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Proteomics is a rapidly expanding field encompassing a multitude of complex techniques and

data types. To date much effort has been devoted to achieving the highest possible coverage of

proteomes with the aim to inform future developments in basic biology as well as in clinical

settings. As a result, growing amounts of data have been deposited in publicly available

proteomics databases. These data are in turn increasingly reused for orthogonal downstream

purposes such as data mining and machine learning. These downstream uses however, need

ways to a posteriori validate whether a particular data set is suitable for the envisioned purpose.

Furthermore, the (semi-)automatic curation of repository data is dependent on analyses that

can highlight misannotation and edge conditions for data sets. Such curation is an important

prerequisite for efficient proteomics data reuse in the life sciences in general. We therefore

present here a selection of quality control metrics and approaches for the a posteriori detection

of potential issues encountered in typical proteomics data sets. We illustrate our metrics by

relying on publicly available data from the Proteomics Identifications Database (PRIDE), and

simultaneously show the usefulness of the large body of PRIDE data as a means to derive

empirical background distributions for relevant metrics.
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1 Introduction

The field of proteomics has undergone rapid expansion in

recent years [1], morphing what was once the pioneering

work of a few laboratories into a wide-spread discipline

involving thousands of people and boasting large-scale

collaborative efforts [2]. The applications of proteomics

extend to a wide range of scientific problems from profiling

complex mixtures [1], over studying post-translational

modifications [3], to elucidating interaction partners and

protein complexes [4]. Proteomics also offers a high-

throughput solution for the analysis of clinically relevant

samples for disease biomarker discovery [5], with quantified

results much closer to the biological function they govern

than similar approaches in genomics.

Because of the resulting increased popularity of proteo-

mics as a method to analyse biological samples, publicly

available data repositories such as Global Proteome Machine

Database (GPMDB) [6], Peptide Atlas [7], Proteomics Iden-

tifications Database (PRIDE) [8] and Peptidome [9] have

amassed large and ever-increasing collections of proteomics

data. The accumulated, publicly available data sets represent

a true treasure trove of information, and are therefore

increasingly exploited for a variety of downstream purposes.
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Examples of such data reuse include various types of large-

scale analyses, such as experimental technique profiling [10],

detection of specific analytes [11], machine learning algo-

rithms for proteotypic peptide prediction [12], optimal

selected reaction monitoring transition selection [13] and

spectral libraries [14]. In all of these approaches however, it is

important to evaluate the suitability of a data set prior to

including it in the downstream analysis. This selection

process is essentially a quality control (QC) step that can take

two forms: the first is a selection based on experimental

metadata (e.g. data sets obtained from a given organism or a

given mass spectrometer type), while the second is based on

the characteristics of the data or corresponding results. It is

important to note however that the filtering applied is very

much dependent on the context and purpose of the down-

stream analysis, i.e. the decision on the QC metrics and

annotation parameters to use for filtering, and the limits set

for calling outliers based on these metrics, will differ from

use case to use case. While QC is ideally carried out in-line

during sample processing and data acquisition to immedi-

ately allow detection of unacceptable errors or artefacts, it

remains equally important to have a set of QC metrics that

can be applied long after the completion of the wet-lab

workflow, when the acquired data has been deposited in a

public repository. Indeed, given the large amount of possible

uses the data can be put to further downstream, it is unlikely

that all relevant metrics and data set characteristics have

been explored during the original workflow. Furthermore,

these metrics may in fact be preferentially judged in a rela-

tive sense rather than an absolute one, for instance when

potential outliers are considered against an empirically

derived background as estimated across a large number of

existing data sets. While efforts aimed at end-stage QC have

been undertaken previously [15, 16], these have so far been

limited to the detailed analysis of a single mass spectrometer

run, detecting potential problems within this single analysis

across many of the various stages of sample processing and

handling typically encountered during a proteomics work-

flow. Here however, we instead focus primarily on QC

analysis methods that effectively span very many different

runs or analyses. Indeed, such QC metrics are ideally

matched to the task of performing QC on large amounts of

heterogeneous data as obtained from public proteomics data

repositories. The two types of QC analyses can thus

complement each other quite nicely, with large-scale analy-

ses as described here amenable to initial triage or relatively

robust downstream analyses, while more fine-grained, per-

run analyses as published previously [15, 16] could be

employed on the remaining data sets when desired. Yet,

metadata filtering relies on correct annotations, which

certainly is not always the case. It is therefore important that

automated ways of picking up seemingly inconsistent

annotations are put in place, and that these are presented to

a human curator for verification and possible correction. The

methods employed for this semi-automated curation of

public data are quite similar to the methods used for QC

however, and we will therefore illustrate the usefulness of

several of the metrics presented here in the overall curation

process.

