class loader.

• Transformation function generation: Based on grammatical rules of the data

description phase, users can define transformation functions in terms of the

language specified in section 5.4.1.2

• Data transformation: By applying the declaratively defined rules, data is

transformed.

6.1 Logical architecture

Although the functionality of the rule framework is implemented in a generically

reusable fashion and could be presented as such, its integration within an existing

data processing pipeline is assumed to result in a be�er understandability of the
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implementation.

Structure

Figure 6.1 provides an overview of the components that are required for the real-

ization of a particular use-case, the semantic enrichment of semi-structured data.

Implementation

Figure 6.1: Implementation context of the transformation rule framework

The components shown in figure 6.1 are each individual Java projects—the uses

and implements stereotypes indicate dependencies between projects.

• core-metamodel contains the implementation of the schema and mapping

meta-model as developed in Gradl (2014) and presented in section 3.3 of

this thesis.

• core-util is project of auxiliary classes without an immediate relation to the

primary functionality of the rule framework, but which e.g. facilitate the

initialization of Java applications or tests based on Spring27.

27 see h�ps://spring.io/

https://spring.io/
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• processing-base contains interfaces and base implementations for process-

ing semi-structured documents and data—i.e. that conforms to regular tree

grammars as specified in Gradl (2014).

• processing-core implements fundamental aspects of document and element

level processing for generic XML and OAI-PMH sources. By separating base

interfaces in processing-base from generic implementations in processing-core,

the extension of the data processing framework by more specific aspects of

data processing is facilitated.

• transformation contains the functionality of the rule framework and forms

a extension of the fundamental processing by allowing the analysis and

transformation of the data contained within terminal nodes of the regular

tree grammar represented by the schemata.

• transformation-testapp is a simple web application that is intended to present

an overview of early ideas to integrate the rule framework within a web-based

user interface.

Behavior

The two important components for the application of the rule framework to the

data enrichment use-case are formed by the projects processing-core and transfor-

mation. The behavior of both components (along with any other implementations

of processing-base) are configured in terms of a schema configuration. Listing 6.1

shows a relevant section of the serialized configuration that is used as for the

presentation of an example throughout this chapter. Please note that although

the text-based representation is required for an autonomous execution of the rule

framework (e.g. by means of unit tests), the schema configuration is intended to

be viewed and edited in terms of a user interface (see figure 6.6 on page 82).

The presented configuration is an excerpt of the context-specific adaption of the

generic DC schema that specifies (1) the decomposition of the nonterminal Creator

element by recognizing actual content by means of the PangaeaCreator grammar

(see listing 6.2) with the entry rule fullName. The results of the data description

phase are then used as input to the subordinate data transformation function, which

finally creates the output required to fill the FirstName and LastName elements.
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{
" c l a s s " : " eu . d a r i a h . de . minfba . c o r e . metamodel . xml . XmlSchema " ,
" uuid " : " pangaea_dc " ,
" r o o t " : {

" i d " : 1 ,
" name " : " OAI DC" ,
" f u n c t i o n s " : n u l l ,
" c h i l d N o n t e r m i n a l s " : [ {

" name " : " C r e a t o r " ,
" f u n c t i o n s " : [ {

" baseMethod " : " fu l lName " ,
" grammarName " : " PangaeaCreator " ,
" d a t a T r a n s f o r m a t i o n F u n c t i o n s " : [ {

" e x t e r n a l I n p u t E l e m e n t s " : n u l l ,
" ou tputE l ements " : [ {

" name " : " F i rs tName " ,
" f u n c t i o n s " : n u l l ,
" t r a n s i e n t " : f a l s e

} , {
" name " : " LastName " ,
" f u n c t i o n s " : n u l l ,
" t r a n s i e n t " : f a l s e

} ] ,
" f u n c t i o n " : " F i rs tName = @firstName ; LastName = @lastName ; "

} ]
} ] ,

. . .
} ] ,

" t r a n s i e n t " : f a l s e
}
. . .

}

Listing 6.1: Excerpt from an exemplary element configuration

grammar PangaeaCreator;

fullName : lastName ’, ’ firstName;

lastName : ID;
firstName : ID;

WS : [ \t\r\n]+ -> skip ;
ID : ~(’,’)+;

Listing 6.2: Pangaea creator grammar
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Figure 6.2: Class diagram of the rule framework

6.2 Rule framework

The transformation project contains the implemented functionality required to

apply domain-specific language recognition to input data and to further process

the data in terms of data transformation functions. The class diagram in figure

6.2 shows the overall structure of the rule framework—highlighting the three most

important components:

• The LogicalElementProcessor class—as implementation of the Initializing-

BeanElementProcessor interface of the processing-base project—provides the

main entry point to the rule framework for the focused use-case of data

enrichment.

