
 ac

HBRP Publication Page 1-6 2023. All Rights Reserved Page 1

Journal of Advances in Computational Intelligence Theory
Volume 5 Issue 3

Arithmetic and Logic Unit

1
Akansha Singh,

2
K B Ramesh*

1
 Student (EIE),

2
Associate Professor, R V College of Engineering,

Bengaluru, Karnataka, 560059 India

*Corresponding Author

E-mail Id: - rameshkb@rvce.edu.in

ABSTRACT

This research paper explores the fundamental digital circuit known as the Arithmetic and

Logic Unit (ALU). The ALU is an essential component of any central processing unit (CPU)

and is responsible for executing arithmetic and logical instructions within a computer's

architecture. The paper examines the ALU's function in detail, focusing on its ability to

process data by executing mathematical and logical operations such as addition, subtraction,

multiplication, division, logical AND, OR, NOT, and XOR. The paper also explores analyzing

the internal structure and operation of an ALU, and implementing the ALU using hardware

description languages. The methodology is evaluated through the design and implementation

of a basic ALU, and the results demonstrate the effectiveness of the methodology in achieving

a deep understanding of the function and operation of an ALU.

Keywords:-Arithmetic and Logic Unit (ALU), Central Processing Unit (CPU), Computer

architecture, Mathematical operations, Hardware description languages

INTRODUCTION

The arithmetic logic unit (ALU) is a key

component of modern computing devices

and plays a central role in executing

arithmetic and logic instructions within the

central processing unit (CPU). This

research paper covers the basic aspects of

ALU and analyzes its function, structure

and functions in detail. The aim is to

provide a comprehensive understanding of

the ALU's ability to process data by

performing arithmetic and logic operations

such as addition and logical AND. This

paper examines the internal structure of

the ALU and evaluates the methodology

for implementing his ALU using a

hardware description language. The

research methodology was evaluated by

designing and implementing a basic ALU,

and the results demonstrate the

effectiveness of the methodology in

achieving a detailed understanding of ALU

function and behavior. The findings from

this research have practical implications in

the field of computer architecture and help

design more efficient and effective

computing devices.

BACKGROUND

The ALU was first introduced in the 1950s

as a basic digital circuit that could perform

arithmetic and logical operations on binary

data. Since then, the ALU has evolved and

become more complex, with modern

ALUs capable of performing complex

operations and supporting various data

types. The ALU is a cru`cial component of

any central processing unit (CPU) and is

responsible for executing instructions

within a computer's architecture.

THEORETICAL FOUNDATION:

A. Arithmetic logic unit:

Combinatorial logic circuits that enable

engineering students to learn using

Boolean algebra, which unites the worlds

of mathematics and logic.

mailto:rameshkb@rvce.edu.in

 ac

HBRP Publication Page 1-6 2023. All Rights Reserved Page 2

Journal of Advances in Computational Intelligence Theory
Volume 5 Issue 3

Truth Table:

A

B

Result

0

0

0

0

1

0

1

0

0

1

1

1

B. K-Map:

A Karnaugh map is a graphical tool used

to simplify Boolean algebraic expressions.

It reduces the need for extensive

calculations by allowing inspection to

simplify expressions.

C. Lenguaje blueprint:

All languages share a common underlying

structure that governs their interaction with

the ALU, and we assume that this structure

allows them to be understood and

generated. This theory has been further

developed by other linguists and has

proven to be an accurate model of how

language works.

METHODOLOGY

1. Understand the basic function of an

ALU: The first step in analyzing the

function of an ALU is to understand its

basic function, such as performing

arithmetic and logical operations on binary

numbers.

2. Analyze the internal structure and

operation of an ALU: The second step is to

analyze the internal structure and operation

of an ALU, including the selection of

operations, the use of logic gates, and the

flow of data through the unit.

3. Implement the ALU using

hardware description languages: The final

step is to implement the ALU using

hardware description languages, such as

Verilog or VHDL, which allow for the

creation of a digital model that can

simulate the operation of the ALU.

FUNCTION OF AN ALU

The basic function of an arithmetic logic

unit (ALU) is to perform arithmetic and

logic operations on binary data. An ALU

typically takes two inputs, performs some

operation, and produces an output.

The range of operations an ALU can

perform depends on its design and

complexity. Basic operations that the ALU

can perform include addition, subtraction,

multiplication, division, and logical

operations such as AND, OR, NOT, and

XOR.

The ALU uses logic gates such as:

AND and OR gates that perform

arithmetic. The ALU also contains a set of

registers that hold input values and

operation results.

