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ABSTRACT: Missing values are a genuine issue in label-free
quantitative proteomics. Recent works have surveyed the different
statistical methods to conduct imputation and have compared them on
real or simulated data sets and recommended a list of missing value
imputation methods for proteomics application. Although insightful,
these comparisons do not account for two important facts: (i)
depending on the proteomics data set, the missingness mechanism may
be of different natures and (ii) each imputation method is devoted to a
specific type of missingness mechanism. As a result, we believe that the
question at stake is not to find the most accurate imputation method in
general but instead the most appropriate one. We describe a series of
comparisons that support our views: For instance, we show that a
supposedly “under-performing” method (i.e., giving baseline average
results), if applied at the “appropriate” time in the data-processing pipeline (before or after peptide aggregation) on a data set
with the “appropriate” nature of missing values, can outperform a blindly applied, supposedly “better-performing” method (i.e.,
the reference method from the state-of-the-art). This leads us to formulate few practical guidelines regarding the choice and the
application of an imputation method in a proteomics context.
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1. INTRODUCTION

The high rate of missing values in label-free quantitative
proteomics is a major concern.1 From the literature, in the case
of LC−MS/MS approaches, it frequently ranges between 10
and 50%, while the proportion of peptides/proteins that exhibit
at least one missing value can be very high, ranging in between
70 and 90%.2 As a consequence, it was originally proposed to
apply imputation methods originally developed for tran-
scriptomics and microarray data analysis3 to proteomics data.
Then, more general methods, developed in a theoretical
statistical context, were considered4 and adapted to some extent
to proteomics data sets.5 To date, numerous methods exist and
are available to any practitioner, either as independent
packages6−8 or through dedicated pipeline packages such as
MSnbase.9 In addition, several methods have been reported
that successfully leverage on a multiomics context to impute
proteomics missing values on the basis of transcriptomics
observed values.10−12 Recently, a comprehensive survey13

compared and discussed some well-known imputation
algorithms in the context of proteomics applications. There
are numerous conclusions that can be drawn from this survey
or from references therein.

First, there are multiple reasons why values are missing,
accounting for biochemical and analytical (miscleavage,
dynamic range, ionization competition, ion suppression, etc.)
to bioinformatics mechanisms (peptide misidentification,
ambiguous matching of the precursors in the quantitation
step, etc.); however, regardless of their origins, missing values
can be cast in three categories with regards to the statistical
mechanisms that best describe them. In fact, statisticians have
defined three types of missing values:4

•Missing Completely At Random (MCAR), which in a
proteomics data set, correspond to the combination and
propagation of multiple minor errors or stochastic fluctuations.
(For instance, a misidentified peptide can or cannot be
balanced by the alignment of the precursor maps, leading to
an abundance value or, on the contrary, to a missing value). As
a result, each missing value cannot be directly explained by the
nature of the peptide or by its measured intensity.5 As a result,
MCAR affects the entire data set with a uniform distribution.
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•Missing At Random (MAR), which is a more general class
than MCAR, where conditional dependencies are accounted
for. In a proteomics data set, it is classically assumed that all
MAR values are also MCAR so that one is little interested in
MAR;5 however, some MAR imputation methods can also be
used for MCAR missing values and thus applied to proteomics
data sets.
•Missing Not At Random (MNAR), which, on the contrary,

has a targeted effect. In mass-spectrometry-based analysis,
chemical species whose abundances are close enough to the
limit of detection of the instrument record a higher rate of
missing values. This is why MNAR-devoted imputation
methods used in proteomics focus on left-censored data.
(That is, the distribution of which with respect to the
abundance is truncated on the left side, that is, on the region
depicting the lower abundances.)
Second, the statistics literature contains numerous imputa-

tion methods devoted to MCAR or MAR, while very few are
devoted to MNAR. The reason for this asymmetry is simple:
Most of the MCAR/MAR mechanisms are generic to
numerous application fields, so that it naturally focused
statisticians’ efforts. On the contrary, MNAR (including left-
censored) mechanisms are discipline-specific, so that a precise
understanding of the mechanism underlying the data
generation is mandatory. This is why, in the comparisons
depicted in ref 13, among the nine methods, only three MNAR-
devoted approaches were considered, among which two are
based on the same principle. Nonetheless, these nine methods
have been compared on various data sets that are reported to
have both MNAR and MCAR, yet in unknown proportions. As
a result, even if a couple of MCAR/MAR devoted methods are
shown to perform slightly better, it makes sense to wonder if
this holds in general or if it is data-set-dependent.
Even though most of the conclusions of ref 13 are well

