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Abstract: In this paper, based on Jumarie type of Riemann-Liouville (R-L) fractional calculus and a new
multiplication of fractional analytic functions, we study two fractional integrals involving fractional tangent
function. We can obtain the exact solutions of these two fractional integrals by using some techniques. Moreover,
our results are generalizations of the results of ordinary calculus.
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I. INTRODUCTION

Fractional calculus is a research hotspot in recent years. The application of fractional calculus in many fields such as
numerical analysis, physics and engineering has aroused great interest [1-16]. In the first half of the 19th century, Abel,
Liouville and Riemann correctly introduced fractional integral and derivative in the analysis. However, the use of
generalized differential and integral operators became more familiar in the last decades of the 19th century because of the
symbolic calculus of Heaviside and the work of mathematicians such as Hadamard, Hardy and Littlewood, M. Riesz, and
H. Weyl.

Fractional calculus is different from traditional calculus. The definition of fractional derivative is not unique. Common
definitions include Riemann-Liouville (R-L) fractional derivative, Caputo fractional derivative, Grunwald-Letnikov (G-L)
fractional derivative, and Jumarie’s modified R-L fractional derivative [17-22]. Because Jumarie type of R-L fractional
derivative helps to avoid non-zero fractional derivative of constant function, it is easier to use this definition to connect
fractional calculus with classical calculus.

In this paper, based on Jumarie type of Riemann-Liouville (R-L) fractional calculus and a new multiplication of fractional
analytic functions, we study the following two fractional integrals involving fractional tangent function:

() [camaeen®=€)].
and
(,19) [[tana(x“)]@’“ (‘%)] .

Where 0 < a < 1, and p is a real number. Using some methods, the exact solutions of these two fractional integrals can
be obtained. On the other hand, our results are generalizations of the results of traditional calculus.
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Il. PRELIMINARIES
Firstly, we introduce the fractional calculus used in this paper.

Definition 2.1 ([23]): Let 0 < @ <1, and x, be a real number. The Jumarie’s modified Riemann-Liouville (R-L) a-
fractional derivative is defined by

(PONf O] = rmm o Jo Fo L e (1)

X0 (x—t)*

And the Jumarie type of Riemann-Liouville a-fractional integral is defined by

(e JOFO] = — [* LY ¢, @)

F(a) Xo (x—t)1-@

where I'( ) is the gamma function.
In the following, some properties of Jumarie type of R-L fractional derivative are introduced.

Proposition 2.2 ([24]): If a, B, x,, c are real numbersand 8 = a > 0, then

(e D)x = x)F] = 1520 (e = %), 3)

and

(x,D%)[c] = 0. (4)
We introduce the definition of fractional analytic function below.

Definition 2.3 ([25]): If x, x,, and a,, are real numbers for all k, x, € (a,b), and 0 < a < 1. If the function f,: [a,b] - R

can be expressed as an a-fractional power series, i.e., f,(x*) = Y3 Om( — x,)*% on some open interval containing

Xo, then we say that f, (x%) is a-fractional analytic at x,. Furthermore, if f,: [a, b] = R is continuous on closed interval
[a, b] and it is a-fractional analytic at every point in open interval (a, b), then f,, is called an a-fractional analytic function
on [a, b].

Next, we introduce a new multiplication of fractional analytic functions.

Definition 2.4 ([26]): Let 0 < @ <1, and x, be a real number. If f,(x%) and g,(x%) are two a-fractional analytic
functions defined on an interval containing x; ,

fa(x9) = Z?f:o%(x — Xo)", (®)
9ax®) = T rps (= x)™ (6)
Then we define
fa(x)®q g (x)
= B ps (= %0)™ @ Lo s (8 = %0)™
= 20 ey (im0 () @nombin) (= 200" ™
Equivalently,
fa(x)®¢q 9o (x9)
= Y=o ‘:ln (F(a+1) (= x")a)&x ®a Ln=o (F(a+1)( ~%0)* )
= 570 2 (Eeo (1) tnombn) (s 0 = 20)°) ®)
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Definition 2.5 ([27]): If0 < a < 1, and f,(x%), g,(x%*) are two a-fractional analytic functions defined on an interval
containing x, ,

Fulx®) = B r s (= 1) = B 2 (i = )) (©)
®an
(&) = Ein ps (6 = %)™ = Tt 2 (i O = %0)) (10)
The compositions of f, (x%) and g, (x%) are defined by
(f ga)(xa) - fa(ga(xa)) Zn 0 (ga a)) (11)
and
(Ga ° fD D) = ga(fa(x®) = T30 (fa x©)) e (12)
Definition 2.6 ([28]): If 0 < a < 1, and x is a real variable. The a-fractional exponential function is defined by
xna 1 QRqn
Eq(x®) = 2inz O F(na+1) = Zn=o (F(a+1) ) ) (13)

And the a-fractional logarithmic function Ln, (x%) is the inverse function of E,(x%®). On the other hand, the a-fractional
cosine and sine function are defined as follows:

ay — yoo  (DFx oM 1 g\®a?n
COS(z(x ) - Zn:O rzna+1) - Zn 0 (Zn)' (F(—a+1)x ) , (14)
and
(e = g CUPEME o IR (1 \@aneD)
sing (x*) = Xr-o T(n+Da+) Yn=o 2n+1)! (F(a+1)x ) ) (15)

Definition 2.7 ([29]): Let0 < @ < 1, and f,(x%), g, (x%) be two a-fractional analytic functions. Then (fa(x“))‘g’“" =

fa(xM)Qy +++ By fu(x%) is called the nth power of f,(x*). On the other hand, if f,(x*)®, g,(x%) =1, then g, (x%) is
called the ®,, reciprocal of £, (x%), and is denoted by (fa(x“))®“(_1).

