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Abstract 

To establish a foundation for the research activities towards a SPATIAL platform, the 
present document seeks to understand the accountability and resilience of existing 
Machine Learning (ML) algorithms. Thereby, the selection of ML algorithms analysed 
in this document is based on their potential application in the four SPATIAL use cases, 
which reflect the domains Internet of Things (IoT), 5G, cybersecurity, and eHealth. In 
order to acquire the above-mentioned understanding, this deliverable analyses the 
identified relevant ML algorithms concerning their accountability, explainability and 
resilience characteristics. Thereby, different Explainable AI (XAI) methods are taken 
into account and their applicability to the ML algorithms in question is discussed. 
Furthermore, the selected ML algorithms are looked into with regard to their 
resilience against modern attacks on the AI models (e.g., data poisoning, model 
stealing, evasion attacks etc.). 
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EXECUTIVE SUMMARY 

This deliverable document is part of the initial steps of the SPATIAL project. Within this starting 
phase, the goal is to capture the requirements and general design principles for modern system 
architectures based on accountable Artificial Intelligence (AI). A further goal is to propose 
resilient accountability metrics and embed them into existing AI algorithms. To establish a 
foundation for this ambition, the present document seeks to understand the accountability and 
resilience of existing Machine Learning (ML) algorithms. Thereby, the selection of ML algorithms 
analysed is based on the SPATIAL use cases, which reflect the domains IoT, 5G, cybersecurity, 
and eHealth. In order to acquire the above-mentioned understanding, the identified ML 
algorithms were analysed concerning their accountability and resilience characteristics. 

Since the SPATIAL project understands explainability as a means to achieve accountability, the 
accountability analysis focuses on the explainability of the ML algorithms. Precisely, the 
intrinsic explainability of their underlying algorithmic properties was examined. However, since 
the findings showed that many of the discussed models are non-comprehensible and non-
transparent black-boxes, the applicability of various Explainable AI (XAI) methods was also 
analysed. The analysis revealed that the identified state-of-the-art XAI methods can indeed be 
used to improve the local and global explainability of black-box models, thus enhancing their 
accountability. However, it must be mentioned that determining the most appropriate XAI 
method for an algorithm cannot be done a-priori, since it depends on both the task at hand and 
the user to whom the explanations are addressed.  

Regarding the resilience analysis, the ML algorithms were examined in terms of their 
vulnerability to adversarial ML attacks (e.g., poisoning attacks, evasion attacks, data inference 
attacks, and model stealing attacks). More specifically, recent scientific literature that has 
studied the algorithms' vulnerability to these attacks was identified. The obtained findings 
indicate that all ML algorithms discussed are to some degree vulnerable to the studied 
adversarial attacks. This broadens the attack surface and introduces new vulnerabilities and 
security risks for ML-based systems. For example, it was identified that adversarial attacks 
could cause significant degradation of model performance (poisoning attacks), serious 
operational issues (evasion attacks), privacy issues (data inference attacks), and violations of 
intellectual properties (model stealing attacks). In addition, there are indications that the 
attacker's success rate depends on their knowledge of the specifics of the ML model - in this 
context white-box models are more prone to adversarial attacks than black-box models. The 
analysis also indicated that the attacker's success rate is subject to the used dataset and the 
concrete application domain. This suggests that application-independent comparability of the 
vulnerability of ML models is difficult, which implies that no general statements can be made 
about the degree of vulnerability of the models.  

In conclusion, it can be stated that discussed ML algorithms hold different resilience and 
accountability characteristics. Furthermore, the findings suggest that selecting a suitable ML 
algorithm always constitutes a trade-off between performance, accountability, and resilience. 
Typically, the higher the performance of an ML algorithm, the less accountability it offers. The 
problem of finding an optimal balance for this trade-off clearly demonstrates the need for 
appropriate measures to compare and assess the accountability, resilience, and accuracy of ML 
models.  
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1 INTRODUCTION 

For digital applications in critical infrastructure domains such as energy, emergency 
communication, cyber security, Internet of Things (IoT), 5G, automotive, or railway, the security 
and accountability of the deployed applications and systems are of critical importance. 
Specifically, in the European context, certification and verification of the underlying 
functionality of the developed algorithms and applications are often mandatory prior to their 
deployment in critical infrastructures. In this context, it must be guaranteed that such systems 
can be made accountable for their behaviour and are secure, safe, and sufficiently resilient to 
cyberattacks. These accountability and security requirements imply the need for a transparent 
understanding of the underlying functionality of such systems and the necessity to characterize 
their resilience. Several established formal methods already exist for the analysis, verification, 
and certification of traditional systems (e.g., rule-based expert systems), which are accepted in 
both industry and academia and enable conclusions about the accountability and resilience of 
such systems. In contrast, in the domain of Artificial Intelligence (AI), especially in the field of 
Machine Learning (ML), it is still difficult to assess or even achieve accountability and resilience 
of ML-based systems. However, this reveals a conflict with the latest technological 
developments. In recent years, the ML field has gained much attention in the industrial and 
academic context. Many practical ML applications could demonstrate the great potential and 
the superior performance of ML-based applications and systems in terms of efficiency and 
accuracy compared to their traditional equivalents. As a result, ML-based applications and 
systems are finding applications in more diverse domains, including the critical infrastructure 
domains mentioned above. 

However, the integration of ML algorithms raises several new challenges regarding the 
accountability of ML-based systems. In the context of AI, we understand accountability as the 
representation of the AI models in a way that they can be easily understood. Nevertheless, 
many widely used high-performing ML algorithms like Deep Neural Networks (DNNs) or 
random forests (RF) suffer from a lack of transparency and explainability. Due to their sheer 
complexity, the decision-making process and the underlying functioning of many ML algorithms 
and techniques can no longer be comprehended and understood by human operators or 
auditors. As a result, such ML algorithms are perceived as opaque black-boxes1 in which the 
decision making and the underlying reasoning behind it remains non-transparent. This also 
affects the understanding of the behaviour of the ML-based systems, which leads to questions 
about the accountability of the ML algorithms and calls for methods to understand such 
algorithms and their decisions.  