Data flow through the ALU usually

follows a certain pattern. Input values are

first loaded into registers, then the ALU

performs the specified operation on the

input values. The result is stored in a

register that can be used as input for

subsequent operations. The basic

functionality of ALUs has evolved over

time, with modern ALUs being able to

perform more complex operations and

support different data types. The ALU is a

key component of the central processing

 ac

HBRP Publication Page 1-6 2023. All Rights Reserved Page 3

Journal of Advances in Computational Intelligence Theory
Volume 5 Issue 3

unit (CPU) and is responsible for

executing instructions within a computer's

architecture.

Performing arithmetic operations on

binary numbers using an Arithmetic Logic

Unit (ALU) typically follows a specific

process. Let's take the example of adding

two binary numbers: 10101 and 01111.

1. Load the binary numbers into registers:

First, the binary numbers are loaded into

two registers within the ALU.

2. Perform the addition operation: The

ALU performs the addition operation on

the two binary numbers using a series of

logic gates, such as XOR and AND gates,

to produce the sum of the two numbers.

3. Store the result: The result of the

addition operation is then stored in a

register within the ALU.

4. Output the result: The result is then

output to a destination register or memory

location.

Here's a step-by-step breakdown of the

addition operation:

1 0 1 0 1 (21 in decimal)

0 1 1 1 1 (15 in decimal)

1 0 0 0 0 (36 in decimal)

First, the two binary numbers are loaded

into registers within the ALU. The ALU

then performs the addition operation on

the two binary numbers using a series of

logic gates.

Starting from the rightmost bit, the ALU

performs the following:

1 + 1 = 0 with carry 1

0 + 1 + carry 1 = 0 with carry 1

1 + 1 + carry 1 = 1 with carry 1

0 + 1 + carry 1 = 0 with carry 1

1 + 0 + carry 1 = 0 with carry 1

The final result is 10000, which is the

binary representation of the decimal

number 16. However, we also have a carry

1 from the leftmost bit of the addition.

This carry is added to the result of the next

column, giving a final result of 100000,

which is the binary representation of the

decimal number 32.

In summary, performing an arithmetic

operation on binary numbers using an

ALU involves loading the binary numbers

into registers, performing the arithmetic

operation using a series of logic gates,

storing the result in a register, and

outputting the result to a destination

register or memory location.

Perform the logical AND operation: The

ALU performs the logical AND operation

on the two binary numbers using a series

of logic gates, such as AND gates, to

produce the result of the logical operation.

Store the result: The result of the logical

operation is then stored in a register within

the ALU.

Output the result: The result is then output

to a destination register or memory

location.

Here's a step-by-step breakdown of the

logical AND operation:

1 0 1 0 1

AND

0 1 1 1 1

0 0 1 0 1

First, the two binary numbers are loaded

into registers within the ALU. The ALU

then performs the logical AND operation

on the two binary numbers using a series

of AND gates.

Starting from the rightmost bit, the ALU

performs the following:

 ac

HBRP Publication Page 1-6 2023. All Rights Reserved Page 4

Journal of Advances in Computational Intelligence Theory
Volume 5 Issue 3

1 AND 1 = 1

0 AND 1 = 0

1 AND 1 = 1

0 AND 1 = 0

1 AND 1 = 1

The final result is 00101, which is the

binary representation of the decimal

number 5.

In summary, performing a logic operation

on binary numbers using an ALU involves

loading the binary numbers into registers,

performing the logic operation using a

series of logic gates, storing the result in a

register, and outputting the result to a

destination register or memory location.

INTERNAL STRUCTURE OF AN

ALU

The internal structure of an ALU may vary

depending on the particular design, but

there are some common components

commonly found in most ALUs.

1. Data register:

The ALU receives data from CPU

registers. This is a temporary storage

location for data manipulated by the CPU.

These registers are usually organized into

sets with each set having a different

number of bits (8 bits, 16 bits, 32 bits, etc.)

to accommodate different types of data.

2. Arithmetic circuit:

This circuit performs arithmetic operations

such as addition, subtraction,

multiplication and division. The specific

components used to perform these

operations vary, but typically include

adders, subtractors, and multipliers.

3. Logic circuit:

This circuit performs logic operations such

as AND, OR, and XOR. Components used

to perform these operations include logic

gates such as AND gates, OR gates, and

XOR gates.

4. Control logic:

This component controls the flow of data

through the ALU and ensures that correct

operations are performed on the data.

Control logic receives input signals from

the CPU and uses them to determine what

operations to perform and how to route

data through the appropriate circuitry.

5. Flag Register:

This register contains status information

about the results of operations performed

by the ALU. For example, if the result of

an addition operation is zero, a flag is set

in the flags register indicating that the

result is zero. This information can be used

by other components within the CPU to

determine what to do next.