2 Materials and methods

For our analysis, we have relied on several publicly available

data sets, all obtained from the PRIDE repository (http://

www.ebi.ac.uk/pride), as well as some specific data sets in

PRIDE from close data collaborators. The following sections

provide details on each of the data sets employed in this

study.

2.1 HUPO PPP2 data set obtained from the PRIDE

repository

All peptide identifications from experiments performed by

the Richard Smith Lab at Pacific Northwest National

Laboratory (PNNL) submitted to PRIDE in the context

of the Human Proteome Organisation’s (HUPO)

Plasma Proteome Project 2 (PPP2) [17, 18] under

accession numbers 8172 to 8544 (inclusive), were retrieved.

These 373 experiments represent the analysis of 12 human

plasma samples, each subjected to some combination of

multiple affinity removal system (MARS)-6 or IgY-12

depletion and cysteine or N-glycosylated peptide selection

prior to offline strong cation exchange (SCX) chromato-

graphy followed by LC-MS (for full protocol details please

see [17, 18]).

2.2 Tryptic digestion background data set from the

PRIDE repository

In order to generate a reference for the efficiency of

a tryptic digest, all PRIDE experiments annotated to have a

single digestion step involving trypsin were extracted

from PRIDE along with their peptide identifications. This

resulted in 4582 experiments, of which 1695 were

discarded due to no missed cleavages being detected in

those experiments, indicating that the search engine was

configured to not tolerate any missed cleavages. The

remaining 2887 were used to estimate overall background

missed cleavage frequencies and precursor ion mass distri-

butions.

2.3 HUPO Test Sample Study data sets obtained

from the PRIDE repository

All HUPO Test Sample Study [19] data sets that contained

MS2 spectra were obtained from PRIDE (accession

numbers 8130–8158), for comparison against the back-

ground distribution of precursor masses.
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2.4 Precursor mass and MS2 mass difference data

set obtained from PRIDE

In order to do a broad range of QC tests a set of experiments

from PRIDE was retrieved that fulfilled the following criteria:

MS2 spectra must be present, and must include both

precursor ion m/z and charge annotation. This selection

process resulted in 1438 experiments suitable for our

purposes (see Supporting Information Table 1 for a complete

list). Particularly fruitful analyses done on this data set

included generating an empirically derived precursor mass

distribution for data in PRIDE against which single experi-

ments precursor mass distribution could be compared and

analysing the frequency of mass difference between filtered

MS2 peaks in all the spectra for an experiment.

2.5 MS2 m/z distribution data set obtained from the

PRIDE repository

In collaboration with the group of Christopher Gerner at

The Department of Medicine, Vienna General Hospital,

Medical University Vienna all experiments submitted by

this group were retrieved from PRIDE to generate a data set

of closely comparable experiments where the instrumenta-

tion and general protocol employed were highly similar.

These experiments were subject to a range of simple QC

checks and potential faults detected.

2.6 Quantitative analysis data sets

From PRIDE a set of MS2 spectra (PRIDE accession number

12821) were analysed to ascertain the quality of isobaric

labelling. The data set was derived from the analysis of a test

sample, acquired by an external supplier for Philips Research

on a Thermo-Finnigan Orbitrap in Pulsed Q Collision

Induced Dissociation mode. The tandem mass tag (TMT)-6-

plex labels from Proteome Science were used, and these were

applied to six different samples of human serum. All six

samples were subject to identical pre-labelling sample

preparation, after which they were mixed in ratios 1:1:3:3:9:9

for TMT labels with reporter masses of 126, 127, 128, 129,

130 and 131 Da, respectively. Processing (de-isotoping and

peak picking) of the raw MS data was done with MaxQuant

[20] with settings as described in [20].

2.7 Latent semantic analysis of HUPO PPP2 data

The protocol followed here for latent semantic analysis (LSA)

follows the approach used by Klie et al. [10]. Concretely, iden-

tified peptide sequences were extracted from each PRIDE

experiment, and were used to generate a peptide versus

experiment occurrence matrix. As described in Section 2.1 each

experiment represents a single SCX fraction, and so the peptide

versus experiment occurrence matrix is actually a peptide versus

SCX fraction occurrence matrix. Term frequency-inverse docu-

ment frequency (tf-idf) was subsequently applied to this matrix

in order to attenuate the signal derived from high-abundance

peptides, thus allowing for greater sensitivity of effects produced

by less-abundant peptides. This method of weighting the

frequency data is summarised by the set of formulas:

Term frequency: where ni;j is the number of occurrences of

the peptide (ti) in experiment dj, and the denominator is the

sum of the number of occurrences of all peptides in the

experiment dj (Eq. 1).