Therefore, the research area of so-called Explainable AI (XAI) has been established in recent 
years that aims to explore solutions to this problem. This research area tries to develop methods 
to explain individual decisions of ML algorithms as well as to provide a global understanding of 
the functioning of entire models. The former is typically referred to as local explainability, 

 
1 The terms "black box" and "white box" can be understood as offensive and exclusionary terminology. 
Therefore, the use of non-discriminatory synonyms such as "opaque box" and "clear box" is 
recommended [119]. However, since the original terms are still heavily used in the technical community, 
we will also continue to use these in this document. Nevertheless, we would like to clearly distance 
ourselves from any form of discrimination and racism. 
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whereas the latter is denoted as global explainability. In the context of the SPATIAL project, 
XAI is particularly relevant since we understand the explainability of ML algorithms as means 
to achieve accountability. In this regard, it is essential to understand and analyse which XAI 
methods exist, which inherent accountable characteristics black-box ML models possess, and 
how the accountability can be improved by the explainability provided through XAI methods. 
Such an analysis represents a first objective of this deliverable. 

Besides the limited accountability discussed above, the integration of ML algorithms into 
traditional systems (e.g., rule-based expert systems) also raises new security concerns and 
challenges with respect to the resilience of ML-based systems. More precisely, the ML 
algorithms can become targets of adversarial ML attacks, which broadens the attack surface 
and introduce new vulnerabilities and security risks for ML-based systems. This calls for a clear 
understanding and analysis of the resilience of ML algorithms to adversarial attacks, in order to 
be able to develop and apply appropriate countermeasures to secure ML-based systems. Such 
analysis constitutes another objective of this document. 

1.1 SCOPE AND OBJECTIVES OF THE DELIVERABLE 
The SPATIAL project plans to tackle the above-mentioned gaps and challenges of black-box AI 
by designing and developing resilient accountable metrics, privacy-preserving methods, 
verification tools, and system solutions that will serve as critical building blocks for trustworthy 
AI in Information and Communications Technology (ICT) systems and cybersecurity. In this 
context, the project covers data privacy, resilience engineering, and legal-ethical accountability 
toward trustworthy AI. This is intended to support the European Union (EU) in its ambition to 
be at the forefront of accountability and resilience AI, and accelerate its efforts in the evolution 
towards trustworthy AI.  

This deliverable document is assigned to the initial phase of the SPATIAL project. This initial 
phase aims to capture the requirements and general design principles for modern system 
architectures based on accountable AI. A further goal is to propose resilient accountability 
metrics and embed them into the existing AI algorithms. To establish a foundation for this 
ambition, the present document seeks to understand the accountability and resilience of 
existing ML algorithms. Hence, we will discuss existing relevant ML algorithms with respect to 
their accountability and resilience characteristics. Since we see explainability as a means to 
achieve accountability in SPATIAL, we will also examine the algorithms concerning the 
applicability of XAI methods.  

Regarding the resilience analysis of the ML algorithms, we will examine them in terms of their 
vulnerability to adversarial ML attacks. The analysis conducted in this document will form the 
basis to improve the explainability and resilience of ML algorithms and the development of the 
envisioned accountability metrics and their integration into the existing AI algorithms. To 
summarize, this deliverable document will provide the following contributions: 

§ review of the terms explainability, accountability, and resilience, in order to establish a 
common understanding in the context of the deliverable objectives 

§ brief introduction to the theoretical foundations of six widely used ML algorithms that 
will also be potentially used in the four SPATIAL use cases, namely DNNs, Support 
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Vector Machines (SVMs), decision trees, random forests, gradient-boosted trees (GBTs) 
and eXtreme Gradient Boosting (XGBoost), and Bayesian networks  

§ comprehensive overview and discussion of state-of-the-art XAI methods that provide 
both local and global explainability 

§ analysis of the accountability and explainability of the six ML algorithms mentioned 
above and an identification of which XAI methods are applicable to which ML algorithm 
(see Table 1 

§ resilience analysis of the discussed ML algorithms regarding their vulnerability to 
adversarial ML attacks (see Table 2) 

1.2 STRUCTURE OF THE DELIVERALBE  
The remainder of the deliverable document at hand is comprised of four additional sections. 
This introduction section is followed by Section 2, in which we will present the necessary 
theoretical background for this document. More precisely, we will review relevant terms and 
provide theoretical foundations for the six ML algorithms analysed in this deliverable. In 
addition, we will examine some relevant XAI methods that can be used to provide local and 
global explanations for the discussed black-box ML models. Subsequently, Section 3 constitutes 
the main section of this document. We begin Section 3 by summarizing the four SPATIAL use 
cases and highlighting their need for accountable and resilient ML algorithms. Afterwards, we 
will analyse the identified ML algorithms with respect to their accountability and resilience 
characteristics. Based on this, we will briefly discuss the findings and derive recommendations 
in Section 4. Finally, we will conclude the deliverable document in Section 5. 
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2 STATE OF THE ART 

In the following, we will review the theoretical background essential for interpreting the 
contents of the present document. First, we will review relevant terms about this deliverable 
objectives to build a common understanding. Then, we will present the six ML algorithms that 
will be analysed. The sub-selection describing the algorithms is based on their potential 
application in the four SPATIAL use cases. Finally, we present relevant XAI methods that can 
be applied to the identified ML algorithms to support their explainability and thus achieve 
accountability. 

2.1 REVIEW OF RELEVANT TERMS ON DELIVERABLE 
OBJECTIVES 
The relevant terms discussed in this section summarize the definitions provided in the SPATIAL 
deliverable D1.1. We refer the interested reader to that deliverable for a detailed elaboration 
of the terms. 

