Dataset Open Access

Supplementary Data: The Benefits of Cooperation in a Highly Renewable European Electricity Network

Schlachtberger, David; Brown, Tom; Schramm, Stefan; Greiner, Martin


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/6abd4ccd-a167-47bb-9093-5a7384d429d1/supplementary_data_benefits_of_cooperation.zip"
      }, 
      "checksum": "md5:8a1f8cd463bee57c7d635fbb9cb4996d", 
      "bucket": "6abd4ccd-a167-47bb-9093-5a7384d429d1", 
      "key": "supplementary_data_benefits_of_cooperation.zip", 
      "type": "zip", 
      "size": 485262911
    }
  ], 
  "owners": [
    32482
  ], 
  "doi": "10.5281/zenodo.804338", 
  "stats": {
    "version_unique_downloads": 398.0, 
    "unique_views": 2162.0, 
    "views": 2332.0, 
    "version_views": 2334.0, 
    "unique_downloads": 398.0, 
    "version_unique_views": 2164.0, 
    "volume": 496423957953.0, 
    "version_downloads": 1023.0, 
    "downloads": 1023.0, 
    "version_volume": 496423957953.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.804338", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.804337", 
    "bucket": "https://zenodo.org/api/files/6abd4ccd-a167-47bb-9093-5a7384d429d1", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.804337.svg", 
    "html": "https://zenodo.org/record/804338", 
    "latest_html": "https://zenodo.org/record/804338", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.804338.svg", 
    "latest": "https://zenodo.org/api/records/804338"
  }, 
  "conceptdoi": "10.5281/zenodo.804337", 
  "created": "2017-06-09T11:28:31.582789+00:00", 
  "updated": "2020-01-24T19:26:06.162705+00:00", 
  "conceptrecid": "804337", 
  "revision": 10, 
  "id": 804338, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.804338", 
    "description": "<p>Supplementary Data</p>\n\n<p><em>The Benefits of Cooperation in a Highly Renewable European Electricity Network</em><br>\n<em>doi:10.1016/j.energy.2017.06.004</em><br>\n<em>arXiv:1704.05492</em></p>\n\n<p>The files in this record contain the model-specific code, input data, and output data considered in the Benefits of Cooperation paper.</p>\n\n<p>You are welcome to use the provided data under the given open-source licence, and if you do please cite the paper <em>doi:10.1016/j.energy.2017.06.004</em>.<br>\nPlease note that the derivation of the data in data/renewables/ is not open, because it uses the REatlas software [7] which has a closed source server part. (There is an free software implementation of the REatlas at https://github.com/FRESNA/atlite but it wasn't ready in time to be used for this dataset.)</p>\n\n<p>The code that is required to generate the output data consists of</p>\n\n<ul>\n\t<li>the python code opt_ws_network.py that builds and runs the PyPSA [0] model</li>\n\t<li>a SLURM script parameter_batch.py to run the model with different parameters</li>\n\t<li>a YAML file options.yml with the default parameter settings</li>\n</ul>\n\n<p>The code heavily relies on the python package <em>vresutils</em> which is available at https://github.com/FRESNA/vresutils</p>\n\n<p>The record also contains the input data in the data/ directory. They are described in detail in the paper, but a short summary is provided here:</p>\n\n<ul>\n\t<li><strong>costs</strong>: cost and other input parameter assumptions, see <em>Table 1</em> in the paper.</li>\n\t<li><strong>graph</strong>: the network topology is given by a list of nodes (country names) and a list of edges connecting two nodes. Based on [1,2].</li>\n\t<li><strong>hydro</strong>: hydro generation data provided by the Restore2050 project [3]\n\t<ul>\n\t\t<li>inflow/: contains a csv files with daily inflow data for each country</li>\n\t\t<li>emil_hydro_capas.csv: country-scale power and energy capacity</li>\n\t\t<li>ror_ENTSOe_Restore2050.csv: the share of run-of-river of the total hydro generation, from ENTSO-E [4] or if unavailable from [3]</li>\n\t</ul>\n\t</li>\n\t<li><strong>load</strong>: hourly country-scale consumption for 2011 from ENTSO-E [5]</li>\n\t<li><strong>renewables</strong>: generation potentials for the renewable technologies onshore wind, offshore wind, and solar per country based on historic weather data [6]. The jupyter-notebook europe_renewables_potentials.ipynb describes the data generation and uses the