Inverse document frequency is a measure of the general

importance of a peptide calculated by taking the logarithm

of the total number of experiments |D| divided by the

number of experiments containing the peptide (Eq. 2).

Term frequency inverse document frequency: the

product of the two previous expressions for each peptide in

each experiment (Eq. 3).

tfi;j ¼
ni;jP
k nk;j

ð1Þ

idfi ¼ log
jDj

jfd : ti 2 dgj
ð2Þ

ðtf-idfÞi;j ¼ tfi;j � idfi ð3Þ

LSA was then carried out on the tf-idf weighted occurrence

matrix, resulting in a signal boost by deriving a denoised

and less-sparse occurrence matrix. This process effectively

allows the inference of a peptide’s frequency based on the

frequency of other peptides present in the experiment and

the co-occurrences of those peptides in other experiments.

Based on the LSA-transformed occurrence matrix, all

possible experiment versus experiment distances are calcu-

lated using the cosine similarity function between each pair

of experiment eigenvectors.

similarity ¼ cosðyÞ ¼
A � B

jjAjjjjBjj
¼

Pn
i¼1 Ai � BiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðAiÞ
2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðBiÞ

2
q

The resulting experiment versus experiment distance

matrix is then sorted first by overall experimental strategy,

and within each strategy by SCX fraction and the sorted

result is displayed as a heat map.

3 Results

A typical proteomics workflow consists of a variety of

experimental steps, and many of these can cause issues in

the acquired data. We therefore present here a set of metrics

that are aimed at detecting deviations in a number of key

workflow steps: protein depletion, peptide selection and

chromatographic separation, proteolytic digest, spectrum

acquisition, contamination, sample annotation, and chemi-

cal labelling efficiency and recovery in quantification.
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3.1 Depletion and separation analysis

Various types of LC form key steps in most proteomics

experiments. Reproducible separations are furthermore

essential for several quantitative or targeted approaches,

where alignment of chromatographic profiles or correct

scheduling of peptide elution times are paramount to

success [21–23]. In order to asses chromatographic perfor-

mance and reproducibility across many different elution

runs, we analysed the HUPO PPP2 data sets [17, 18]

deposited in PRIDE [24], since these contain several similar

chromatographic runs, performed on different peptide

subsets obtained from human plasma. Based on the iden-

tified peptides in each experiment, a peptide versus experi-

ment occurrence matrix was then constructed. In order to

accommodate the differences in experimental design that

preceded the chromatography runs and that influenced the

selection of proteins and peptides, LSA was employed as a

Figure 1. A cosine distance heat map of peptides identified in 373 experiments from the Richard Smith lab at PNNL. Each row and column

represents a single experiment in PRIDE, which in turn corresponds to a particular SCX fraction of a sample. Twelve samples were

analysed in total, encompassing combinations of MARS-6 or IgY-12 for the depletion step and cysteine or N-glycosylated peptides (or the

inverse) for the peptide selection, these sample are ordered by protocol and SCX fraction, which are internally further ordered by SCX

fraction elution order. Red represents high similarity, green high dissimilarity and black some similarity. The data was subject to tf-IDF and

LSA prior to plotting in order to highlight patterns and reduce noise. Numbered highlights are discussed sequentially next. (i)

Approximately one-third of the way through the SCX fractionation procedure peptides appear to be bleeding across all subsequent

fractions, reducing the separation efficiency and hence the detection sensitivity of the system considerably. (ii) The effect seen in (i) is

confirmed here: the separation is performing quite poorly, with bleeding evident. (iii) Additionally, the region highlighted in (ii) shows

unexpected similarity between ‘MARS Cys’ and ‘MARS non-Cys’ experiments; in theory, the overlap should be extremely small due to the

opposite selection procedure. (iv) Slight black blurring around the diagonal indicates peptide identification similarity between adjacent

fractions; potentially an early warning sign that the SCX separation performance is starting to degrade. We do see superb reproducibility

between samples that have undergone the same sample preparation protocol, however. (v) Further evidence of the points made in (iv):

somewhat further increased blurring, but excellent reproducibility of identifications obtained via IgY depletion. (vi) Shows reproduciblity

in identifications between different depletion methods; a good QC measure but it also indicated the depletion method does alter the

peptides you detect in addition to removing highly abundant proteins. (vii) Another example of the points raised in (vi), but now for a

different peptide selection technology. (viii) An unexpected similarity between ‘IgY Non-Cys’ and ‘IgY Non-Gly’ sample separation.