• The datadescription package (see section 6.2.1) contains the functionality (1)

to process and compile domain-specific grammars first to Java source code

then bytecode and (2) to process data against such compiled grammars.

• The datatransformation package (see section 6.2.2) implements the process of

(1) parsing and processing formulated data transformation functions that are

specified against the predefined transformation language and (2) to actually

transform data with respect to these functions.
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At every configured nonterminal element of the schema28, the processor in-

teracts with the LogicalElementProcessor to determine, whether the content of

the processed element qualifies to be processed by the rule framework by calling

checkApplies(-).

Upon a call to checkApplies(-), the LogicalElementProcessor :

1. Verifies the passed element configuration (e.g. the entire object with "name" :

"Creator" in listing 6.2) and returns false if the element is not configured

to produce sub-elements. Otherwise:

2. Checks if the grammarsMap29 contains required parser and lexer classes for

the grammar (encapsulated within GrammarExecutablesWrapper objects):

• Returns true, if the grammar is contained in the map.

• Tries to load the appropriate classes from a configured base location

and register them in the grammarsMap. Returns true, if classes were

found and loaded, otherwise false.

In case of a positive answer to checkApplies(-), the schema processor again pro-

vides the element configuration in addition to the element value to the process(-,-)

method of the LogicalElementProcessor. For every data description grammar that

is configured to be applied to the element value, the LogicalElementProcessor first

identifies the applicable domain-specific grammars for data description and utilizes

the data description (see 6.2.1) component to generate parse trees, respectively. For

every configured data description grammar, the LogicalElementProcessor iterates

over the configured data transformation functions and concludes the rule frame-

work processing by interaction with the data transformation (see 6.2.2) component.

6.2.1 Data description

The implementation of the data description functionality in terms of domain-

specific languages is summarized in the class diagram in figure 6.3.

28 schema in the sense of regular-tree-grammar
29 The grammarsMap serves as grammars cache for a quickly accessing the language recognition classes,

as they are required for every configured element of any provided document



6 Implementation 79

Domain-specific language

Abstract Syntax Tree

Figure 6.3: Class diagram of the data description package

As implementation of the generic listener pa�ern as specified in the ParseTreeL-

istener interface of the ANTLR framework, the DataDescriptionProcessor class

contains the functionality for traversing provided parse trees. As indicated in

the class diagram, the DataDescriptionProcessor is required to react to language

specifications, which are not part of the compiled transformation Java project, but

are defined and possibly modified by domain experts at the runtime of the rule

framework.

Based on an instance of the DataDescriptionFunctionWrapper, the DataDescrip-

tionProcessor has the information required to determine, which rules of a provided

parse tree are relevant for any of the subordinate data transformation functions

and thus to determine the nodes of the input parse tree, which need to be reflected
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in terms of the generated AST. As specified in the concept, the DataDescriptionPro-

cessor operates on two stacks:

• The inputDefinitionStack for representing the current hierarchy level of the

parameters that are requested by the data transformation functions and

• The syntaxTreeStack, which represents the current hierarchy level of the

generated syntax tree.

6.2.2 Data transformation

A�er a provided input value has been recognized in terms of a domain-specific

grammar, the phase of data description creates an AST from the original parse tree—

based on required input parameters of the data transformation phase. In order to

determine the set and hierarchy of these parameters, data transformation functions

have to be parsed and analyzed for input and scope language elements. Aside

from the functionality for an actual execution of data transformation functions,

a preparatory phase with the particular goal of identifying and collecting the

parameters is introduced to implementation.

Figure 6.4: Class diagram of the data transformation preparation
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Preparation

In order to prepare the execution of data transformation functions, an instance of

the DataTransformationParameterCollector reacts to the input-parameter related

events of the tree traversal—creating a hierarchy of DataTransformationParameter

objects. The anonymous root object is required for the DataDescriptionProcessor to

determine the required structure of the generated AST.

If multiple data transformation functions are to be executed on the basis of

a produced AST, a DataTransformationParameterCollector listener is created and

utilized to walk each function respectively. The LogicalElementProcessor merges the

DataTransformationParameter hierarchies of each function—ensuring that the input

needs to be walked only once and hence only on AST is required to be produced.