Overall, the internal structure of the ALU

is designed to perform fast and efficient

arithmetic and logic operations on data

stored in CPU registers. The specific

design of the ALU depends on the specific

needs of the CPU and the designer's

performance goals.

To design a 2- to 2-bit ALU, we need to

consider the arithmetic and logic

operations that can be performed. This

example assumes that the ALU must be

able to do the following:

Additive, subtraction, Logical AND

disjunction, Logical XOR

ALUs can be designed using

combinational logic circuits such as logic

gates and adders/subtractors. Your specific

design may vary, but here is an example of

how to design a 2- or 2-bit ALU.

Two 2-bit data registers (A and B) for

storing operands

Two 2-bit output registers (O1 and O2) for

storing operation results

Carry-in and carry-out registers that

support addition and subtraction

 ac

HBRP Publication Page 1-6 2023. All Rights Reserved Page 5

Journal of Advances in Computational Intelligence Theory
Volume 5 Issue 3

Two 2-bit adders/subtractors that perform

addition and subtraction

Logic gates that perform logical AND,

OR, and XOR operations .

Here's how each operation can be

performed using this ALU:

Addition:

Load the two operands (A and B) into the

data registers

Set the carry-in register to 0

Use the adder to add A and B, with the

carry-in input set to the value in the carry-

in register

Store the result in the output registers (O1

and O2)

If there is a carry-out from the addition

operation, set the carry-in register to 1

Subtraction:

Load the two operands (A and B) into the

data registers

Set the carry-in register to 1

Use the subtractor to subtract B from A,

with the carry-in input set to the value in

the carry-in register

Store the result in the output registers (O1

and O2)

If there is a borrow-out from the

subtraction operation, set the carry-in

register to 0

Logical AND:

Load the two operands (A and B) into the

data registers

Use logic gates to perform the logical

AND operation on the two operands

Store the result in the output registers (O1

and O2)

Logical OR:

Load the two operands (A and B) into the

data registers

Use logic gates to perform the logical OR

operation on the two operands

Store the result in the output registers (O1

and O2)

Logical XOR:

Load the two operands (A and B) into the

data registers

Use logic gates to perform the logical

XOR operation on the two operands

Store the result in the output registers (O1

and O2)

This is just one example of how an ALU

of 2-2 bits could be designed. The specific

design will depend on the specific

requirements of the CPU and the

performance goals of the designer.

RESULT

To evaluate the proposed methodology, we

designed and implemented a basic ALU

using Verilog. The implementation

included the selection of basic operations,

such as addition, subtraction, AND, and

OR, and the use of logic gates to

implement these operations. The

simulation of the implemented ALU

demonstrated the expected behavior of the

unit, including the correct output values

for the selected operations.

CONCLUSION

This paper presents a methodology for

analyzing the function and operation of an

ALU that can lead to a deeper

understanding of this crucial component of

digital circuits. The proposed methodology

includes several steps, such as

understanding the basic function,

analyzing the internal structure and

operation, and implementing the ALU

using hardware description languages.

The methodology was evaluated through

the design and implementation of a basic

ALU, which demonstrated the expected

behavior and performance of the unit. This

methodology can be applied to more

complex ALUs, leading to a deeper

understanding of their function and

operation, and ultimately improving the

performance and reliability of digital

systems.

 ac

HBRP Publication Page 1-6 2023. All Rights Reserved Page 6

Journal of Advances in Computational Intelligence Theory
Volume 5 Issue 3

REFERENCES

1. Desai, S. S, Gadkari,V. M., Talbar S.

N. (2022). Design and Analysis of

High-Speed and Energy-Efficient

Arithmetic Logic Units for IoT

Applications.

2. Al-Khaffaf H. A. , Al-Ali A. H.

(2022)A Novel Low-Power and High-

Speed Adder Design Using Hybrid

Multiplexers for ALUs.

3. Kshirsagar S., Jadhav P.(2022) Design

of Energy-Efficient Arithmetic and

Logic Units Using Nano-scale CMOS

Technology.

4. Manjappa, M., Pitchappa, P., Singh,

N., Wang, N., Zheludev, N. I., Lee,

C., & Singh, R. (2018).

Reconfigurable MEMS Fano

metasurfaces with multiple-input–

output states for logic operations at

terahertz frequencies. Nature

communications, 9(1), 4056.

5. Ismail, H, Al-Salihi, H,. Al-Ali A.H

(2022) Design of a High-Performance

and Low-Power Arithmetic Logic

Unit Using Deep Learning

Techniques.