2.1.1 EXPLAINABILITY 

Explainability in AI is regarded as the ability for a human to understand the decision-making 
process of a given model with the help of its feature space, training records, targets, and the 
ML algorithm itself [87]. Consequently, the model explanation should be credible and reliable 
enough to give trust to the user about the model’s behaviour.  

In the recent developments in the AI/ML field, many of the algorithms are complicated models 
that are designed to tackle complex tasks by identifying subtle patterns in large datasets. 
Although these algorithms perform extremely well in terms of accuracy, human-centric 
comprehensibility of the decision-making process inside those models is not always 
straightforward. A good example is a neural network. Due to its non-linear and complex 
modelling capabilities, the decision-making process of a neural network is not directly 
understandable to humans without the help of additional information [1]. Hence, a neural 
network and it’s decision-making process is perceived as a “black-box” for human operators. 
On the other hand, decision trees are generally accepted as inherently “transparent” models 
where the decisions are self-explanatory based on the algorithm and the dataset. 

For the process of creating a model explanation, it is not enough to utilize transparent models 
that allow for an understanding of their inner workings and decision-making (e.g., decision 
trees). It also necessary to generate a model interpretation [2].  Generating interpretations often 
requires separate tools in addition to the ML algorithm. Therefore, the explainability of a system 
is based on the ability to generate an explanation, so that the human users can understand the 
relation between predictions and input data.  

It’s also worth pointing out that explainability of a system is relative to the target audience. A 
person with more technical knowledge would understand the decision process of an algorithm 
more clearly than a general high-level user. 
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2.1.2 ACCOUNTABILITY 

Accountability is most widely accepted as “the obligation to explain and justify conduct” with an 
implicit warning that ”accountability is elusive” [5]. It is often necessary when the entity in power 
does not behave as expected, causing a need to understand the reason behind the actions and 
identify the responsible person or organisation. Thus, ensuring accountability also inherently 
motivates actors to behave in a better way [7].  

With growing AI applications, our society is going through radical changes. Our lives are getting 
interdependent on AI as it is growing in various sectors from medical sciences to household 
appliances. Recent AI failure incidents - like the fatality caused by Uber autonomous car [3], or 
the publicly made racist comments by Microsoft chat-bot Tay [6] - have elevated the concern 
of AI accountability. Thus, this has created a need to reason out the actions made by an AI, 
thereby creating a lot of attention in the research community to understand the black-box 
nature of AI. 

Recently, such events have caused new developments and growing research interest in the 
explainable AI domain. In this area of research, AI developers and data scientists are trying to 
make the AI models more interpretable by explaining the decision-making process of the 
models. Additionally, the European Commission [4] has also enlisted accountability as one of 
the key requirements for AI development. The four major elements to ensure accountability 
are:  

• Auditability: The systems should facilitate the ability to trace their actions 
• Minimizing and reporting negative impact: The systems should ensure minimising the 

risks and reporting in the event of any mishaps. 
• Documenting trade-offs: Any trade-offs to achieve accountability should be well 

documented. 
• Ability to redress: In case of any accident, immediate corrective actions should be 

conducted.   

2.1.3  RESILIENCE 

AI systems are quickly becoming integrated into different critical components of cybersecurity 
systems, IoT and 5G networks. Organisations should ensure the resilience of their AI systems, 
similar to other mission-critical assets. AI systems will therefore be expected to operate in 
adversarial environments. Their ability to adapt to potential threats and risks, or their resilience, 
is indispensable and critical. The concept of “resilient AI” [8] encompasses the idea that AI 
systems continue to offer the intended services even in the presence of adversarial attacks, in 
order to guarantee safety and security of the systems in which they are deployed. The ability 
to resist adversarial attacks that compromise the integrity of AI systems, like poisoning attack 
during training and evasion attack during inference, is paramount for resilience. Resisting other 
adversarial attacks that compromise the confidentiality of AI systems, like model stealing 
attacks and data inference attacks, is also important but secondary in the context of resilience. 

To ensure resilience of AI systems, we first need to be able to measure it. However, as current 
AI systems are still considered as black boxes due to a lack of explainability and transparency, 
assessing their resilience is different from common measures on non-AI systems. Indeed, 
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existing measurement approaches presume that humans are responsible for making any design 
decisions that may affect resilience. However, AI systems are trained using a huge amount of 
data collected from different resources that can exceed the capability of human operators to 
measure. Furthermore, the resilience of AI systems could be compromised by unintended issues 
in development and operational processes, malicious interactions with AI systems and the 
vulnerability (e.g., corruption, bias …) of the training data, which have significant effects on the 
whole system’s performance. Some well-known examples of compromising the resilience of AI 
systems are serious accidents of self-driving vehicles [9] or unsafe and incorrect medical 
recommendations by IBM’s Watson [10]. 

2.2  ARTIFICIAL INTELLIGENCE ALGORITHMS FOR 
SPATIAL USE CASES 
We will now present the theoretical foundation of the six ML algorithms analysed in this 
deliverable document. Again, we would like to emphasize that the selection of the algorithms 
presented here is grounded on their applicability in the four SPATIAL use cases.  

2.2.1 (DEEP) NEURAL NETWORKS 

One of the most common and widely used type of Machine Learning algorithms are the so-
called Artificial Neural Networks (ANN). The reason behind their popularity is that they provide 
a very flexible, versatile, and scalable architecture, which in turn can be utilised for solving wide 
variety of problems with different levels of complexity. The most important building block of 
an ANN is the artificial neuron and its inner workings illustrated in Figure 1.  

 

FIGURE 1: ARTIFICIAL NEURON ARCHITECTURE 

Figure 1 shows a neuron that receives one or more inputs and for each of those, it assigns a 
corresponding weight value. The main function of the neuron is to (1) compute the weighted 
sum of the inputs and (2) to apply the so-called activation function on that sum. The output of 
this two-step process is the result produced by the neuron. In that setup the inputs correspond 
to specific features of the input data, while the weights express how “strongly” a particular 
input (i.e., feature) impacts the final output. Subsequently, the activation function determines 
whether the neuron should be “activated” or not. There are many different activation functions 
applied based on the task for which the ANN is used, but two of the most common ones include 
ReLU and sigmoid: 
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     𝑅𝑒𝑙𝑢(𝑥) = 𝑚𝑎𝑥(0, 𝑥) 

     𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = !
!"#!"