Figure 6.5: Class diagram of the data transformation execution

Execution

The class diagram finally presents the main DataTransformationProcessor, which

combines the information of the transformation function parse tree and the input

AST in order to generate the desired output—according to the provided instructions.
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6.3 Web interface

In addition to the generic implementation of the rule framework and its integration

into the preexisting XML and OAI-PMH processing pipeline, an initial prototype is

implemented in order to present the applicability of the rule framework in terms

of a web application.

Figure 6.6: Screen of the grammar editor prototype

The screen in figure 6.6 shows an editing interface, which allows the extension

of the parsing-oriented view of schemata by the semantic extension as presented

in section 3.3.2. The definition of nonterminals of the regular tree grammar are

presented in blue, whereas functions for the data description and data transfor-

mation are displayed in yellow and produced labels in purple. Upon selecting the

node of a transformation function, the user is presented with editing elements on

the right hand side of the screen, which allow the specification and validation of

provided transformation functions.

Figure 6.7 presents the application of the rule framework on an exemplary set

of Pangaea documents. Please note that the resulting output contains only those

elements of the regular tree grammar that have been specified in 6.6. The transfor-

mation viewer is expected to be especially beneficial for users testing description

grammars and transformation functions on actual data before commi�ing them to
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a processing system.

Figure 6.7: Screen of the transformation viewer prototype
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7 Chapter

Evaluation

Although the concept and core implementation of the rule framework in this thesis

form a generically reusable so�ware component, it has been developed with regard

to the particular application domain of the arts and humanities. As such, the core

implementation is required to be embedded within so�ware that transforms data

according to the research-oriented specifications in order to generate an actual

proof of the presented concept.

The results of this evaluation should be interpreted as early perspectives on the

use-cases that could be supported by the data transformation framework—the

actual applicability, however, needs to be evaluated within the domain.

7.1 Pangaea

The dataset of the earth and environmental science service, Pangaea, has served as

continuous example throughout this thesis—particularly because of earlier experi-

ments in terms of the work in Gradl (2014), but also because the service provides

a large (>700,000 records) dataset that is OAI-PMH accessible and exhibits some

relevance to research within environment-related fields of the arts and humanities,

such as archeology or art history.

Based on the harvested Pangaea dataset, the generation of parse-trees from the

contents of the coverage element has been measured and compared to that of data

processing in terms of a regular expression. For the particular case of the Pangaea
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coverage element, the matched expression

(?<Key>\\w[\s\w-,]*):(?<Value>[^\*]*)*/

results in the decomposition of an accordingly specified input string.

The results in figure 7.1 show the processed record count on the x-axis and the

cumulative processing time in milliseconds on the y-axis. The red plot corresponds

to the generation of the parse tree by the rule framework, the blue plot to the regular

expression processing and the green line reflects the overhead of the underlying

Java implementation.
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Figure 7.1: Comparison with regular expression processing

Both for the creation of four and twenty key/value-pairs, the parse-tree genera-

tion in terms of ANTLR as employed by the rule framework performs slower than

regular expressions. Surprisingly, the gap between the regular expression and the

rule framework implementation is not impacted by the size of the produced parse

tree and hence the complexity of the parse: the execution of the rule framework

completed with a factor of 2.29 compared to regular expression processing (956ms

vs. 417ms) with four pairs and with a factor of 2.23 with twenty pairs (3082ms vs.

1379ms).

To which degree the performance of the rule framework could be further im-

proved, as well as whether the performance of the current or future versions is

su�icient for the application domain requires further analyses and evaluation.
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7.2 Wikidata

The wikidata evaluation presents a qualitative test that has been executed in terms

of the rule framework. For the test, datasets of a recent dump of the wikidata

database30 have been processed according to a custom grammar (see listing 7.1).

grammar WikidataTextContent;

object : ’{’ statement (’,’ statement)* ’}’;

statement : label
| description
| genericProp;

label : ’"label"’ ’:’ (langObj | langObjArray);
description : ’"description"’ ’:’ (langObj | langObjArray);

genericProp : STRING ’:’ (array | obj | value );
obj : ’{’ pair (’,’ pair)* ’}’

| ’{’ ’}’;

array : ’[’ value (’,’ value)* ’]’
| ’[’ ’]’;

claimItem : ’[’ STRING ’,’ claimPropertyId ’,’ claimPropertyType ’,’
claimRefOrValue ’]’;

claimPropertyId : NUMBER;
claimPropertyType : STRING;
claimRefOrValue : obj

| STRING
| NUMBER;

langObj : ’{’ pair (’,’ pair)+ ’}’;

langObjArray : ’[’ langObj (’,’ langObj)* ’]’
| ’[’ ’]’;

pair : key ’:’ value;
key : STRING;
value : claimItem

| STRING
| NUMBER
| obj
| array
| ’true’
| ’false’
| ’null’;