supported, there is a need to consider the proportions of
MCAR and MNAR as hidden variables. This idea is not new:
Several recent works have proposed to perform imputation by
estimating models (with maximum-likelihood14,15 or with
empirical Bayesian16 methods), which are rich enough to
account for both types of missingness mechanisms. To the best
of our knowledge, no study has evaluated the behavior of an
imputation method devoted to MNAR (respectively, devoted
to MAR/MCAR) on a data set containing mainly MCAR
(respectively, MNAR); however, this question is of prime
importance to the practitioner, as it helps to guide the selection
of an imputation algorithm according to the risk of corrupting
the downstream analysis when using an unadapted imputation
method.
In this work, we have considered real and simulated data sets

on which MCAR and MNAR were introduced in controlled
proportions and have compared the performances of various
imputation methods. Numerous conclusions and recommen-
dations can be drawn from these experiments; however, beyond
them, our work pinpoints the fact that most of the conclusions
regarding imputation methods cannot be claimed to hold in
general. On the contrary, they should be contextualized
according to each data set, the proportion of missing values,
and their nature.

2. MATERIAL

Simulated Quantitative Data Set

To generate artificial peptide abundance data, we used a
simplified version of the model proposed in ref 5, which reads

= + + ϵy P Gij i ik ij (1)

where yij is the log-transformed abundance of peptide i in the
jth sample, Pi is the mean value of peptide i, Gik is the mean
differences between the condition groups, and ϵij is the random
error terms, which stands for the peptide-wise variance. Here Pi
is randomly generated from a Gaussian distribution with mean
μ and standard deviation σ. The dynamic range of peptides (in
logarithm scale) can be therefore approximated by [μ − 3σ, μ +
3σ]. We considered two groups k1 and k2 of replicates, for
which Pi generation was conducted with μ = 1.5 and σ = 0.5.
For each of the two groups, we selected two disjoint subsets of
peptides (20% of the total number of peptides), and we added
Gik randomly drawn from the distribution previously
mentioned to simulate a differential abundance between the
peptides. Finally, the random error term has also been
simulated by random draws from a Gaussian distribution with
zero mean and standard deviation σϵ = 0.5. With these
parameters, we simulated a log-transformed peptide abundance
table with m = 1000 peptides and n = 20 replicates (equally
split into groups k1 and k2).
To derive the protein abundance data, we have randomly

generated a map describing the peptide/protein relationships
by randomly drawing m integers from [1,mprot], where m is the
number of peptides and mprot < m is the number of proteins.
(mprot was set to m/2.)

Real Quantitative Data Set

As a complement to the simulated data, we considered a real
and publicly available data set, which has been collected during
a study designed to compare human primary tumor-derived
xenograph proteomes of the two major histological nonsmall
cell lung cancer subtypes, adenocarcinoma (ADC) and
squamous cell carcinoma (SCC), using Super-SILAC and
label-free quantification.17 The raw files were analyzed by
MaxQuant (version 1.3.0.5). Peaks were searched against the
UniProt human database (released July 2012; http://www.
uniprot.org) using the Andromeda search engine included in
MaxQuant. The data set within this package contains proteins
intensity for six ADC and six SCC samples. The complete
MaxQuant output file is available on the repository of the
ProteomeXchange Consortium,18 with the data set identifier
PXD000438.
Because this study requires precisely controlling each missing

values, one must work on a complete data set, that is, where no
missing value shows up. This has been obtained from the raw
peptide-level PXD000438 data set by filtering out the peptides
that contain at least one missing value. Finally, the complete
peptide-level matrix was log-transformed and median-normal-
ized.

MCAR and MNAR Incorporation

Let α and β be the rate of missing values and the MNAR ratio,
respectively. They read

α β= · # + # = ·#
# + #nm

100 ( MNAR MCAR) 100 MNAR
MNAR MCAR

(2)
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For a given combination of α and β, the missing values are
incorporated in a complete data set as follows:
MNAR values are incorporated using a stochastic threshold,

as follows: One randomly generates a threshold matrix T from a
Gaussian distribution with parameters (μt = q, σt = 0.01), where
q is the αth quantile of the abundance distribution in the
complete quantitative data set. Then, each cell (i,j) of the
complete quantitative data set is compared with Ti,j. If it is
greater than or equal to Ti,j, the abundance is not censored. On
the contrary, if it is strictly smaller than Ti,j, a Bernoulli draw
with probability of success β α·

100
determines if the abundance

value is censored (success) or not (failure).
MCAR values are incorporated by replacing with a missing

value the abundance value of β α−nm (100 )
100

randomly chosen

cells in the table of the quantitative data set.
This strategy is summarized in Figure 1. We used it for any

combination of values for α ∈ [2%, 52%] and β ∈ [0%, 100%].