Proteomics 2011, 11, 2182–2194 2185
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powerful signal booster and noise filter prior to experiment

distance calculation (see Section 2 for details).

The resulting peptide-based experiment versus experi-

ment similarity is provided graphically as a heatmap in

Fig. 1. The experiments, each corresponding to an SCX

fraction, are grouped by depletion technology and peptide

fractionation method, and are then ordered by their elution

order. Highlight (i) on Fig. 1 shows a region of high simi-

larity between the later SCX fractions in the first ‘MARS

Cysteine’ analysis. It appears that peptides have begun to

bleed across the fractions from a certain timepoint, indi-

cating possible problems with the gradient or the column. A

highly similar smearing effect is seen in highlight (ii) for an

independent sample. Furthermore, throughout the plot,

various levels of such smearing (black to red blurring) can

be seen along the diagonal, possibly indicating progressive

evidence of SCX column degradation.

Worryingly, highlight (iii) shows that there is a clear

similarity in detected peptides between the first ‘MARS

Cysteine’ sample and the second ‘MARS Non-Cysteine’

sample. This contradictory similarity indicates a problem

with the peptide selection protocol, as it should ideally result

in two fully distinct peptide subsets. On close inspection of

the offending overlapping peptides however, we found that

the majority are attributed to the various isotypes of

immunoglobulin, thus indicating that the selection proce-

dure specifically fails for highly abundant proteins; a not

altogether surprising finding since slight deviations from

perfect peptide selection efficiency can quickly result in

substantial carry-over of undesired peptides for abundant

proteins. Of course, high remaining levels of immunoglo-

bins might in turn hint at possible problems with the MARS

depletion (which should include affinity binders for the

depletion of albumin, transferrin, haptoglobin, IgG, IgA and

a-1 antitrypsin) for these samples.

The excellent reproducibility of well-executed separations

for identical depletion protocols is show in highlights (iv)

and (v), with equivalent SCX fractions yielding largely the

same peptide identifications (hence the strongly red off-

diagonal lines). Reproducibility across different depletion

methods can also be found, albeit at less intensity, in

highlights (vi) and (vii) where similar peptides were

consistently identified regardless of the protein depletion

strategy. Unexpectedly, the peptides identified in ‘IgY Non-

Cysteine’ and ‘IgY Non N-Glycosylated’ samples also show

high similarity in highlight (viii). It is unclear why this

similarity is so pronounced as it is biologically unlikely that

non-cysteinyl peptides are preferentially N-glycosylated.

3.2 Proteolytic digestion and precursor mass

analysis

Between the steps for protein depletion and peptide selection,

proteins are enzymatically cleaved into peptides, typically

using the endoproteinase trypsin. However, trypsin digestion

is not always completely efficient [25], resulting in missed

cleavages and therefore slightly longer than average tryptic

peptide populations in most data sets. Two methods are

suggested here for quality controlling the digest efficiency:

analysis of the distribution of missed cleavages in the resulting

peptides and comparison of the distribution of precursor ion

masses to those empirically derived from a large set of repre-

sentative experiments in PRIDE. Note that the former intro-

duces an additional dependence on the search engine used for

identification, along with its parameters, while the latter is

independent of the search engine. The analyses were

performed on a data set comprising 2887 experiments that

specifically mentioned trypsin as the only proteolytic enzyme

used during sample processing (see Section 2 for details).

In order to derive an empirical background for the

frequency of occurrence of missed cleavages, the number of

missed cleavages were counted for each peptide identifica-

tion in an experiment, and the rate of missed cleavage for an

experiment was then calculated as the ratio of missed clea-

vages over the total number of observed cleavages (each

peptide terminus is considered a correct tryptic cleavage).