Definition 2.8 ([30]): Let 0 < @ < 1 and r be a real number. The r-th power of the a-fractional analytic function £, (x*)
is defined by

[ fuGO]®e" = Eq (7 - Lng( fux®))). (16)
I1l. MAIN RESULTS

In this section, we will solve two fractional integrals involving fractional tangent function.

Theorem 3.1: Let 0 < a <1, and p be areal number, then the a-fractional integrals

( pl,‘f) [[tana (x9)]® (%)]

) arcsing(sing (x%) — cosa(x%)) — Ln, (|sina(x“) + €05, (x%) + [sing (2x*)]®= ) )
=1 NE (17)
2 —arcsing (sing(p®) — cos,(p%)) + Ln, (|sina(p“) + €05 (p%) + [sing (2p®)]®« () )
(1) [Itan (1= (2]
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)

) -

) { arcsing(sing (x%) — cose(x%)) + Lng (|sina(x“) + €05, (x%) + [sing (2x*)]®= G)

v —arcsing(sing (p*) — cos, (p%)) — Ln, (|sina(p“) + €05, (p%) + [sing (2p®)]®« @)

Proof Since

L

(%) [[tana(x“)]®“ (2)] + (p1%) [[tana(x“)]®“ (_%)]
= (pl:‘cx) [[tana(x“)]®a ) + [tan, (x)]®« (‘%)]

= (1) [[sina x)1® G)®, [cos,(x91%*(2) + [cos, (x)]% @, [sina(xa)]%(—%)]

= (%) [[sina(x“) + €085 (xN)]®¢ [sing (x*) B¢ cosa(xa)]‘g’u (‘%)]

= (%) [\/7 [2sin, (x*)®, cos, (x“)]®“ (_%)®a (,D%)[sing (x*) — cosa(x“)]l

=2 (%) [[l — [sing (x®) — cosa<x“>]®a2]®“(7) ®q (D) [sing (x*) - cosa(x“n‘

=+2- arcsina(sina(xa) — cosa(x“)) —VZ- arcsina(sina(p“) _ COSa(p“)). (19)
And
(o) [ttana 1P @) = (1) [1tamg Ge®e ()]
= (pI¥) [[tana(x“)]®“ G - [tan, (x®)]®« (‘%)]

L

= ( plﬁg) [[Sina(xa)]®a G)®a [COSa(x“)]&"( 2) — [Cosa(x“)]®“ (%)@a [Sina(x“)]®“ (—%)]
= (o) [[Sina(x“) — €05, (x)]®, [sin, (**)®q cosa(x“)]®”‘ (—%)l
2)

= V2 (%) [[[sina(x“) + C054 (x)]®a? — 1]®a(— ®q (pDF)[sing (x*) + cosa(x“n‘

)

). (20)

=—V2-Ln, (|sina(x“) + c0s4 (x%) + [sing (2x*)]®« @)

+V2 - Ln, (|sina (%) + cos, (p®) + [sin, (2p®)]®* )

It follows that
(1) [[tana(x“)]&z 3)]

(V2 - arcsing(sing (x%) — cos, (x%)) — V2 - arcsing (sing (p*) — cos,(p*®)))
—V2 - Ln, ( $ing (x%) + cos, (x%) + [sing (2x%)]%« @ )

) )

1
2

Ik +V2 - Ln, < sing(p%) + cos, (p®) + [sin, (2p®)]®= @
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)
)

arcsing(sing (x) — cosq (x%)) — Ln, (|sina () + cose(x®) + [sing (2x*)]®= )

1

v —arcsing (sing (p%) — cos, (p®)) + Ln, (lsina(p“) + c0s, (p%) + [sing (2p®)]®* )

And
() [ttamg e ®=(2)]
V2 - arcsing(sing (x*) — cosq (x*)) — V2 - arcsing (sing (p*) — cos, (p“))]
= 1{ +V2 - Ln, ( sing (x®) + cos, (x®) + [sing (2x*)]®« (%) ) }
2
—V2-Ln, ( sing(p®) + cos, (p®) + [sing (2p%)]®= @ ) )
) arcsing(sing (x%) — cosa(x%)) + Ln, (lsina(x“) + 05, (x%) + [sing (2x*)]®= () )
v —arcsing(sing (p®) — cos, (p%)) — Ln, (|sina(p“) + cos, (p®) + [sing (2p®)]®= () )
Q.ed.

IV. CONCLUSION

In this paper, based on Jumarie’s modified R-L fractional calculus and a new multiplication of fractional analytic functions,

two

fractional integrals involving fractional tangent function are studied. Using some techniques, we can find the exact

solutions of these two fractional integrals. In addition, our results are generalizations of classical calculus results. In the

futu

re, we will continue to use Jumarie type of R-L fractional calculus and the new multiplication of fractional analytic

functions to solve the problems in fractional differential equations and engineering mathematics.
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