 

With this in mind, an architecture with only a single neuron is usually not powerful enough to 
learn and make predictions on complex tasks. To address this challenge, we can stack multiple 
neurons in multiple layers. Figure 2 illustrates this idea visually: As depicted in the diagram, in a 
Neural Network we have an input, output and hidden layers. The number of hidden layers 
depends on the complexity of the learned task. More complex tasks typically require more 
complex network architecture with additional hidden layers. Artificial Neural Networks with 
multiple (i.e., usually more than one) hidden layer are called “Deep Neural Networks” and they 
lie at the centre of the Deep Learning (DL) domain. 

 

FIGURE 2: MULTILAYER ANN ARCHITECTURE (CREATED WITH HTTP://ALEXLENAIL.ME/NN-SVG/INDEX.HTML) 

Given the architecture of a Deep Neural Network, one important question remains unanswered 
and namely – “how do these networks learn?” In the context of Machine Learning, a model has 
successfully “learned” a task when the generated prediction error of the model on that task is 
reasonably small. The prediction error is computed by a “cost function” which measures how 
different is the predicted from the actual value. Put simply, the goal of an ML/DL practitioner 
is to minimize this cost function. This is typically achieved in a two-step process - the so-called 
forward and backward pass through the network. The forward pass (i.e., forward propagation) 
computes the neuron activations in the network in the direction from input to output layers 
and as a result the model generates a prediction. The backward pass (i.e., backward 
propagation) computes the cost function based on the generated prediction and then it 
computes the gradient of this cost function with respect to all network parameters (i.e. the 
network weights and biases). The main algorithm used for computing this gradient was 
proposed in 1986 by Rumelhart et al. [11] and is called “back propagation”. Back propagation 
allows us to efficiently compute the gradient of the cost function with respect to a specific 
network parameter. By doing so we can adjust this parameter (i.e., weight or bias) in a way that 
will minimize the network's cost function. This whole process is encompassed in an algorithm 
called “gradient descent”.  
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In terms of versatility, DNNs can be used for a wide variety of use cases including both 
classification and regression tasks. However, important to note is that despite their versatility, 
DNN architectures in their traditional form have some limitations against highly specific tasks. 
For instance, two distinct domains that experienced significant innovation and progress are 
computer vision and natural language processing. These domains and their respective tasks 
have highly specific demands, which often times cannot be fulfilled by standard DNNs. This led 
to the introduction of new, more sophisticated Neural Network (NN) architectures such as 
Convolutional Neural Nets (CNNs) and Recurrent Neural Networks (RNNs). 

CNNs utilize the so-called convolutional layers, which allow neurons to connect only to pixels 
from an image that belong to a specific region instead of connecting to all pixels in the image. 
This is especially helpful for image data, where we can have a large number of pixels and 
consequently a really slow training time. 

RNNs introduce an architecture which allows us to work efficiently with sequential data such 
as time series, speech or text translation, where the current network output might depend on 
the prior elements of the sequence. Because of this dependence, the neurons in an RNN receive 
not only the input for the current time step but also the output from the previous time step. 
This architecture is more complex and requires a set of adjustments to the back propagation 
algorithm, in order to function as intended. Additionally, with the described architecture earlier 
inputs (i.e. inputs from earlier time steps) will gradually fade with each new time step. Therefore, 
a more sophisticated architecture such as long short-term memory was introduced [12]. 

2.2.2 SUPPORT VECTOR MACHINES 

A Support Vector Machine is a supervised Machine Learning algorithm originally proposed by 
Boser, Guyon, and Vapnik in 1992 [13] SVMs can be used for linear and non-linear classification 
and regression tasks. The basic idea behind the SVM algorithm is to find a decision boundary 
that separates the data samples according to their label. The main idea behind the method used 
by SVMs for constructing the decision boundary is visualized in Figure 3.  What the diagram 
shows is a decision boundary that can be described as an optimal hyperplane, since it separates 
the two classes with a maximum margin.  More specifically, there is a multitude of hyperplanes 
that can separate the samples in Figure 3. However, SVMs try to find a decision boundary that 
maximizes the margin between the data samples from one class and data samples from the 
other classes. In this way, the trained SVM model should be able to generalize better to 
previously unseen instances.  
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FIGURE 3: SVM EXAMPLE2 

In order to find such maximum margin decision boundary, the SVM constructs a linear system 
which can be solved in either the primal or the dual form. This linear system is constructed in a 
way such that the data points must be on the correct side of the hyperplane with respect to 
their corresponding label. This is fulfilled when for all data points 𝑥$ with label 𝑦$ ∈ {−1, 1}	the 
following system of equations holds true [15]: 

9			𝑤
%𝑥$ + 𝑏 ≥	+1	, 𝑖𝑓		𝑦$ =	+1

𝑤%𝑥$ + 𝑏 ≤	−1	,									𝑖𝑓	𝑦$ = −1	
 

These equations can also be presented in a more compact form as  𝑦$(𝑤%𝑥$ + 𝑏) ≥ 1 . 
Additionally, as illustrated in Figure 3, there are data points for which the equalities 𝑤%𝑥$ + 𝑏 =
1 and 𝑤%𝑥$ + 𝑏 =	−1 hold true. Such data points are called support vectors and they lie directly 
on the hyperplanes. These points guide the position and the orientation of the hyperplane. In 
fact, based on these points, the SVM tries to satisfy a second set of constraints in an attempt 
to find the optimal decision boundary. This second set of constraints focuses on finding 
parameters 𝑤 and 𝑏 that satisfy the equation 𝑦$(𝑤%𝑥$ + 𝑏) ≥ 1 (i.e., classifying all data samples 
correctly) while simultaneously maximizes the margin M which is defined as 𝑀 = &

|(|
. Discussing 

the exact details around the numerical solution of this optimization problem is out of the scope 
of this work. 