REatlas software [7] which has open-source client but closed-source server software. The used cutout can therefore not be made available here, but is solely based on data from [8]. The processed data are in:\n\t<ul>\n\t\t<li>store_p_nom_max/: installation potential per technology per region</li>\n\t\t<li>store_o_max_pu_betas/: hourly maximum generation per unit of capacity per technology per region</li>\n\t</ul>\n\t</li>\n</ul>\n\n<p>The output data generated by the model is in sub-folders of the results/ directory following the naming scheme [costsource]-CO[CO2costs]-T[timerange]-[technologies]-LV[linevolume]_c[crossover]_base_[costsource]_solar1_7_[formulation]-[startdate]/, where</p>\n\n<ul>\n\t<li>costsource = diw2030</li>\n\t<li>CO2costs = 0</li>\n\t<li>timerange = 1_8761</li>\n\t<li>technologies = wWsgrpHb</li>\n\t<li>linevolume = [float], None (line volume constraint of float * 5e8 TWkm, or optimised line volume)</li>\n\t<li>crossover = 0 (deactivated the cross-over phase of the Gurobi optimiser)</li>\n\t<li>formulation = angles, [blank] (power flow formulations: 'angles', or 'cycles')</li>\n\t<li>startdate = time the optimisation was started</li>\n</ul>\n\n<p>Footnotes</p>\n\n<p>[0] https://pypsa.org/ , https://doi.org/10.5281/zenodo.582307</p>\n\n<p>[1] S Becker, Transmission grid extensions in renewable electricity systems, PhD thesis (2015)</p>\n\n<p>[2] ENTSO-E, Indicative values for Net Transfer Capacities (NTC) in Continental Europe. European Transmission System Operators, 2011, https://www.entsoe.eu/publications/market-reports/ntc-values/ntc-matrix/Pages/default.aspx, accessed Jul 2014.</p>\n\n<p>[3] A Kies, K Chattopadhyay, L von Bremen, E Lorenz, D Heinemann, Simulation of renewable feed-in for power system studies, RESTORE 2050 project report, https://doi.org/10.5281/zenodo.804244</p>\n\n<p>[4] European Transmission System Operators, Installed Capacity per Production Type in 2015, ENTSO-E (2016), https://transparency.entsoe.eu/generation/r2/installedGenerationCapacityAggregation/show</p>\n\n<p>[5] https://www.entsoe.eu/db-query/country-packages/production-consumption-exchange-package</p>\n\n<p>[6] D. Heide, M. Greiner, L. Von Bremen, C. Hoffmann, Reduced storage and balancing needs in a fully renewable European power system with excess wind and solar power generation, Renewable Energy 36 (9) (2011) 2515\u20132523. https://doi.org/10.1016/j.renene.2011.02.009</p>\n\n<p>[7] G. B. Andresen, A. A. S\u00f8ndergaard, M. Greiner, Validation of Danish wind time series from a new global renewable energy atlas for energy system analysis, Energy 93, Part 1 (2015) 1074 \u2013 1088. https://doi.org/10.1016/j.energy.2015.09.071</p>\n\n<p>[8] S Saha et al., 2014: The NCEP Climate Forecast System Version 2. J. Climate, 27, 2185\u20132208, https://doi.org/10.1175/JCLI-D-12-00823.1</p>", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "Supplementary Data: The Benefits of Cooperation in a Highly Renewable European Electricity Network", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "804337"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "804338"
          }
        }
      ]
    }, 
    "publication_date": "2017-06-08", 
    "creators": [
      {
        "affiliation": "Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, Germany", 
        "name": "Schlachtberger, David"
      }, 
      {
        "affiliation": "Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, Germany", 
        "name": "Brown, Tom"
      }, 
      {
        "affiliation": "Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, Germany", 
        "name": "Schramm, Stefan"
      }, 
      {
        "affiliation": "Department of Engineering, Aarhus University, Aarhus, Denmark", 
        "name": "Greiner, Martin"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "type": "dataset", 
      "title": "Dataset"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.1016/j.energy.2017.06.004", 
        "relation": "isSupplementTo"
      }, 
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.804337", 
        "relation": "isVersionOf"
      }
    ]
  }
}
2,334
1,023
views
downloads
All versions This version
Views 2,3342,332
Downloads 1,0231,023
Data volume 496.4 GB496.4 GB
Unique views 2,1642,162
Unique downloads 398398

Share

Cite as