The resulting distribution of missed cleavage rate, shown in

Fig. 2 then provides a useful empirical background to

measure individual experiments against. In Fig. 2 we see

two experiments retrieved from PRIDE and their missed

cleavage rates, PRIDE accession 12914 shows approximately

a 100% efficient digest while experiment 12152 shows a
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Figure 2. The distribution of missed cleavage rates calculated for

2887 experiments in PRIDE, all annotated as having a single

tryptic digestion step. A boxplot reflecting this distribution is

shown above the density plot, revealing quite clearly the skew-

ness of the distribution as well as possible outliers (denoted by

anything that falls outside the range of the whiskers of the

boxplot). It must be noted however that many other methods of

outlier detection can be applied to such data, depending on the

sensitivity and specificity needs of the end user.
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missed cleavage rate of near 1 and hence a 50% of all

potential cleavages in the identified peptides were missed.

Interestingly, closer inspection of the protocol employed for

this data set indicates that free amines had been acetylated,

thus excluding lysines from tryptic cleavage. As a result, the

high missed cleavage rate is in fact an expected effect of the

protocol, and the experiment’s status as an outlier in this

case indicates an interesting case for data annotation as

opposed to a QC issue.

A background distribution can however also be

constructed from the precursor masses obtained from the

spectra in each experiment. Such a background distribution

can also be used in QC as deviations in precursor masses are

often indicative of issues with the data. In order to obtain the

background distribution, the precursor ion masses per

experiment were grouped into 60, 100 Da wide bins and the

contents of each bin were then normalised by the total

number of peptides. Since the bins are kept constant

between the different experiments, we can then create a box

plot reflecting the distribution of normalised frequencies

across all experiments for each bin. To demonstrate the

usefulness of this test, we compared the mass distributions

from individual experiments of the HUPO Test Sample

Study [19], to the empirical background. These experiments

were chosen because the HUPO Test Sample Study was

carried out on a single sample consisting of 20 equimolar

proteins by over 20 individual laboratories worldwide, as

well as a selection of instrument vendors. Furthermore,

these 20 proteins were carefully chosen to reflect overall

properties of the human proteome as best as possible [19].

An important detail is that individual peptide identifications

are not listed for these experiments; only mass spectra and

proteins are provided. As such, only an indirect measure

such as the precursor mass used here can be employed for

such data. Figure 3A correspondingly shows that the

experimental precursor mass distribution from PRIDE

experiment 8145 closely mimics the empirically derived

precursor mass distribution for tryptic digests. As is clear

from Fig. 3B however, the average precursor mass from

PRIDE experiment 8146 is higher than the empirical

distribution, hinting at specific protocols or methods that

would produce such deviating data. Figure 3C on the other

hand shows a precursor mass distribution from PRIDE

experiment 8155 that lies to the left of the expected distri-
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Figure 3. The empirically derived distribution of precursor ion masses from

PRIDE (box plots) contrasted with individual experiments from the HUPO

Test Sample Study (black line).The normalised empirical background was

derived from 2887 experiments in PRIDE annotated as digested with trypsin,

for each experiment the precursor ion masses were extracted and stratified

into 100 Da bins. These bins are normalised by simply dividing each bin by

the sum of all the bins to produce a % contribution of each bin to the

experiments total recorded precursor ion mass distribution. The boxplots

that represent the empirical background distribution are then constructed

one for each bin from all experiments. (A) A typical experiment with

precursor ion mass distribution similar to the background distribution. (B) In

this example the experimental precursor ion mass distribution is shifted to

the right, indicating overall heavier precursors in the sample. Since the

sample is identical to that in (A) this hints at a deviating protocol that

resulted in a precursor mass shift. (C) A precursor ion mass distribution

shifted to the left, indicative of lower than expected precursor masses.
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button, indicating that this analysis was particularly sensi-

tive to smaller precursors. Yet, with these deviations in

hand, a mechanistic explanation of course remains far off. If

such a mechanistic explanation should be required, there is

therefore a need for the manual inspection of the data set

and/or a thorough reading of the corresponding paper(s).

3.3 MS analysis

The high sensitivity of MS renders it highly susceptible to

artefactual contaminants [26] that can enter into the sample

during handling, impairing the detection of bona fide

peptides in the sample. Additionally, peptide fragmentation

is not always optimally efficient, sometimes yielding too few

or too small fragments to be useful for identification. In

order to measure the amount of non-informative MS2

spectra recorded during an analysis, we examined the

distribution of the mass differences between peaks in each

MS2 spectrum in an experiment. In order to ensure analysis

of the most significant signals, the MS2 spectra were first

filtered to retain only the top 10% most intense peaks. M/Z
difference distance matrices were computed from the

filtered peak lists; these matrices were then combined

resulting in a distribution of m/z differences and their

frequency. This was then plotted as a histogram where a

single bar represents a 1 m/z difference between two peaks,

the region 40–200 m/z was decided to be the most useful

region of m/z difference distribution as it encompasses the

masses of all amino acids and several common contami-

nants. Figure 4A shows a typical high-quality example for

such a distribution, with the m/z differences corresponding

to amino acid residue masses clearly rising well above the

general noise level in the histogram. Figure 4B on the other

hand shows a distribution that provides a less favourable

picture; the m/z differences corresponding to amino acid

residue masses lie well within the noise, and the extremely

high peak at 44 Da, corresponding to the mass of a PEG

monomer building block, a common contaminant in MS.