With this in mind, while the description above focuses on how SVMs can be applied for linearly 
separable datasets, the algorithm is also useful for non-linearly separable use tasks. 
Nevertheless, in order to utilize an SVM for such non-linearly separable tasks, we have to apply 
the so-called kernel trick [15]. The idea behind the kernel trick is to use a kernel function that 
projects the data in a higher dimension, so that the SVM can be applied on this projection (see 
Figure 4). There are different types of popular kernel functions. Two of the most widely used 
ones include the Polynomial kernel and the Gaussian kernel. Choosing the most suitable kernel 
function depends on the input data, its properties and structure [14]. 

 
2 Based and adapted from https://dataaspirant.com/3-support-vector-machine-algorithm 
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FIGURE 4: EXAMPLE FOR THE USAGE OF THE "KERNEL TRICK"3 

Some of the primary reasons for using an SVM in comparison to other Machine Learning 
methods is that the algorithm is very versatile and can handle linear, non-linear, regression, and 
classification tasks. Additionally, SVMs generalize well to unknown data instances and tend to 
overfit less compared to other popular methods (e.g., decision trees).  

2.2.3 DECISION TREES 

A Decision Tree is a supervised Machine Learning algorithm that can be utilized for both 
regression and classification tasks. Figure 5 illustrates an example architecture for a decision 
tree applied on a classification task. As the diagram shows, the typical structure of a decision 
tree consists of a root, non-leaf and leaf nodes. The classification process starts at the root 
node which represents a standard conditional in the form – “if…then…else”. The result of 
evaluating this conditional determines, which is the next node in the tree to be processed. After 
processing all child nodes in this manner, the end of the path is a leaf node which assigns the 
current data point the correct class. In other words, for a data sample to be classified, it has to 
go through the whole path from the root to one of the leaves [16].  

The process of constructing an optimal decision tree is very computationally expensive. 
Therefore, in practice, many of the algorithms used for this process utilize greedy approaches. 
One such commonly used greedy method is Hunt’s algorithm. The idea of this method is to 
recursively divide the data points into subsets until each subset consists of only datapoints with 
the same label. As long as there are two data points with the same label in the same subset, the 
algorithm finds an attribute, which splits the current subset into smaller subsets. The decision 
on how to split the subsets is performed based on a previously defined split condition. Some 
examples for such split conditions are the “Gini Index” and the “Information Gain” [17].  

 
3  Based and adapted from https://www.researchgate.net/figure/Kernel-trick-By-transforming-the-
original-space-left-into-a-space-of-increased_fig1_305284381 
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FIGURE 5: DECISION TREE ARCHITECTURE4 

Some of the main advantages of decision trees is that they are relatively easy to interpret and 
are able to achieve high accuracy. However, decision trees also tend to overfit. This is especially 
true for large data sets where a very complex (i.e., large number of nodes and high depth) 
decision tree can memorize the patterns of the training data but would perform poorly for 
previously unseen instances. Additionally, standard decision trees are trained on a complete 
training set and are unable to incrementally adjust to new data instances. Instead, in the 
presence of new data samples, the decision tree has to be trained from scratch. 

2.2.4 RANDOM FORESTS 

A Random Forest is a supervised Machine Learning method proposed by L. Breiman in 2001 
[19]. It is an ensemble algorithm that can be used for both classification and regression tasks 
and utilizes a group of Decision Trees, each of which is trained on a subset of the training data. 
The final prediction is generated as the aggregate of the predictions of the majority of the 
decision trees (see Figure 6). More specifically, when a new data sample has to be classified, 
each decision tree in the ensemble generates an independent prediction for that particular data 
point. The results generated by all trees in the ensemble are aggregated and used for 
establishing a majority voting that determines the final class prediction of the Random Forest. 
The same process can be applied for regression tasks, where the final predictions is computed 
as the average value of all decision trees [18] [19]. The main intuition behind this approach is 
to leverage the “knowledge” of multiple models instead of relying on a single source of truth. 

 
4 Taken from https://paragmali.me/building-a-decision-tree-classifier 
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FIGURE 6:  RANDOM FOREST ARCHITECTURE5 

In terms of constructing a Random Forest, the algorithm follows a bagging (or bootstrapping) 
procedure where the so-called bootstrap samples are generated from the training dataset [18]. 
Each bootstrap sample has a fixed size and represents a specific subset of the training data.  
The data points included in each such subset are selected according to a uniform sampling 
strategy with replacement - i.e., each data sample can be reused and selected for training more 
than once. In addition to the bootstrapping procedure, Random Forests also utilize the so-called 
“feature bagging” method which ensures that the features for each individual decision tree in 
the ensemble are randomly sampled instead of using the complete feature set. This procedure 
aims at reducing the chance that individual features that have high predictive power will be 
universally chosen by large number of the decision trees and consequently the contributions of 
other, weaker features would be neglected [21]. With this in mind, after generating bootstrap 
samples according to the bootstrapping and the feature bagging procedures, every bootstrap 
sample is used for the training of an independent decision tree. The aggregate prediction of all 
such independent decision trees forms the final Random Forest output.  

The main advantage of using the ensemble method as stated by [20] is that Random Forests 
show much higher accuracy when compared to a single Decision Tree. This is especially true 
for high dimensional data sets with large number of features. For such data sets a single 
Decision Tree will likely overfit the training set and would not generalize well for unknown 
instances. For lower-dimensional data, the Random Forest algorithm still performs reasonably 
well [20]. 