3. METHODS

Imputation Algorithms

Because an exhaustive comparison of the missing value
imputation algorithms is beyond the scope of this study, we
selected a set of characteristic and widely applied methods,
representing different families of imputation procedures and
which are conceptually different. We considered:
•kNN (k Nearest Neighbors):3 for a peptide showing

missing values, the method consists of (i) finding k most similar
peptides to the one considered (using a particular distance
measure, e.g., Euclidean distance of Pearson’s correlation
coefficient) and (ii) imputing each missing value by averaging
the k peptide values from the same replicate where that missing
value occurred. Preliminary exploration of the range of
parameter k showed that the imputation accuracy was rather
stable for any k ∈ [10,20] and reached its maximum at 11, so
that we used this latter value.
•SVDimpute (Imputation with Singular Value Decomposi-

tion):3 The quantitative data set is considered a matrix on
which mean centering and k-rank SVD are iteratively applied
(where k ∈ [1, n/2], where n/2 is the number of replicates in a

given condition group), up to some convergence criterion. In
our case, k was tuned to 1. (k = 1 and 2 gave the greatest
performances according to preliminary tests.)
•MLE (Imputation based on Maximum Likelihood

Estimation): Assuming the quantitative data set obeys some
law fθ of unknown parameter θ, maximum likelihood estimation
principle is used to derive an estimator θ̂ of θ, and missing
values are then imputed by random draws of fθ̂. The literature
dedicated to missing value imputation based on MLE is vast,
and we recommend refs 19 and 20 for a comprehensive survey
of the topic. In this work, we employed the implementation
available in the R package norm.21

•MinDet (Deterministic Minimum Imputation):22,23 It
simply replaces the missing values by the minimum value,
either globally observed in the data set or observed in each
sample. Here we used the 10−4 quantile.
•MinProb (Probabilistic Minimum Imputation): It is a

stochastic version of MinDet, so as to limit the bias introduced
by multiple replacements with a unique value. The imputation
is performed by replacing the missing values with random
draws from a Gaussian distribution centered on the value used
with MinDet and with a variance tuned to the median of the
peptide-wise estimated variances.24 We decided to focus on
these five methods, as they represent well the various types of
imputation methods: First, according to the taxonomies
provided in refs 25 and 26, kNN, MinDet, and MinProb
belong to the prediction rules methods, SVDimpute belongs to
the least-squares-based methods, and finally, MLE belongs to the
maximum-likelihood-based methods, so that this set of methods
covers well the taxonomies of refs 25 and 26 Second, according
to ref 13, MinDet and MinProb are single value approaches,
kNN is a local similarity approach, and SVDimpute is a global
similarity approach, so that the taxonomy of ref 13 is also
covered. Third, MinDet and MinProb are designed to impute
MNAR values, while kNN, SVDimpute, and MLE are designed
for MCAR (and more generally MAR) values. Finally, MinDet
is the most naive method to deal with MNAR (and often
implemented as zero value imputation), while MLE and
SVDimpute are particularly efficient on MCAR, so that
comparing these three methods is insightful with regard to

Figure 1. Schematic view upon the strategy used for the missing data generation. This strategy allows us to control both for the total proportion of
missing values generated as well as for the proportion of missing values, which are MNAR and MCAR.
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the conclusions of ref 13 on the general dominance of MCAR/
MAR-devoted methods. Let us also notice that no multiple
imputation method is considered in our work, while, in
practice, they provide the best results in the state-of-the-art.
The reason is the following: Multiple imputation strategies
amount to a boosting strategy, that is, the combination of
several simple methods to stabilize the results; however, their
behavior, efficiency, and adequation to the specificities of the
data are directly related to those of the simple methods they are
based on. As a result, we found it clearer to focus on the single
imputation methods, so as to best describe and understand
them, and to let the practitioner generalize our conclusion to
multiple imputations. Finally, this set of algorithms has been
chosen to represent a wide diversity of strategies, on which very
general conclusions can be drawn.
Accuracy Measurements

In most of the experiments, the imputation step was followed
by the aggregation of peptide abundances into protein
abundances. (We estimated each protein abundance with the
median abundance over the protein specific peptides.)
However, in few specific experiments (see Section 4), the
aggregation was conducted first (i.e., on peptide abundances
that still contain missing values) and followed by imputation at
the protein level.
In both cases, we evaluated the performances of the

imputation algorithms in the same way: We considered the
differences between the protein abundances in the original
complete quantitative data set and in its counterpart containing
missing values that have been imputed (either at protein or

peptide level). Such differences are classically summarized by
the root-mean-square error (RMSE), yet many other variants
exist.27 Within our framework, we employed a normalized
version of the RMSE called the RMSE-observations standard
deviation ratio (RSR),28 defined as follows

=RSR X X
RMSE X X

sd X
( , )

( , )
( )C I

C I

C (3)

where XC denotes the complete quantitative data set (before
incorporating missing values), while XI denotes the quantitative
data set after the imputation of the missing values. The
reported results corresponds to an average over 30 independent
repetitions of the experiment (i.e., the random generation of
missing values as well as their imputation, for a given tuning of
α and β), so as to have more stable performance records.