The MS2 mass difference distribution is in fact one of the

best ways to quickly detect PEG contamination levels, since

the actual polymers take a variety of precursor masses

depending on the number of monomers they are composed

of, but the MS2 spectra will always reveal the steady train of

44 Da differences. Interestingly, each experiment can now

also be considered a multidimensional vector, with each

dimension corresponding to a bar in the bar plot. Since

amino acid occurrence rates are species-specific, we should

be able to spot consistent patterns in experiments that are

derived from the same species, and contrast these with the

patterns obtained from experiments from another species.

This is illustrated in Supporting Information Fig. 1, which

depicts the two-dimensional projection of the experiment

vectors through multi-dimensional scaling. It is clear that

specific species do follow specific distributions, but that the

separation in two dimensions lacks sufficient resolving

power to clearly distinguish the species origin of any single

experiment. Regardless, such approaches can be very useful

in the a posteriori annotation of experiments and in the

curatorial detection of possible misannotations.

The distribution of the m/z of the MS2 peaks by itself can

also provide useful information, somewhat similar to

analysing the precursor ion mass distribution as discussed

previously. Typically, the distribution of MS2 m/z peaks is

Figure 4. Histograms of the distribution of distances between the

top 10% most intense peaks for each MS2 spectrum in an

experiment. Note that the Y-axis scale is given as relative density

units and that the absolute scale is therefore not comparable

between plots. (A) An example of a good mass difference

distribution, with the differences primarily representing the

amino acid residue masses. (B) A clear example of PEG

contamination in the sample, with most intense peaks in the

sample derived from PEG fragmentation at the cost of actual

peptide fragmentation spectra.
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roughly normal, performing this analysis across the portion

of PRIDE experiments that contains MS2 spectra yielded

unsurprising results in the majority of cases, but two

experiments submitted sequentially by a single lab (PRIDE

accession numbers 8927 and 8928) prove to be outliers.

Figures 5A and 5B shows the MS2 m/z distribution for

experiments 8927 and 8927, respectively, displaying an

unusual truncated bimodal distribution. While the trunca-

tion is most likely the product of mass limits imposed by the

analyzer, the bimodal character is unexpected. To check this

was not a legitimate feature of the submitter’s data we

investigated their other 150 submissions and plotted a

reference distribution of MS2 m/z to compare against in

Fig. 5C; this clearly shows that these two experiments are

cause for concern. After discussion with the data submitter

the raw data was analysed and the instrument records cross

referenced for potential causes. The cause of this phenom-

enon was thus pinned down to a mis-calibration of the mass

spectrometer’s analyser due to a contamination of the

transfer capillary, which resulted in overcharging effects.

3.4 Quantitative analysis

Quantification of proteins through peptides as surrogates

has become increasingly popular over the last few years. In

labelled proteomics for instance, tagging systems like

iTRAQ [27] or TMTs [28] are routinely used to quantify

peptides from their MS2 spectra. These tagging systems are

multiplexed sets of isotope tags that are used to label all

peptides generated from tryptic digestion. Since the tags are

isobaric, differentially labelled versions of a peptide appear

as a single precursor ion in MS mode. When labelled

peptides are subjected to collision-induced dissociation, the

tags release diagnostic, low-mass reporter ions that are used

for quantification. With the increase in popularity of these

and other quantitative methods, it is crucial to develop

corresponding QC methodologies and metrics. Because the

storage of quantitative proteomics data in publicly available

proteomics data repositories currently lags behind their

ability to store data and results from more traditional

proteomics strategies, there is very little consistent data to be
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Figure 5. (A) The distribution of binned MS2 m/z values for all spectra

in PRIDE experiment accession 8927. (B) The distribution of binned

MS2 m/z values for all spectra in PRIDE experiment accession 8928.