2.2.5 GRADIENT BOOSTED TREES AND XGBOOST 

Gradient boosting is a machine learning technique predominantly used for both classification 
and regression tasks. Gradient boosting trains a single prediction model that consists in an 
ensemble of weak predictors. This means that each weak predictor typically has a low accuracy, 

 
5 Based and adapted from https://www.analyticsvidhya.com/blog/2021/06/understanding-random-forest/ 
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slightly better than random, but the combination of the weak predictors into the gradient 
boosting prediction model provides a high accuracy. Decision trees are the most used types of 
weak predictor, leading to a prediction model that is called a gradient-boosted tree model. 

A trained gradient-boosted tree model is similar to a random forest model in that it is composed 
of many weak decision tree predictors. One main difference, however, is that in gradient 
boosting decision trees are built in a sequential manner. The main idea is that each new decision 
tree considers, and tries to cope with, the errors and weaknesses of previously trained decision 
trees. The training of gradient-boosted trees is different compared to most traditional machine 
learning models such as Neural Networks, logistic regression or SVM. During training, gradient 
boosting does not only optimize the parameters of a fixed and pre-defined decision function, 
but it also optimizes the function itself, i.e., each added tree changes the decision function. This 
objective of gradient boosting it to find the best function that approximates the training data. 
Gradient boosting trees aim to train an ensemble of simple models while Neural Networks, 
logistic regression or SVM aim to train a single complex model. 

Training a changing function, in addition to its parameters, introduces a lot of complexity to the 
optimization problem, which induces an increased training time. XGBoost tackles this issue, and 
it is one of the fastest implementations of gradient boosted trees. One major improvement of 
XGBoost is that when building the weak tree predictors and looking for potential splits to create 
a new branch in the current tree, it does not consider all features. XGBoost analyses the 
distribution of features across the data points in the considered leaf of the tree, and it only 
considers features and splits that bring a positive gain on the loss. This reduces the search space 
and the complexity of the optimization. Another strength of XGBoost comes from its ability to 
be parallelized and take advantage of hardware optimization. 

Gradient-boosted trees and XGBoost have many hyperparameters to be tuned for efficient 
training. One first parameter is the number of estimators, defining how many weak decision 
tree predictors will compose the model. A second parameter is the maximum depth of the trees, 
setting an upper bound on how many branches and leaves can each weak predictor have. Both 
of these parameters control the complexity of the gradient-boosted tree model. A high number 
of estimators and a large maximum tree depth enable the model to fit more complex problems, 
but it also comes with the risk of overfitting, which hinders the generalizability of the model. 
The learning rate is a third parameter, which is common to many machine learning algorithms. 
It controls how quick the learning can happen and conditions the convergence of the model by 
controlling the multiplying factor to weight updates at each training step. Finally, the 
regularization terms, for L1 and L2 regularization respectively, control the scale of the weights 
and ensure they are kept small. They are meant to ensure the generalization of the XGBoost 
model and prevent overfitting like for any other ML model. We can note that most of these 
hyperparameters control the generalizability and prevent overfitting of gradient-boosted tree 
models.  The tendency to overfit is the main weakness of gradient-boosted tree models. This 
can be prevented by selecting a low number of estimators, a low maximum tree depth and large 
regularization terms, especially for L2 regularization. 

Gradient boosted tree models have many advantages that explain their popularity. They usually 
provide a high predictive accuracy that cannot be trumped. They are very flexible, offer many 
hyper-parameters to tune and can be optimized on different loss function. Gradient boosted 
tree models do not require data pre-processing, such as normalization or scaling, and they can 
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handle missing and sparse data very well. Gradient boosted tree models are also good at dealing 
with unbalanced datasets, where some classes are over- or under-represented. On the 
downsides, they tend to overfit because they just keep on minimizing the training error. 
Gradient boosted tree models are computationally expensive, especially when faced with a 
large feature space. The numerous hyper-parameters influence a lot the behaviour of the 
trained model, and it can be difficult to find their right values. Hyperparameters tuning can be 
long and computationally expensive. Finally, these models are not interpretable by nature, 
which poses a challenge for explainability. 

2.2.6 BAYESIAN NETWORKS 

Bayesian Networks [22] are a traditional probabilistic graphical model that has been used in 
Machine Learning methods to not only deal with uncertainty and complexity, but also reason 
about causal probabilities for scenarios given some evidence. 

 

FIGURE 7: A DAG GRAPH REPRESENTING TWO INDEPENDENT CAUSES OF COMPUTER FAILURE [23] 

A Bayesian network consists of two main parts: (1) a directed acyclic graph (DAG), which is a 
set of random variables represented by nodes and (2) a set of conditional probability 
distributions represented by directed edges. More specifically, the directed edge from a node 
A to a node B in the DAG graph shows that the variable A causes the variable B. We then define 
the conditional probability distribution of a node for every possible outcome of the preceding 
causal nodes. Considering an example in which the computer does not start correctly, we 
assume that there are two possible causes of computer failure: electricity failure and computer 
malfunction.  Figure 7 depicts a DAG representing two independent causes of this failure. 

Bayesian networks calculate the posterior conditional probability distribution of each of the 
possible causes given the observed evidence as follows: 

P [Cause | Evidence] = P [Evidence | Cause] * P [Cause] / P [Evidence] 

where P [Evidence | Cause] represents the converse conditional probability distribution of the 
observing evidence given the cause. P [Cause] and P [Evidence] are the probability of the cause 
and the observing evidence, respectively. The joint probability distribution of all random 
variables in the graph factorises into a series of conditional probability distributions of random 
variables given their parents [22]. Concretely, given a list of random variables X1, … , Xn, and 
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parents (X) being the parents of the node X, the joint distribution for X1 through Xn is calculated 
as P(X1, ... , Xn ) = P(Xi | parents (Xi)), for i = 1 to n. 

Bayesian Networks are widely used for modelling knowledge in various domains with uncertain 
knowledge, like image processing, medicine, data classification, etc. Recent research works 
apply Bayesian Networks methods in structure learning and classification. Several main 
advantages of Bayesian Networks are the ability to quantify the uncertainty in the parameters 
through posterior probability distributions and the ability to incrementally update the model. 
However, specifying prior knowledge in practice is difficult as we may need to consider 
concrete values for all parameters in our real model. 