4. RESULTS

MCAR-Devoted versus MNAR-Devoted Imputations

Figures 2 and 3 display a series of heatmaps (with a false color
code, ranging from blue, which indicates low RSR, to red, which
indicates high RSR) for the simulated and real data sets,
respectively. Within each Figure, there are five graphics,
corresponding to an imputation method each. Each heatmap
displays the average performances (over 30 repetitions) of the
imputation algorithm over the entire range of the experimental
conditions (i.e., a proportion of missing values ranging from 2
to 52% and an MNAR ratio ranging from 0 to 100%). Several
conclusions can be drawn from these Figures.

Figure 2. RSR for the simulated quantitative data set; imputation is performed by considering: kNN (a), SVDimpute (b), MLE (c), MinDet (d), and
MinProb (e).
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First, irrespective of the data set, all methods perform better
when there are fewer missing values and become inaccurate
with increasing proportion of missing values. Although
expected, this result assesses the validity of our comparison
protocol and of our simulations.
Second, two groups of algorithms can be identified with

regard to the MNAR ratio: The first group is made of
SVDimpute, kNN, and MLE, which perform better under a
small MNAR ratio, while the second group, composed of

MinDet and MinProb, performs better under a larger MNAR
ratio. This clearly indicates that depending on the nature of the
majority of the missing values it is important to privilege either
a MCAR/MAR-devoted method, such as advocated in ref 13,
or, on the contrary, to favor a MNAR-devoted method, even if
the latter is more naive and provide, on average, worse results.
Third, for each method, a similar behavior is observed on

both the real and the simulated data sets. In the case of MinDet
and MinProb, the similarity is almost perfect, with particular

Figure 3. RSR for the real quantitative data set; imputation is performed by considering: kNN (a), SVDimpute (b), MLE (c), MinDet (d), and
MinProb (e).

Figure 4. (a) Comparison of SVDimpute and MinDet on the simulated data set. (b) Comparison of MLE and MinDet on the real data set. Red
color indicates an outperformance of MinDet, a blue color, an underperformance of MinDet, and a green color, a difference of performance that is
not significant with a p-value threshold of 5%.
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poor performance toward high percentages of nonrandom
missing values (lower right corner). In the case of the three
other methods, even if the similarity between the heatmaps
derived from the real and simulated data sets is not as good, a
pattern is well-conserved. In both cases, the best performance is
reached with the lowest rate of missing value and the lowest
MNAR ratio (lower left corner), while the worst performance is
reached with the greatest rate of missing value and the greatest
MNAR ratio (upper right corner). In addition, isoperformance
lines are roughly parallel to an axis going from the upper left to
the lower right corner. The global stability of this pattern
indicates that, even if MCAR is possibly a simplistic process to
account for the diverse nature of missing values that are not
left-censored, the postulate at the root of these experiments is
robust. Indeed, we postulated the strong influences of both (1)
the rate of missing values and of the MNAR ratio as well as (2)
the nature of the missing values to which a given imputation
method is devoted.
Finally, if one averages the performances of the various

imputation methods over all the experiments (which amounts
to consider a mean color over each graphic), it appears that
overall MCAR/MAR-devoted methods (SVDimpute, kNN and
MLE) outperform MNAR methods (MinDet and MinProb).
From this, we conclude that in the absence of any knowledge
regarding the MNAR ratio (and assuming that all of the
situations are equiprobable, which remains to be proven), it
makes sense to privilege the former ones, such as advocated in
ref 13.

However, this averaging must not be overstated, as it is
possible to show situations where even the worst MNAR
method (MinDet) significantly outperforms the best MCAR/
MAR methods (MLE or SVDimpute). To further demonstrate
this, we applied an unpaired two-sample t test to assess the
significance of the difference of accuracy, between the two
following pairs of imputation methods: MinDet vs SVDimpute
(for the simulated data set), and MinDet vs MLE (for the real
data set). The results are reported in Figure 4. These
comparisons demonstrate that when a high proportion (70%
or more) of missing values are MNAR, MNAR imputation
methods are preferred. Although such data sets are not
widespread, they are not unheard of (see, for instance, refs
29 and 30), which advocates for the development of new
methodologies that can estimate the nature of the majority of
the missing values, so as to adapt the imputation method
accordingly.

