Dataset Open Access

Supplementary Data: The Benefits of Cooperation in a Highly Renewable European Electricity Network

Schlachtberger, David; Brown, Tom; Schramm, Stefan; Greiner, Martin


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nmm##2200000uu#4500</leader>
  <controlfield tag="005">20200124192606.0</controlfield>
  <controlfield tag="001">804338</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, Germany</subfield>
    <subfield code="a">Brown, Tom</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, Germany</subfield>
    <subfield code="a">Schramm, Stefan</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Engineering, Aarhus University, Aarhus, Denmark</subfield>
    <subfield code="a">Greiner, Martin</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">485262911</subfield>
    <subfield code="z">md5:8a1f8cd463bee57c7d635fbb9cb4996d</subfield>
    <subfield code="u">https://zenodo.org/record/804338/files/supplementary_data_benefits_of_cooperation.zip</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2017-06-08</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire_data</subfield>
    <subfield code="o">oai:zenodo.org:804338</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, Germany</subfield>
    <subfield code="a">Schlachtberger, David</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Supplementary Data: The Benefits of Cooperation in a Highly Renewable European Electricity Network</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Supplementary Data&lt;/p&gt;

&lt;p&gt;&lt;em&gt;The Benefits of Cooperation in a Highly Renewable European Electricity Network&lt;/em&gt;&lt;br&gt;
&lt;em&gt;doi:10.1016/j.energy.2017.06.004&lt;/em&gt;&lt;br&gt;
&lt;em&gt;arXiv:1704.05492&lt;/em&gt;&lt;/p&gt;

&lt;p&gt;The files in this record contain the model-specific code, input data, and output data considered in the Benefits of Cooperation paper.&lt;/p&gt;

&lt;p&gt;You are welcome to use the provided data under the given open-source licence, and if you do please cite the paper &lt;em&gt;doi:10.1016/j.energy.2017.06.004&lt;/em&gt;.&lt;br&gt;
Please note that the derivation of the data in data/renewables/ is not open, because it uses the REatlas software [7] which has a closed source server part. (There is an free software implementation of the REatlas at https://github.com/FRESNA/atlite but it wasn't ready in time to be used for this dataset.)&lt;/p&gt;

&lt;p&gt;The code that is required to generate the output data consists of&lt;/p&gt;

&lt;ul&gt;
	&lt;li&gt;the python code opt_ws_network.py that builds and runs the PyPSA [0] model&lt;/li&gt;
	&lt;li&gt;a SLURM script parameter_batch.py to run the model with different parameters&lt;/li&gt;
	&lt;li&gt;a YAML file options.yml with the default parameter settings&lt;/li&gt;
&lt;/ul&gt;

&lt;p&gt;The code heavily relies on the python package &lt;em&gt;vresutils&lt;/em&gt; which is available at https://github.com/FRESNA/vresutils&lt;/p&gt;

&lt;p&gt;The record also contains the input data in the data/ directory. They are described in detail in the paper, but a short summary is provided here:&lt;/p&gt;

&lt;ul&gt;
	&lt;li&gt;&lt;strong&gt;costs&lt;/strong&gt;: cost and other input parameter assumptions, see &lt;em&gt;Table 1&lt;/em&gt; in the paper.&lt;/li&gt;
	&lt;li&gt;&lt;strong&gt;graph&lt;/strong&gt;: the network topology is given by a list of nodes (country names) and a list of edges connecting two nodes. Based on [1,2].&lt;/li&gt;
	&lt;li&gt;&lt;strong&gt;hydro&lt;/strong&gt;: hydro generation data provided by the Restore2050 project [3]
	&lt;ul&gt;
		&lt;li&gt;inflow/: contains a csv files with daily inflow data for each country&lt;/li&gt;
		&lt;li&gt;emil_hydro_capas.csv: country-scale power and energy capacity&lt;/li&gt;
		&lt;li&gt;ror_ENTSOe_Restore2050.csv: the share of run-of-river of the total hydro generation, from ENTSO-E [4] or if unavailable from [3]&lt;/li&gt;
	&lt;/ul&gt;
	&lt;/li&gt;
	&lt;li&gt;&lt;strong&gt;load&lt;/strong&gt;: hourly country-scale consumption for 2011 from ENTSO-E [5]&lt;/li&gt;
	&lt;li&gt;&lt;strong&gt;renewables&lt;/strong&gt;: generation potentials for the renewable technologies onshore wind, offshore wind, and solar per country based on historic weather data [6]. The jupyter-notebook europe_renewables_potentials.ipynb describes the data generation and uses the REatlas software [7] which has open-source client but closed-source server software. The used cutout can therefore not be made available here, but is solely based on data from [8]. The processed data are in:
	&lt;ul&gt;
		&lt;li&gt;store_p_nom_max/: installation potential per technology per region&lt;/li&gt;
		&lt;li&gt;store_o_max_pu_betas/: hourly maximum generation per unit of capacity per technology per region&lt;/li&gt;
	&lt;/ul&gt;
	&lt;/li&gt;
&lt;/ul&gt;