30 h�p://dumps.wikimedia.org/backup-index.html

http://dumps.wikimedia.org/backup-index.html
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STRING : ’"’ (ESC | ~["\\])* ’"’;
WS : [ \t\r\n]+ -> skip ;

NUMBER : ’-’? INT ’.’ [0-9]* EXP?
| ’-’? INT EXP
| ’-’? INT;

fragment INT : ’0’ | [1-9] [0-9]*;
fragment EXP : [Ee] [+\-]? INT;

fragment ESC : ’\\’ (["\\/bfnrt] | UNICODE);
fragment UNICODE : ’u’ HEX HEX HEX HEX;
fragment HEX : [0-9a-fA-F];

Listing 7.1: Wikidata grammar

In general, the data description grammar decomposes JSON content that is

embedded within an XML element of the embodying wikidata record. As such, the

presented grammar combines syntactical aspects required for processing JSON

data with the context-specific requirements of the subsequent data transformation

functions.

Figure 7.2 shows an excerpt of an exemplary parse tree. The data transformation

functions in the listings 7.2 and 7.3 indicate how the extracted data can be further

processed to generate common properties for every valid wikidata record as well

as specific properties for datasets about human entries.
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Figure 7.2: Parse tree excerpt of an example wikidata input
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GndID = @claimItem[@claimPropertyId == 227]{
Value = @claimRefOrValue;

};
TitleDe = @label.langObj.pair[@key == \"de\"]{

Title = @value;
};
TitleEn = @label.langObj.pair[@key == \"en\"]{

Title = @value;
};
InstanceOf = @claimItem[@claimPropertyId == 31] {

Object = @claimRefOrValue.obj.pair[@key == \"numeric-id\"] {
NumericId = @value;
RefId = CONCAT(\"Q\", @value);
WikiLink = CONCAT(\"http://www.wikidata.org/wiki/Q\", @value);

};
};
SubclassOf = @claimItem[@claimPropertyId == 279] {

Object = @claimRefOrValue.obj.pair[@key == \"numeric-id\"] {
NumericId = @value;
RefId = CONCAT(\"Q\", @value);
WikiLink = CONCAT(\"http://www.wikidata.org/wiki/Q\", @value);

};
};

Listing 7.2: Transformation of generic wikidata properties

Human = {
Occupation = @claimItem[@claimPropertyId == 106] {

Object = @claimRefOrValue.obj.pair[@key == \"numeric-id\"] {
NumericId = @value; RefId = CONCAT(\"Q\", @value);
WikiLink = CONCAT(\"http://www.wikidata.org/wiki/Q\", @value);

};
};
CountryOrCitizenship = @claimItem[@claimPropertyId == 27] {

Object = @claimRefOrValue.obj.pair[@key == \"numeric-id\"] {
NumericId = @value;
RefId = CONCAT(\"Q\", @value);
WikiLink = CONCAT(\"http://www.wikidata.org/wiki/Q\", @value);

};
};
AlmaMater = @claimItem[@claimPropertyId == 69] {

Object = @claimRefOrValue.obj.pair[@key == \"numeric-id\"] {
NumericId = @value;
RefId = CONCAT(\"Q\", @value);
WikiLink = CONCAT(\"http://www.wikidata.org/wiki/Q\", @value);

};
};
FieldOfWork = @claimItem[@claimPropertyId == 101] {

Object = @claimRefOrValue.obj.pair[@key == \"numeric-id\"] {
NumericId = @value;
RefId = CONCAT(\"Q\", @value);
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WikiLink = CONCAT(\"http://www.wikidata.org/wiki/Q\", @value);
};

};
...