Peptide-Level versus Protein-Level Imputations

In the literature, there is no consensus on the preferred order
with respect to missing values imputation and aggregation of
peptide intensities into protein intensities. This is why both
cases were considered in ref 13. We also repeated our
experiments summarized in Figures 2 and 3, in a reversed
context where the aggregation is performed first and the
imputation is conducted at protein level. We have compared
these two approaches using the methodology previously
described and present the results of a significance analysis (at
a p-value threshold of 5%) in Figures 5 and 6, where blue

Figure 5. Comparison of peptide-level and protein-level imputations for the simulated quantitative data set; imputation is performed by considering:
kNN (a), SVDimpute (b), MLE (c), MinDet (d), and MinProb (e). Blue indicates peptide imputation superiority, red indicates protein imputation
superiority, and green indicates a nonsignificant result (at 5% threshold).
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indicates peptide imputation superiority, red indicates protein
imputation superiority, and green indicates a nonsignificant
result.
As illustrated by a high proportion of blue, peptide-level

imputation is most of the time more accurate. Nevertheless, a
major argument for protein-level imputation is the presence of
fewer missing values; indeed, if several peptides are aggregated
into a protein, this aggregation does not lead to a missing value,
unless all of the peptide intensities are missing, so that
numerous missing values are implicitly imputed by a value that
is a neutral element with respect to the aggregation. For
instance, in the case where

• protein intensities result from the sum of the peptide
intensities (such as in ref 31); then, missing peptide

intensities do not contribute to the sum, so that the
result is the same as if peptide missing values were
imputed by zero

• protein intensities result from the mean of the peptide
intensities (such as in ref 32); then, missing peptide
intensities do not contribute to the mean, so that the
result is the same as if peptide missing values were
imputed by the mean value of the peptide intensities

• protein intensities result from a maximum function of the
peptide intensities (sum or mean over the three most
abundant peptides, maximum peptide abundance, and so
on, such as in refs 33 and 34); then, the result is the same
as if peptide missing values were imputed by zero or any
other small intensity

Figure 6. Comparison of peptide-level and protein-level imputations for the real quantitative data set; imputation is performed by considering: kNN
(a), SVDimpute (b), MLE (c), MinDet (d), and MinProb (e). Blue indicates peptide imputation superiority, red indicates protein imputation
superiority, and green indicates a nonsignificant result (at 5% threshold).

Figure 7. Illustration of implicit missing value imputation during protein quantification from peptide intensity. Here the protein quantification is
considered to be performed by summing the signal intensities of all peptides per protein.
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For more general protein aggregation methods, based on more
sophisticated functions (such as, for instance, weighted mean),
the issue is the same (even if the formula of the neutral element
may be less trivial). The above observations are schematically
described in Figure 7, where protein-level imputation is
equivalent to (i) applying an implicit imputation method on
some peptide-level missing values that is neither controlled nor
evaluated; (ii) performing the aggregation itself; and (iii)
explicitly imputing the few remaining missing values. Because
the total number of imputed missing values (whether implicit
or explicit) is the same, it is preferable to consider an explicit
and well-justified imputation for all missing values, which
amounts to impute at peptide level and concurs with the results
of Figures 5 and 6.
However, from Figures 5 and 6, it seemingly appears that

when the data contain up to ∼60% of MNAR values, and if an
MNAR-devoted imputation method has been chosen a priori, it
is more efficient to impute at the protein level. This observation
highlights that on MCAR data an implicit and suboptimal
imputation is more efficient than an MNAR imputation
method. Deriving this result on the basis of the aforementioned
observation (Figures 5 and 6) requires several steps:
(1) During the aggregation process, several MCAR peptides

are combined with observed peptide intensities (there is very
little chance that, assuming MCAR data, all peptides of a given
protein are missing), leading to protein intensities rather than
missing values.
(2) As opposed to (1), let us note that MNAR peptides

correspond to genuine low abundance ions, so that there are
good chances that one aggregates only missing values, leading
to a missing value at the protein level.
(3) As a result from (1), it appears that if one has chosen to

use an MNAR-devoted method, MCAR are either imputed by
an unadapted method (at the peptide level), or implicitly
imputed by the aggregation.
(4) As a result from (2), if one uses the same MNAR-

devoted method, MNAR are roughly imputed in the same way,
both at peptide and at protein levels.
(5) As a result from (3) and (4), one derives that the

difference in the overall quality of the imputation (between
peptide level and protein level imputation with an MNAR-
devoted method) mainly relies on that of MCAR data.
(6) Let us now recall the original observation: “When the

data contain up to ∼60% of MNAR values, and if an MNAR-
devoted imputation method has been chosen a priori, it is more
efficient to impute at the protein level.”
(7) Then, on the basis of (5) and (6), the observed

difference in the overall comparison is mainly explained by the
performances of the imputation on the 40% or less remaining
MCAR values.
(8) From (6) and (7), one derives that on these MCAR

values implicit protein-level imputation gives more accurate
results.
(9) Then, combining (8) and (2) leads to the aforemen-

tioned conclusion: On MCAR, an implicit and suboptimal
imputation is more efficient than a MNAR-devoted method.
As here, the implicit imputation of the aggregation is