&lt;p&gt;The output data generated by the model is in sub-folders of the results/ directory following the naming scheme [costsource]-CO[CO2costs]-T[timerange]-[technologies]-LV[linevolume]_c[crossover]_base_[costsource]_solar1_7_[formulation]-[startdate]/, where&lt;/p&gt;

&lt;ul&gt;
	&lt;li&gt;costsource = diw2030&lt;/li&gt;
	&lt;li&gt;CO2costs = 0&lt;/li&gt;
	&lt;li&gt;timerange = 1_8761&lt;/li&gt;
	&lt;li&gt;technologies = wWsgrpHb&lt;/li&gt;
	&lt;li&gt;linevolume = [float], None (line volume constraint of float * 5e8 TWkm, or optimised line volume)&lt;/li&gt;
	&lt;li&gt;crossover = 0 (deactivated the cross-over phase of the Gurobi optimiser)&lt;/li&gt;
	&lt;li&gt;formulation = angles, [blank] (power flow formulations: 'angles', or 'cycles')&lt;/li&gt;
	&lt;li&gt;startdate = time the optimisation was started&lt;/li&gt;
&lt;/ul&gt;

&lt;p&gt;Footnotes&lt;/p&gt;

&lt;p&gt;[0] https://pypsa.org/ , https://doi.org/10.5281/zenodo.582307&lt;/p&gt;

&lt;p&gt;[1] S Becker, Transmission grid extensions in renewable electricity systems, PhD thesis (2015)&lt;/p&gt;

&lt;p&gt;[2] ENTSO-E, Indicative values for Net Transfer Capacities (NTC) in Continental Europe. European Transmission System Operators, 2011, https://www.entsoe.eu/publications/market-reports/ntc-values/ntc-matrix/Pages/default.aspx, accessed Jul 2014.&lt;/p&gt;

&lt;p&gt;[3] A Kies, K Chattopadhyay, L von Bremen, E Lorenz, D Heinemann, Simulation of renewable feed-in for power system studies, RESTORE 2050 project report, https://doi.org/10.5281/zenodo.804244&lt;/p&gt;

&lt;p&gt;[4] European Transmission System Operators, Installed Capacity per Production Type in 2015, ENTSO-E (2016), https://transparency.entsoe.eu/generation/r2/installedGenerationCapacityAggregation/show&lt;/p&gt;

&lt;p&gt;[5] https://www.entsoe.eu/db-query/country-packages/production-consumption-exchange-package&lt;/p&gt;

&lt;p&gt;[6] D. Heide, M. Greiner, L. Von Bremen, C. Hoffmann, Reduced storage and balancing needs in a fully renewable European power system with excess wind and solar power generation, Renewable Energy 36 (9) (2011) 2515–2523. https://doi.org/10.1016/j.renene.2011.02.009&lt;/p&gt;

&lt;p&gt;[7] G. B. Andresen, A. A. Søndergaard, M. Greiner, Validation of Danish wind time series from a new global renewable energy atlas for energy system analysis, Energy 93, Part 1 (2015) 1074 – 1088. https://doi.org/10.1016/j.energy.2015.09.071&lt;/p&gt;

&lt;p&gt;[8] S Saha et al., 2014: The NCEP Climate Forecast System Version 2. J. Climate, 27, 2185–2208, https://doi.org/10.1175/JCLI-D-12-00823.1&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isSupplementTo</subfield>
    <subfield code="a">10.1016/j.energy.2017.06.004</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.804337</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.804338</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">dataset</subfield>
  </datafield>
</record>
2,333
1,022
views
downloads
All versions This version
Views 2,3332,331
Downloads 1,0221,022
Data volume 495.9 GB495.9 GB
Unique views 2,1632,161
Unique downloads 397397

Share

Cite as