2.3 EXPLAINABLE AI METHODS 
After presenting the six relevant ML algorithms, we will now discuss multiple XAI methods that 
can be used to achieve the explainability of the discussed black-box models. Thereby, we will 
present methods that allow local post-hoc explanations of individual model predictions as well 
as methods that facilitate global explanations of ML models. 

2.3.1 LIME 

LIME [24] is a widely popular technique used in interpreting outputs of black-box models in 
several fields and applications. LIME stands for Local Interpretable Model-agnostic 
Explanations. As the name suggests, LIME gives a local explanation, which means that it 
considers a subset of data when approximating explanations for model predictions. This 
technique is plausible under the premise that every complicated model performs linearly on a 
local scale. Nevertheless, LIME has recently gained high reputation due to its speed (relative to 
global explanation techniques) and convenience as it can interpret outputs irrespective of the 
type of black-box model (model-agnostic) which it wraps around. 

A detailed description of the algorithm can be given as follows: 

1. Generate a sample set of data points (also called perturbed data points) for a given input 
instance. This instance must be the one where you need an explanation for its output. 
The method of perturbing varies depending on the type of data (e.g.: tabular, text, 
images, etc.). 

2. Map the perturbed data points to the original feature space so that they can be used as 
inputs to the black-box model. 

3. Run the black box model on the perturbed inputs and generate corresponding 
predictions. 

4. Weight the perturbed data points based on the distance to the original input instance. 
5. From the perturbed data, choose a subset of features K that best characterize the black-

box model outputs. 
6. Train a simple interpretable model (e.g.: linear regression, decision tree, etc.) using the 

feature-reduced, weighted perturbed data. 
7. Extract the feature weights from the simpler interpretable model and use them as 

explanations for the black box model’s local behaviour. 
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LIME has caught the attention of the research community surrounding the field of 
cybersecurity. In literature [25] [26] authors have shown that ML based intrusion detection 
systems are widely capable of using LIME based explanations in attack detection. Authors of 
[25] have shown that, security information and event management systems has the potential 
to leverage the explanations generated by LIME to improve auto detection of alarm labels. 

2.3.2 SHAP 

SHAP (Shapley Additive Explanations) is an XAI technique that identifies the importance of each 
feature value in a certain prediction. For explaining individual predictions, it uses a concept 
called Shapley values. These Shapley values are a popular cooperative game theory technique 
that is based on the question of distribute a reward fairly among players of a group. Since the 
contribution of players for winning could be different, the reward should also be based on it.  
This concept is applied in order to explain AI predictions and to identify how features are 
contributing different amount to the final prediction. For this, Shapley values are used to 
calculate the contribution of each feature to the prediction by determining its marginal 
contribution for each possible set of features. 

The formula for SHAP model explanation is given as: 

 

for the explanation model g. Here, SHAP specifies the explanation as a summation of shapley 
values ϕj ∈ R for each coalition vector z’ for a maximum coalition size M. Here, the coalition 
vectors are simplified features [27] of the set of features available for the model. For example, 
in image data, individual pixels can be simplified to produce a subset of pixels that make a 
coalition vector. The value obtained is finally added with the shapley value ϕ0 where features 
are absent. Therefore, the steps for SHAP model calculations can be given as: 

1. For each feature, calculate the coalitions set over the features in the model 
2. For each coalition from j = 1 to M, calculate the shapley value and get their product 
3. Get the summation of all the products of coalition and shapley values 
4. Calculate the ϕ0 and add to the total sum to get the explanation model for a simplified 

feature input z’ 

SHAP explanations is widely adopted as an XAI technique for AI applications due to its 
capability of identifying the most contributing features. These features would be of importance 
in the cybersecurity domain, as suggested by the work in [25] where the authors use SHAP to 
explain the most influencing features that contribute for prediction of cyber-attacks in an 
intrusion detection system using deep neural networks. Similarly, in [26], SHAP is used to 
identify most dominant features that influence anomalies generated by a ML model. Another 
example is in the context of IoT security [28], where SHAP is used for an intrusion detection 
system to evaluate two different ML models that use IoT datasets. 
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2.3.3 COUNTERFACTUAL EXPLANATIONS 

The main idea of counterfactual explanations is based on the so-called counterfactuals. A 
counterfactual is a hypothetical scenario that illustrates how by perturbing the input features, 
we can force the model to generate a different prediction. A very common example 
[29][30][31][32][33] for a counterfactual explanation is a person applying for a loan. This 
situation can be framed as a binary classification problem (i.e., loan is approved or rejected) and 
the decision about the loan is made a ML/DL algorithm. If the loan is rejected, the bank typically 
provides a reason such as “bad credit history”, “unstable employment”, “missing paperwork”, 
etc. [29]. Such reasons do not provide any actionable steps for changing the decision of the 
model [29]. In contrast, the main purpose of counterfactual explanations is to address this 
problem by examining how small feature perturbations can change the model decision (e.g. 
approving the loan application). This suggests concrete actions that the user can take. For 
instance, in the loan application example, a counterfactual explanation could be “if you had a 
$10,000 higher income, you would have been approved for the loan” [29][30][31][32]. The idea 
is that if the income input feature is perturbed and increased with $10,000, the ML algorithm 
would change its prediction to the desired input. This example illustrates the standard structure 
behind most counterfactual explanations, which is summarized by C. Molnar as answering the 
question “How would the prediction have been if input X had been different” [32].  