equivalent to a mean imputation (which can be seen as a poor
MCAR method), it highlights that a bad MCAR method is
more efficient on MCAR data than a good MNAR method.
While this conclusion may appear trivial, it, however, stresses
that the adequation between the nature of the missing values
and the imputation strategy is more important than the

theoretical performances (i.e., regardless the nature of missing
values) of the imputation algorithm.
In addition, a last conclusion can be drawn: Because the

implicit imputation performed during the aggregation mainly
operates on MCAR, so that mainly MNAR remains at the
protein level, our results support the idea that the MNAR ratio
is generally more important at the protein level than at the
peptide level (such as observed in refs 29 and 30, for instance);
however, this last conclusion must be cautiously interpreted.
Indeed, it does not mean that if there is a lot of MNAR it is
better to work at the protein-level: To derive such a conclusion,
one would need to have mainly red cells in the upper lines of
Figures 5 and 6 graphics; yet it holds only for a couple of them
(Figures 6a,b), so that no general conclusion can be drawn.
Of course, if one changes the aggregation method, the

comparison between peptide-level and protein-level imputa-
tions will lead to slightly different results, and we do not
pretend to be exhaustive; however, even if the aggregation
strategy is more elaborate than the three aforementioned ones
(sum, mean, or max), the conclusions are of the same spirit:
Whatever the aggregation function, it is most likely to have a
neutral element that will act as the implicit imputation value, on
the basis of which most of the aforementioned conclusions are
elaborated.

5. CONCLUSIONS
Let us first summarize the conclusions of this work into four
points. (1) Imputation should be performed at the peptide level
because aggregating peptides into proteins beforehand amounts
to performing a first implicit and, in most of the cases,
suboptimal imputation. (2) In the absence of knowledge about
the nature(s) of missing values in a particular quantitative
proteomics data set, it makes sense to rely on a MCAR/MAR
imputation method. This is supported by numerous experi-
ments, including ours as well as those from ref 13 but also by
theoretical arguments: By definition, missing values that should
be imputed by small intensities can also show up in a MCAR
context (so that they can also be imputed to some extent by
MCAR-devoted imputation methods), while, on the contrary, a
method devoted to left-censored missing value will systemati-
cally perform poorly on other types of missing values. (3)
However, this conclusion should be moderated by the
observation that the superiority of MAR/MCAR-devoted
methods only holds on the average and should be
contextualized, as cases arise where MNAR-devoted methods
perform better than MCAR-devoted ones. Similarly, it appears
that choosing a method adapted to the nature of the missing
values is more important than choosing a method itself,
regardless of the nature of missing values. As a consequence,
before any imputation, the practitioner should identify the main
or most likely nature among the missing values in his/her
quantitative data set and impute accordingly. (4) Finally, while
MNAR are best imputed by specific methods, other missing
values are well accounted for by MAR/MCAR-devoted
methods. Because it is accepted that many types of missing
values coexist in most of the quantitative data sets (see, for
instance, ref 13), hybrid strategies (based on both MNAR- and
MAR/MCAR-devoted methods) should be considered in the
future.
These elements shed a new light on the directions that

methodological research should follow with regards to missing
value imputation in quantitative proteomics. MNAR-devoted
methods, which are less numerous and have been less
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investigated in the general field of statistics, remain a subject of
likely improvements. Concomitantly, important room is left to
develop diagnosis tools, which are capable of categorizing the
missing values according to the mechanism that generated
them. This diagnosis can operate at different levels: (i) at the
data set level, so that the imputation strategy is applied
conditionally to the majority nature of missing values in the
entire data set; (ii) at the peptide level, so that all of the missing
values within a same peptide (in a given group of replicates) are
assumed to be of a same nature; and (iii) at the missing value
level, so as to have a most refined categorization of the missing
values across the data set. Finally, once such diagnosis tools are
available, it will be possible to elaborate hybrid strategies that
process each group of missing values according to its nature, so
as to best preserve the biological relevance of the quantitative
data sets and of the biological conclusions.

■ AUTHOR INFORMATION
Corresponding Author

*E-mail: thomas.burger@cea.fr.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was supported by the following funding: ANR-2010-
GENOM-BTV-002-01 (Chloro-Types), ANR-10-INBS-08
(ProFI project, “Infrastructures Nationales en Biologie et
Sante”́, “Investissements d’Avenir”), EU FP7 program (Prime-
XS project, Contract no. 262067), the Prospectom project
(Mastodons 2012 CNRS challenge), and the BBSRC Strategic
Longer and Larger grant (Award BB/L002817/1).