};

Listing 7.3: Transformation of human-related wikidata properties

7.3 POS tagged texts

The exemplary use-case of this section is intended to show (1) the potential of the

rule framework with respect to the specification of DSLs and (2) the extensibility

of the framework in general. Please consider the following scenario: A terminal

node of a schema contains a large, unstructured text (such as in the TEI example

presented in section 2.1.2), which should be analyzed. Assuming an accordingly

implemented function, an initial data transformation rule is formulated over this

element as

posTagged = TEXTANALYSIS.POSTAG(@unstructuredInput);

Based on the resulting posTagged label, which is now expected to contain data

as shown in figure 7.3, a data description DSL is formulated as shown in listing

7.4—here specifically targeting a (rather random) natural language construct, which

is intended to be processed by a data transformation function.

The/DT new/JJ cathedral/NN was/VBD consecrated/NN 6/CD May/MD ,/, 1012/CD ,/, and/CC in/IN 
1017/CD Henry/NNP II/NNP founded/VBD on/IN Mount/NNP St./NNP Michael/NNP ,/, near/IN 

Bamberg/JJ ,/, a/DT Benedictine/JJ abbey/NN for/IN the/DT training/NN of/IN the/DT clergy/NN ./. 
The/DT emperor/NN and/CC his/PRP wife/NN gave/VBD large/JJ temporal/JJ possessions/NNS to/
TO the/DT new/JJ diocese/NN ,/, and/CC it/PRP received/VBD many/JJ privileges/NNS out/IN of/IN 

which/WDT grew/VBD the/DT secular/JJ power/NN of/IN the/DT bishop/NN (/( cf/IN ./.

Figure 7.3: Example full-text input with Part-Of-Speech (POS) tags

grammar Pos;

@header {
import java.util.*;
import java.lang.*;

}

@parser::members {
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boolean qualifiesAsYear() {
try {

int i = Integer.parseInt(getCurrentToken().getText());
if (i<1800 && i>800) {

return true;
} else {

return false;
}

} catch (Exception e) {
return false;

}
}

}

/** The start rule; begin parsing here. */
tags : tag+;

tag : construct
| np
| year
| cd
| in
| comma
| any;

construct : cd np comma? year;

np : ID ’/’ (’NN’ | ’NNP’);

year : {qualifiesAsYear()}? ID ’/’ ’CD’;
cd : {!qualifiesAsYear()}? ID ’/’ ’CD’;

in : ID ’/’ ’IN’;
comma : ’,’ ’/’ ’,’;
any : ID ’/’ ID;

WS : [ \t\r\n]+ -> skip ; // Define whitespace rule, toss it out
ID : ~(’ ’|’/’)+;

Listing 7.4: Grammar for POS-tagged texts

Aside from the lexer and parser rules, which have already been introduced in this

thesis, the grammar in listing 7.4 implements the idea of semantic predicates, which

were shortly introduced in section 3.1.3 and are discussed in greater detail in Parr

(2013, 286-291). The predicate employed in the presented grammar specifically

addresses context-sensitive information required to decide about the semantics

of a particular grammar rule. Whereas this distinction can also be performed in
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terms of data transformation functions, this example shows how grammars can be

extended by embedded Java actions, which will be included in generated parsers

to also run natively during the parse.

A relevant part of the resulting parse tree is shown in figure 7.4—indicating, how

relevant parts can be extracted from large and noisy context.

commanp and,

tag tag tagtag

new / consecratedNN NN

CD

any comma

/

np

/ MD

tag

CD

VBD

any

May

The cd ,

any

/

year //

tag

, 1012

/JJDT

6

tag

,

constructnp

/ cathedral

/

was /

Figure 7.4: Parse tree excerpt of an example POS-tagged input

Numerous other interesting tasks can be facilitated by the rule framework.

One additional example consists in the specification of content assertions—e.g.

the domain expert first specifies the decomposition of content and additionally

defines a subsequent recombination of this decomposed content. By comparing

original input and the recomposed data in terms of a transformation function, the

expert could detect problems in the specification of the transformation or the data

themselves—e.g. with the help of the transformation viewer shown in figure 6.7 on

page 83.
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8 Chapter

Conclusion and future work

The presented thesis provides a new approach for the integration of heterogeneous

data in contexts, which:

• require data to remain in their original structural and semantic form in order

to allow a dynamic ad-hoc integration based on individual use-cases and

• need a particular focus on lexical and syntactical pa�erns, which are only

bound to the instance-level of data and thus not covered by schema level

integration.

Based on the preliminary work in Gradl (2014), the concept of a data transforma-

tion framework is developed on the contextual base of the formal interpretation of

semi-structured schemata as regular tree grammars. As the content of the terminal

nodes has been identified to be o�en not in an atomic form, the rule framework

is applied on contained data in order to describe implicitly existing pa�erns and

translate the data into semantically enriched forms.

