Published January 31, 2023 | Version v1
Journal article Open

Quantum Machine Learning Beyond Kernel Methods

  • 1. University of Innsbruck
  • 2. MPIIS
  • 3. Leiden University

Description

Machine learning algorithms based on parametrized quantum circuits are prime candidates for near-term applications on noisy quantum computers. In this direction, various types of quantum machine learning models have been introduced and studied extensively. Yet, our understanding of how these models compare, both mutually and to classical models, remains limited. In this work, we identify a constructive framework that captures all standard models based on parametrized quantum circuits: that of linear quantum models. In particular, we show using tools from quantum information theory how data re-uploading circuits, an apparent outlier of this framework, can be efficiently mapped into the simpler picture of linear models in quantum Hilbert spaces. Furthermore, we analyze the experimentally-relevant resource requirements of these models in terms of qubit number and amount of data needed to learn. Based on recent results from classical machine learning, we prove that linear quantum models must utilize exponentially more qubits than data re-uploading models in order to solve certain learning tasks, while kernel methods additionally require exponentially more data points. Our results provide a more comprehensive view of quantum machine learning models as well as insights on the compatibility of different models with NISQ constraints.

Files

s41467-023-36159-y.pdf

Files (1.1 MB)

Name Size Download all
md5:b98fc20666ac43f7787748433c670d03
1.1 MB Preview Download