(C) The expected background MS2 m/z distribution of the other 150

experiments submitted by this group. The truncated bimodal nature

of the distribution in (A) and (B) is unexpected, and indicative of

calibration issues.
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found in the public domain. As such, comparative QC on

quantitative proteomics data remains a little further in the

future, but independent QC checks can already be designed

and applied with an aim to calculating them across multiple

data sets to generate reference metrics when more data

become available. For instance, by comparing the measured

ratios with the expected ratios, the accuracy of the (relative)

quantification can be determined.

Figure 6 shows an attempt to check the quality of

quantification by chemical labelling on a complex sample,

by comparing six identical human serum digests at known

relative concentrations. The labels used in this case are

TMTs. In Fig. 6A a distribution of the ratios of the peak

intensities at 126 to 130 Da with respect to the peak intensity

at 131 Da is shown as boxplots. On the left, data from

identified spectra only was taken whereas the boxplots on

the right incorporate unidentified spectra also. These are

centered on y = �2, y = �1 and y = 0 on a log3 scale as

expected from the test sample’s design, indicating good

accuracy, even on the very heterogeneous data provided by

the sum on unidentified and identified spectra. The range of

the boxplots gives the precision, in this test sample corre-

sponding to technical reproducibility. One must however be

careful to translate this ‘ideal case’ to the more common

situation where only a few components are regulated. In

that case, imperfect selection of the precursor peptide leads

to overlapping TMT peaks and incorrect calculation of the

regulation. Especially for low-abundance proteins, the effect

will be an underestimation of the regulation. However,

simultaneous selection of two or more precursor peptides is

detectable from the MS2 analysis of the fragmentation

spectra [29], providing a means to identify such co-frag-

mentation events.

In Fig. 6B we see the histogram of the number of

missing values at the m/z positions of the six TMT reporter

ions. The vast majority of spectra contain all six reporter ion

peaks, indicating overall efficient labelling. In only 0.8% of

spectra, all six peaks are missing, either because the corre-

sponding peptide is of low concentration or because of

incomplete labelling or fragmentation. It may also be that

the analyte is actually not a peptide but another type of

charged molecule with a modifiable free amine. This cannot

be verified, as the analysis is done on all spectra, and

generally we find that only a minority fraction (10–50%) of

the MS2 spectra leads to an acceptable peptide identifica-

tion. Limiting ourselves to spectra leading to accepted

peptide identifications for this data set however leads to very

similar results. Although the majority of the spectra is not

identifiable in the first pass of a MASCOT search, a large

fraction of these can be mapped on peptides from proteins

from the first search, using MASCOT’S error-tolerant

search, allowing different modifications, missed and non-

tryptic cleavages (certainly likely due to the presence of

proteases in serum [30]). The more recent Protein Pilot

software from Life Science typically allows the identification

of more than 80% of the spectra in the first pass. In Fig. 6C

a histogram of the number of missing values for each of the

six TMT reporter ions separately reveals that missing peaks

are much more common amongst the masses 126 and 127,

which are the samples with 9� lower concentration,

showing that abundance is an important factor in the

detectability of reporter ions.

Figure 7 shows the intensity of the different TMT reporter

ion peaks against the average intensity of the top 10% most

intense non-TMT peaks (IA10). A single dot on the charts

represents a single MS2 spectrum, and axes have been drawn

on log10 scale. This analysis shows whether a good balance

has been found between quantification and identification.

This certainly seems to be the case here, as the reporter ions

have an intensity that is clearly correlated to the IA10 metric. It

is also clear that the ratio between reporter ions to the IA10 is

quite constant across a broad intensity range, revealing that

reporters are good surrogates for peptide quantification. At

the same time the 1/100 (Figs. 7A and B) to 1/10 (Figs. 7E

and F) ratios indicate that peptide identification (typically

based on the most intense peaks in the spectrum) has not

been overshadowed by the reporter ion peaks at all, illus-

trating the absence of overly competitive ionisation. However,

at the same time, the actual ratios of the different reporters

versus the IA10 correlate very well with the sample composi-

tion: roughly 1/100 for 126 and 127, about 1/33 for 128 and

129, and a little under 1/10 for 130 and 131, corresponding to

the 1:1:3:3:9:9 mixing ratio for these reporters, respectively.

The TMT peaks are thus well suited to (relative) quantifica-

tion purposes.