A�er the context and motivation of the thesis are introduced in chapter 2, an

overview of the foundational building blocks of formal language theory, language

applications and the theoretical findings of Gradl (2014) are presented in chapter

3. As practical foundation for the implementation of the framework, the parser

generator ANTLR is introduced in chapter 4.

The concept presented in chapter 5 of this thesis first introduces the fundamental

problems that were intended to be solved by a developed rule framework. Based

on the definition of the overall language processing pipeline required to parse
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and transform provided input strings, the conceptual work distinguishes two

primary phases of the framework: data description is primarily characterized by the

concept of individually specific DSLs—i.e. each terminal element of the schema-

level perspective can be defined in terms of a specifically designed DSL. The

facilitation of DSLs provides specificity benefits and results in condensed and easily

understandable grammars—especially when compared to a global data language

approach. The second phase, data transformation, utilizes the semantically enriched

form of the input, which is presented in terms of ASTs to finally transform data to

defined output values. Data transformation in this thesis is based on a specifically

designed data transformation language, which is based on the best-practices of DSL

abstractions presented in Ghosh (2011, 23). A�er a presentation of the required

runtime behavior of the rule framework, the concept concludes and leads to a

first prototypical implementation of the rule framework and a supporting web

application in chapter 6.

Chapter 7 provides ideas of use-cases and illustrates the qualitative applicability

of the concept. Especially when integrating advanced aspects of ANTLR such as

semantic predicates or when composing multiple sequential language application

pipelines, the capabilities of the rule framework are significantly extended by

declaratively specifying correlations and languages.

Future work

As this thesis could only cover certain aspects and use-cases with respect to data

integration, many specific questions remained unasked and provide potential for

future research. Some of the most enticing ideas could be summarized as:

• The thesis focused on context-related aspects of data integration—abstracting

from technical heterogeneity. Due to the generic implementation, the rule

framework might qualify to implement transformations on the M2 layer of

the modeling architecture presented in figure 3.3 on page 24 and as such the

rule based integration of protocol-dependent schema languages with the

internal representation.

• Semantic enrichment as labeling functions and mappings were the focused

use-cases in this thesis because their implementation is required for the
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integration. The concept of the rule framework could, however, be used for

many other tasks such as highlighting output according to syntactic rules,

duplicate detection etc.

• User interfaces for the support of specifying grammars or transformation

functions can be interpreted as just another language, which could be trans-

formed to the target language—i.e. the grammar or function respectively. A

analogy is found in C++ compilation, which is based on the initial translation

of C++ to C (see figure 8.1). The utilization of simpler (visual) languages

could follow the same principle.CHOOSING PATTERNS AND ASSEMBLING APPLICATIONS 34

C++
code

machine
code

CC++Pre-
processor

C++ to C
translator
(cfront)

C Compilation 
pipeline

Figure 1.8: C++ (cfront) compilation process pipeline

words, he built a C++ to C translator calledcfront. He didn’t have to build

a compiler at all. By generating C, his nascent language was instantly

available on any machine with a C compiler. We can see the overall C++

application pipeline in Figure 1.8. If we zoomed in on cfront, we’d see

yet another reader, semantic analyzer, and generator pipeline.

As you can see, language applications are all pretty similar. Well, at

least they all use the same basic architecture and share many of the

same components. To implement the components, they use a lot of the

same patterns. Before moving on to the patterns in the subsequent

chapters, let’s get a general sense of how to hook them together into

our own applications.

1.4 Choosing Patterns and Assembling Applications

I chose the patterns in this book because of their importance and

how often you’ll find yourself using them. From my own experience

and from listening to the chatter on the ANTLR interest list, we pro-

grammers typically do one of two things. Either we implement DSLs

or we process and translate general-purpose programming languages.

In other words, we tend to implement graphics and mathematics lan-

guages, but very few of us build compilers and interpreters for full pro-

gramming languages. Most of the time, we’re building tools to refactor,

format, compute software metrics, find bugs, instrument, or translate

them to another high-level language.

If we’re not building implementations for general-purpose programming

languages, you might wonder why I’ve included some of the patterns

I have. For example, all compiler textbooks talk about symbol table

management and computing the types of expressions. This book also

spends roughly 20 percent of the page count on those subjects. The rea-

son is that some of the patterns we’d need to build a compiler are also

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for Ron Brown

Figure 8.1: C++ compilation pipeline (Parr 2010, 33-34)
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