■ REFERENCES
(1) Stead, D. A.; Paton, N. W.; Missier, P.; Embury, S. M.; Hedeler,
C.; Jin, B.; Brown, A. J. P.; Preece, A. Information quality in
proteomics. Briefings Bioinf. 2007, 9 (2), 174−188.
(2) Albrecht, D.; Kniemeyer, O.; Brakhage, A. A.; Guthke, R. Missing
values in gel-based proteomics. Proteomics 2010, 10 (6), 1202−1211.
(3) Troyanskaya, O.; Cantor, M.; Sherlock, G.; Brown, P.; Hastie, T.;
Tibshirani, R.; Botstein, D.; Altman, R. B. Missing value estimation
methods for dna microarrays. Bioinformatics 2001, 17 (6), 520−525.
(4) Rubin, D. B. Inference and missing data. Biometrika 1976, 63 (3),
581−592.
(5) Karpievitch, Yuliya; Dabney, Alan; Smith, Richard Normalization
and missing value imputation for label-free lc-ms analysis. BMC Bioinf.
2012, 13 (Suppl. 16:S5), 1−9.
(6) Hastie, T., Tibshirani, R., Narasimhan, B., Chu, G. Impute:
Imputation for Microarray Data. R package, version 1.42.0.
(7) Lazar, C. imputeLCMD: A Collection of Methods for Left-Censored
Missing Data Imputation. R package, version 2.0.
(8) Stacklies, W.; Redestig, H.; Scholz, M.; Walther, D.; Selbig, J.
pcamethods - a bioconductor package providing pca methods for
incomplete data. Bioinformatics 2007, 23 (9), 1164−1167.
(9) Gatto, L.; Lilley, K. S Msnbase-an r/bioconductor package for
isobaric tagged mass spectrometry data visualization, processing and
quantitation. Bioinformatics 2012, 28 (2), 288−289.
(10) Nie, L.; Wu, G.; Brockman, F. J; Zhang, W. Integrated analysis
of transcriptomic and proteomic data of desulfovibrio vulgaris: zero-
inflated poisson regression models to predict abundance of undetected
proteins. Bioinformatics 2006, 22 (13), 1641−1647.
(11) Torres-García, W.; Zhang, W.; Runger, G. C; Johnson, R. H;
Meldrum, D.e R Integrative analysis of transcriptomic and proteomic
data of desulfovibrio vulgaris: a non-linear model to predict abundance
of undetected proteins. Bioinformatics 2009, 25 (15), 1905−1914.