4 Discussion

As public data repositories are getting increasingly popu-

lated with (published) proteomics data sets, large-scale data

analysis becomes an ever more powerful tool for investi-

gating and predicting the nuances implicit in proteomics

methods and results. Yet, the reliability of many down-

stream public data processing methods is crucially depen-

dent on the validity of the data. Hence, it is increasingly

important to have properly matched, empirically derived

reference metrics available for selecting and filtering the

available data sets. This rings true for both computational

users as well as for database curators, since both have a

vested interest in detecting, and possibly understanding,

outlying data sets. The relative sparseness of the informa-

tion currently deposited in public repositories compared to

what is available in the lab during and immediately after

sample processing and data acquisition requires the devel-

opment of robust metrics that can be derived from the

available data, preferentially as close to the acquisition point

as possible.

Correspondingly, we have illustrated here that publicly

available data, spanning many individual experiments of

diverse origin, can be a posteriori examined according to

several easily and reliably obtainable metrics for a typical
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proteomics workflow. This includes analyses performed

within the context of a larger study, as was shown for the

protein depletion, peptide selection and SCX separation

procedures used in the HUPO PPP2 data set, but also

extends across individual studies, where a large body of only

very loosely related experimental data (e.g. selected based

solely on the enzyme used for proteolytic digestion) can be

used to estimate empirical background distributions

complete with tolerance ranges. Furthermore, the obtained

metrics can even be used in surprising ways to compare

experimental metadata annotations, as was illustrated for

the m/z differences between MS2 peaks. The latter point is

more than a gimmick: missing or incorrect annotation

constitutes a serious downstream problem for data consu-

mers, and the ability to detect possible misannotation or to

assign annotation where none is given will likely be an
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Figure 6. A selection of quantitative QC measures on a TMT data set. (A) Boxplots showing the distribution of the ratios of the peak

intensities at 126, 127, 128, 129 and 130 Da with respect to the peak intensity of the 131 Da reporter ion. On the left, only data from

identified spectra is shown, while the right plot contains all spectra (identified and unidentified). Interestingly, the boxplots do not change

shape despite the presence of many (strong) outliers for the data from all spectra, thus validating the use of these robust metrics for highly

heterogeneous data. From the sample design, ratios should be in a 1:3:9 ratio for the three groups, respectively. The distribution centres

fall as expected (i.e. are accurate), with the width of the boxplot representing (in this case technical) reproducibility. (B) Histogram of the

number of missing values at the positions of the six TMT reporter ions. The majority of spectra recover all six expected TMT peaks, but in

some cases none are recovered at all, possibly due to poor labelling, poor fragmentation or simply low concentration peptides and ion

suppression effects. (C) Histogram of the number of missing values for each of the six TMT reporter ions separately; 126 and 127 are most

often missed but this is expected because the sample bearing these tags was 3� more dilute than the one carrying the 130 and 131 labels.
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important curatorial function for repositories in the years to

come. The mass spectra can be mined for additional data as

well: mass distributions of MS1 and MS2 ions can relate

important information about biases or faults in the protocol,

while the isobaric labelling of peptides for MS2-based

quantification approaches can be inspected easily as well. In

the latter case, the possible trade-off between quantification

and identification efficiency can be monitored by comparing

the reporter ion intensities against the average intensity of

the top 10% most-intense non-reporter peaks.

With proteomics coming ever more into the limelight of

the life sciences as a powerful and sensitive analytical plat-

form, the need for robust QC practices is becoming ever

more pressing. Such QC must in most cases also extend
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Figure 7. The intensity of the

TMT reporter peaks versus the

average peak intensity of the

top 10% non-reporter ion peaks

in each spectrum. TMT repor-

ters shown: (A) 126 Da; (B)

127 Da; (C) 128 Da; (D) 129 Da;

(E) 130 Da; (F) 131 Da. These

plots relate quantification to

identification, since the repor-

ter ions have correlated inten-

sities to the top 10% non-

reporter ions that are most

often used for identification

purposes. The TMT reporters

thus prove to be adequate

estimators of quantity. Since

the reporter ions are always

at least an order of magnitude

less intense than fragment

ions, an overshadowing

effect by reporter ions,

reducing peptide identifica-

tions is unlikely.
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beyond a single MS analysis, necessarily encompassing

several runs within or even across experiments or studies.

As a result, metrics need to be obtained that can function at

the level of the individual run, but also across many runs.

The latter can directly benefit from already acquired data for

the establishment of acceptance criteria. These latter criteria

are of course open to interpretation, and will depend on the

downstream use case for those data. The future of QC in

proteomics therefore is set to go hand in hand with that of

data repositories and the standardized deposition of well-

annotated data sets.
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