Additional details

Funding

NEASQC – NExt ApplicationS of Quantum Computing 951821
European Commission

References

  • Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).
  • Cerezo, M. et al. Variational quantum algorithms. Nat. Rev. Phys. 3, 625 (2021).
  • Bharti, K. et al. Noisy intermediate-scale quantum (NISQ) algorithms. Rev. Mod. Phys. 94, 015004 (2022).
  • Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 1 (2014).
  • Farhi, E., Goldstone, J. & Gutmann, S. A quantum approximate optimization algorithm. Preprint at https://arxiv.org/abs/1411.4028 (2014).
  • Benedetti, M., Lloyd, E., Sack, S. & Fiorentini, M. Parameterized quantum circuits as machine learning models. Quantum Sci. Technol. 4, 043001 (2019).
  • Carrasquilla, J. & Melko, R. G. Machine learning phases of matter. Nat. Phys. 13, 431 (2017).
  • Jumper, J. et al. Highly accurate protein structure prediction with alphafold. Nature 596, 583 (2021).
  • Biamonte, J. et al. Quantum machine learning. Nature 549, 195 (2017).
  • Dunjko, V. & Briegel, H. J. Machine learning & artificial intelligence in the quantum domain: a review of recent progress. Rep. Prog. Phys. 81, 074001 (2018).
  • Schuld, M., Bocharov, A., Svore, K. M. & Wiebe, N. Circuit-centric quantum classifiers. Phys. Rev. A 101, 032308 (2020).
  • Farhi, E. & Neven, H. Classification with quantum neural networks on near term processors. Preprint at https://arxiv.org/abs/1802.06002 (2018).
  • Liu, J.-G. & Wang, L. Differentiable learning of quantum circuit born machines. Phys. Rev. A 98, 062324 (2018).
  • Zhu, D. et al. Training of quantum circuits on a hybrid quantum computer. Sci. Adv. 5, eaaw9918 (2019).
  • Skolik, A., Jerbi, S., & Dunjko, V. Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022).
  • Jerbi, S., Gyurik, C., Marshall, S., Briegel, H. & Dunjko, V. Parametrized quantum policies for reinforcement learning. Adv. Neural. Inf. Process. Syst. 34, 28362–28375. https://proceedings.neurips.cc/paper/2021/hash/eec96a7f788e88184c0e713456026f3f-Abstract.html (2021).
  • Liu, Y., Arunachalam, S., & Temme, K. A rigorous and robust quantum speed-up in supervised machine learning. Nat. Phys. 17, 1–5. https://doi.org/10.1038/s41567-021-01287-z (2021).
  • Du, Y., Hsieh, M.-H., Liu, T. & Tao, D. Expressive power of parametrized quantum circuits. Phys. Rev. Res. 2, 033125 (2020).
  • Sweke, R., Seifert, J.-P., Hangleiter, D. & Eisert, J. On the quantum versus classical learnability of discrete distributions. Quantum 5, 417 (2021).
  • Huang, H.-Y. et al. Power of data in quantum machine learning. Nat. Commun. 12, 1 (2021).
  • Huang, H.-Y., Kueng, R. & Preskill, J. Information-theoretic bounds on quantum advantage in machine learning. Phys. Rev. Lett. 126, 190505 (2021).
  • Schölkopf, B. et al. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond (MIT Press, 2002).
  • Havlíček, V. et al. Supervised learning with quantum-enhanced feature spaces. Nature 567, 209 (2019).
  • Schuld, M. & Killoran, N. Quantum machine learning in feature Hilbert spaces. Phys. Rev. Lett. 122, 040504 (2019).
  • Schuld, M. Supervised quantum machine learning models are kernel methods. Preprint at https://arxiv.org/abs/2101.11020 (2021).
  • Lloyd, S., Schuld, M., Ijaz, A., Izaac, J., & Killoran, N. Quantum embeddings for machine learning. Preprint at https://arxiv.org/abs/2001.03622 (2020).
  • Kübler, J. M., Buchholz, S. & Schölkopf, B. The inductive bias of quantum kernels. Adv. Neural. Inf. Process. Syst. 34. 12661–12673. https://proceedings.neurips.cc/paper/2021/hash/69adc1e107f7f7d035d7baf04342e1ca-Abstract.html (2021).
  • Peters, E. et al. Machine learning of high dimensional data on a noisy quantum processor. npj Quantum Inf. 7, 161 (2021).
  • Haug, T., Self, C. N. & Kim, M. Quantum machine learning of large datasets using randomized measurements. Mach. Learn.: Sci. Technol. 4, 015005 (2023).
  • Bartkiewicz, K. et al. Experimental kernel-based quantum machine learning in finite feature space. Sci. Rep. 10, 1 (2020).
  • Kusumoto, T., Mitarai, K., Fujii, K., Kitagawa, M. & Negoro, M. Experimental quantum kernel trick with nuclear spins in a solid. npj Quantum Inf. 7, 1 (2021).
  • Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E. & Latorre, J. I. Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020).
  • Schuld, M., Sweke, R. & Meyer, J. J. Effect of data encoding on the expressive power of variational quantum-machine-learning models. Phys. Rev. A 103, 032430 (2021).
  • Pérez-Salinas, A., López-Nú nez, D., García-Sáez, A., Forn-Díaz, P. & Latorre, J. I. One qubit as a universal approximant. Phys. Rev. A 104, 012405 (2021).
  • Goto, T., Tran, Q. H. & Nakajima, K. Universal approximation property of quantum machine learning models in quantum-enhanced feature spaces. Phys. Rev. Lett. 127, 090506 (2021).
  • Gyurik, C. & Dunjko, V. Structural risk minimization for quantum linear classifiers. Quantum 7, 893 (2023).
  • Briegel, H. J., Browne, D. E., Dür, W., Raussendorf, R. & Van den Nest, M. Measurement-based quantum computation. Nat. Phys. 5, 19 (2009).
  • McClean, J. R., Boixo, S., Smelyanskiy, V. N., Babbush, R. & Neven, H. Barren plateaus in quantum neural network training landscapes. Nat. Commun. 9, 1 (2018).
  • Daniely, A. & Malach, E. Learning parities with neural networks. Adv. Neural. Inf. Process. Syst. 33, 20356–20365. https://proceedings.neurips.cc/paper/2020/hash/eaae5e04a259d09af85c108fe4d7dd0c-Abstract.html (2020).
  • Hsu, D. Dimension lower bounds for linear approaches to function approximation. Daniel Hsu's homepage. https://www.cs.columbia.edu/djhsu/papers/dimension-argument.pdf (2021).
  • Xiao, H., Rasul, K. & Vollgraf, R. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. Preprint at https://arxiv.org/abs/1708.07747 (2017).
  • Cerezo, M., Sone, A., Volkoff, T., Cincio, L. & Coles, P. J. Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nat. Commun. 12, 1 (2021).
  • Thanasilp, S., Wang, S., Cerezo, M., & Holmes, Z. Exponential concentration and untrainability in quantum kernel methods. Preprint at https://arxiv.org/abs/2208.11060 (2022).
  • Jerbi, S. sjerbi/qml-beyond-kernel. https://doi.org/10.5281/zenodo.7529787 Publication release (2023).
  • Broughton, M. et al. Tensorflow quantum: a software framework for quantum machine learning. Preprint at https://arxiv.org/abs/2003.02989 (2020).