(12) Torres-Garcia, W.; Brown, S. D.; Johnson, R. H.; Zhang, W.;
Runger, G. C.; Meldrum, D. R Integrative analysis of transcriptomic
and proteomic data of shewanella oneidensis: missing value imputation
using temporal datasets. Mol. BioSyst. 2011, 7 (4), 1093−1104.
(13) Webb-Robertson, B.-J. M.; Wiberg, H. K.; Matzke, M. M.;
Brown, J. N.; Wang, J.; McDermott, J. E.; Smith, R. D.; Rodland, K. D.;
Metz, T. O.; Pounds, J. G.; Waters, K. M.; et al. Review, evaluation,
and discussion of the challenges of missing value imputation for mass
spectrometry-based label-free global proteomics. J. Proteome Res. 2015,
14 (5), 1993−2001.
(14) Karpievitch, Yuliya; Stanley, Jeff; Taverner, T.; Huang, J.;
Adkins, J. N.; Ansong, C.; Heffron, F.; Metz, T. O.; Qian, W.-J.; Yoon,
H.; Smith, R. D.; Dabney, A. R. A statistical framework for protein
quantitation in bottom-up ms-based proteomics. Bioinformatics 2009,
25 (16), 2028−2034.
(15) Ryu, S. Y.; Qian, W.-J.; Camp, D. G.; Smith, R. D.; Tompkins, R.
G.; Davis, R. W.; Xiao, W. Detecting differential protein expression in
large-scale population proteomics. Bioinformatics 2014, 30 (19),
2741−2746.
(16) Koopmans, F.; Cornelisse, L. N.; Heskes, T.; Dijkstra, T. M. H.
Empirical bayesian random censoring threshold model improves
detection of differentially abundant proteins. J. Proteome Res. 2014, 13
(9), 3871−3880.
(17) Zhang, W.; Wei, Y.; Ignatchenko, V.; Li, L.; Sakashita, S.; Pham,
N.-A.; Taylor, P.; Tsao, M. S.; Kislinger, T.; Moran, M. F. Proteomic
profiles of human lung adeno and squamous cell carcinoma using
super-silac and label-free quantification approaches. Proteomics 2014,
14 (6), 795−803.
(18) Vizcaíno, J. A.; Deutsch, E. W.; Wang, R.; Csordas, A.; Reisinger,
F.; Ríos, D.; Dianes, J. A.; Sun, Z.; Farrah, T.; Bandeira, N.; et al.
Proteomexchange provides globally coordinated proteomics data
submission and dissemination. Nat. Biotechnol. 2014, 32 (3), 223−226.
(19) Ibrahim, J. G.; Chen, M.-H.; Lipsitz, S. R.; Herring, A. H.
Missing-data methods for generalized linear models. J. Am. Stat. Assoc.
2005, 100 (469), 332−346.
(20) Schafer, J. L.; Graham, J. W. Missing data: Our view of the state
of the art. Psychological Methods 2002, 7 (2), 147−177.
(21) Schafer, J. L. NORM: Analysis of Incomplete Multivariate Data
under a Normal Model, 3rd ed.; The Methodology Center, The
Pennsylvania State University: University Park, PA, 2008.
(22) Almeida, J. S.; Stanislaus, R.; Krug, E.; Arthur, J. M.
Normalization and analysis of residual variation in two-dimensional
gel electrophoresis for quantitative differential proteomics. Proteomics
2005, 5 (5), 1242−1249.
(23) Meleth, S.; Deshane, J.; Kim, H. The case for well-conducted
experiments to validate statistical protocols for 2d gels: different pre-
processing = different lists of significant proteins. BMC Biotechnol.
2005, 5 (1), 7.
(24) Chich, J.-F.; David, O.; Villers, F.; Schaeffer, B.; Lutomski, D.;
Huet, S. Statistics for proteomics: Experimental design and 2-de
differential analysis. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci.
2007, 849 (1−2), 261−272.
(25) Wasito, I.; Mirkin, B. Nearest neighbour approach in the least-
squares imputation algorithms. Inf. Sci. 2005, 169, 1−25.
(26) Little, R. J. A. Regression with missing x’s: A review. J. Am. Stat.
Assoc. 1992, 87 (420), 1227−1237.
(27) Oh, S.; Kang, D. D.; Brock, G. N.; Tseng, G. C. Biological
impact of missing-value imputation on downstream analyses of gene
expression profiles. Bioinformatics 2011, 27 (1), 78−86.
(28) Chen, H.; Xu, C.-Y.; Guo, S. Comparison and evaluation of
multiple gcms, statistical downscaling and hydrological models in the
study of climate change impacts on runoff. J. Hydrol. 2012, 434−435
(0), 36−45.
(29) Ferro, M.; Brugier̀e, S.; Salvi, D.; Seigneurin-Berny, D.; Court,
M.; Moyet, L.; Ramus, C.; Miras, S.; Mellal, M.; Le Gall, S.; Kieffer-
Jaquinod, S.; et al. At_chloro, a comprehensive chloroplast proteome
database with subplastidial localization and curated information on
envelope proteins. Mol. Cell. Proteomics 2010, 9 (6), 1063−1084.

Journal of Proteome Research Reviews

DOI: 10.1021/acs.jproteome.5b00981
J. Proteome Res. 2016, 15, 1116−1125

1124

mailto:thomas.burger@cea.fr
http://dx.doi.org/10.1021/acs.jproteome.5b00981


(30) Tomizioli, M.; Lazar, C.; Brugier̀e, S.; Burger, T.; Salvi, D.;
Gatto, L.; Moyet, L.; Breckels, L. M; Hesse, A.-M.; Lilley, K. S.; et al.
Deciphering thylakoid sub-compartments using a mass spectrometry-
based approach. Mol. Cell. Proteomics 2014, 13 (8), 2147−2167.
(31) Roulhac, P. L.; Ward, J. M.; Thompson, J. W.; Soderblom, E. J.;
Silva, M.; Moseley, M. A.; Jarvis, E. D. Microproteomics: Quantitative
proteomic profiling of small numbers of laser-captured cells. Cold
Spring Harbor Protocols 2011, 2011 (2), 218−234.
(32) Ludwig, C.; Claassen, M.; Schmidt, A.; Aebersold, R. Estimation
of absolute protein quantities of unlabeled samples by selected
reaction monitoring mass spectrometry. Mol. Cell. Proteomics 2012, 11
(3), M111.013987.
(33) Grossmann, J.; Roschitzki, B.; Panse, C.; Fortes, C.; Barkow-
Oesterreicher, S.; Rutishauser, D.; Schlapbach, R. Implementation and
evaluation of relative and absolute quantification in shotgun
proteomics with label-free methods. J. Proteomics 2010, 73 (9),
1740−1746.
(34) Silva, J. C.; Gorenstein, M. V.; Li, G.-Z.; Vissers, J. P. C.;
Geromanos, S. J. Absolute quantification of proteins by lcmse: A virtue
of parallel ms acquisition. Mol. Cell. Proteomics 2005, 5 (1), 144−156.

Journal of Proteome Research Reviews

DOI: 10.1021/acs.jproteome.5b00981
J. Proteome Res. 2016, 15, 1116−1125

1125

http://dx.doi.org/10.1021/acs.jproteome.5b00981