With this in mind, as pointed out by S. Wachter et al. [32], counterfactual explanations differ 
from the traditional definition of the term “explanation” in the XAI literature, which focuses on 
what the algorithm does internally in order to generate a given prediction [32]. In comparison, 
counterfactual explanations focus more on the contrast between the features that led to the 
current prediction and another set of slightly perturbed features that led to an alternative 
prediction [31][32]. As suggested by C. Molnar [31], the difference/contrast between these 
two sets of features can serve as a “human-friendly” explanation about “why” the model has 
made its decision. The reason is that counterfactual explanations narrow down the focus on 
only a select few features (e.g., only your annual income) instead of trying to address the 
relationship between all feature values and their corresponding labels (e.g. credit score, 
employment status, etc.) [31]. Due to this selective nature counterfactual explanations are 
easier to understand than complete explanations because they show how only a few causes led 
to a certain outcome [31]. Nevertheless, one challenge with counterfactual explanations is that 
usually there exist more than one counterfactual (also known as the “Rashomon effect”) [31] 
[33]. It is possible that from the multiple counterfactuals some might even contradict each other 
even though they lead to the same final outcome [31] [33]. For instance, one counterfactual 
might suggest to increase your income with $10,000 and another one might suggest to not 
change your income, but instead to find a stable job and improve your credit score. Both of 
these would lead to an approved loan but they require completely different actions. 

In this context, in order to assess if a counterfactual explanation is reasonable or not, there is a 
need for a criterion to do so. Such criteria is defined by C. Molnar [31] as: 

1. The counterfactual instance has to be as close as possible to the desired, predefined 
prediction 

2. The counterfactual instance should be as close as possible to the original instance and 
should include as few feature perturbations as possible.  

3. There is a need for multiple alternative counterfactual explanations  
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4. The counterfactual instance needs to have realistic feature values, which are possible 
to achieve in real life. 

With this in mind, when it comes to generating counterfactual explanations, there are multiple 
different ways to do so. The naïve solution would be to generate these explanations by trial 
and error in a “brute-force“ manner [33]. This is extremely impractical and therefore, there are 
multiple alternative algorithms proposed in literature which aim at generating counterfactuals 
in a more efficient way. Two examples for such more efficient methods are presented by 
Wachter et al. [32] and Dandl et al. [34]. 

Finally, what makes counterfactual explanations a very appealing approach in the context of 
XAI is that they provide a clear, human-understandable explanation about the model decision 
without requiring any knowledge about the model internals or the input data set [31] . In other 
words, instead of dealing with the complex “black-box” nature of ML and DL models, 
counterfactual explanations leverage it for their advantage. The main downside of the approach 
is the previously mentioned “Rashomon effect” [31] and the fact that they provide only local 
explanations. However, given the relatively low implementation effort of counterfactual 
explanations [31], they could still be extremely useful. 

2.3.4 PERMUTATION FEATURE IMPORTANCE 

Permutation feature importance is a global XAI method that measures the increase in the 
prediction error of the model after we permute the feature’s values across various data samples. 
To assess how important a specific feature is, we compare the initial model with the new model 
on which the feature’s values are randomly shuffled [19]. In other words, the effect of a feature 
is removed through a random reshuffling of the data to get new data, on which we calculate 
the prediction. This is different from another approach that simply retrains the model without 
this feature. A feature is important if shuffling its values increases or decreases the model error, 
because the model relies on the feature for the prediction in this case. Otherwise, a feature is 
classified as unimportant if permuting its feature’s values leaves the model error unchanged. 
Considering an example from [35], we develop an AI model using a person's height at age 10 
to predict a person's height when she/he becomes 20 years old. As shown in the Figure 8 
below, we shuffle data in a single column “Height at age 10 (cm)" and observe the results to 
determine if our model relied on this feature for predictions. 

 

FIGURE 8: SHUFFLING THE VALUES OF HEIGHT AT AGE 10 FOR PERMUTATION IMPORTANCE CALCULATION [35] 
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The detailed algorithm [36] of Permutation feature importance is as follows: 

Input: Trained model f, feature matrix X, target vector y, error measure L(y, f). 

§ Estimate the original model error eorig = L(y, f(X)) (e.g. mean squared error) 
§ For each feature j ∈ {1,..., p} do: 

o Generate feature matrix Xperm by randomly shuffling the data of feature j (i.e., 
height at age 10) in the predictor while keeping the values of other features 
constant 

o Estimate error eperm = L(Y, f(Xperm)) based on the predictions of the permuted data 
o Compute the feature importance score by calculating the decrease in the quality 

of the new predictions relative to the original ones as quotient FIj = eperm / eorig or 
difference FIj = eperm − eorig. 

Output: Once feature importance scores are computed for all features, we can rank them in 
terms of predictive usefulness. 

To accelerate the computation without great loss of effectiveness, Fisher et al. also suggests 
splitting the dataset in half and swap the values of feature j of the two halves instead of 
permuting feature j [36]. 

Overall permutation feature importance provides a global insight into the model’s behaviour. It 
does not require retraining the model and automatically takes into account all interactions 
between the feature under test with other features. On the other hand, we do need to have 
the true outcome, in order to precisely measure the feature importance scores. Also, the results 
of this method may vary greatly due to the randomness of the process of shuffling the feature. 

2.3.5 PARTIAL DEPENDENCE PLOT 

Partial dependence plot (PDP) [37] is a global XAI method that allows to visualise and analyse 
interaction between the prediction and a set of input features of interest. Like permutation 
feature importance in the previous section, PDP is calculated after a model has been fit on real 
data. While permutation feature importance explains the AI models by showing what variables 
most affect the outcome, PDP focuses on how a specific feature affects model predictions. If 
we select only one feature, we will draw a 2D plot. In case of having two features of interest, a 
3D plot will be built as the output of this XAI method. The algorithm of PDP can be summarised 
at a high level as follows: 

Input: A trained model and a set of features of the training data  

§ We select a single feature from the feature set and then use the trained model to predict 
the outcome of that feature of interest.  

§ We repeatedly alter the value for that feature to make a series of outcomes. For 
example, in the example of prediction of height at age 20 discussed above, we could 
obtain the prediction for different values of the height at age 10 in cm: 130, 142, 147, 
etc. 

§ We build the plot with the value change in the selected feature on the X-axis and the 
change of the outcome on the Y-axis 
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Output: A partial dependence plot representing the impact of a feature of interest towards 
model prediction. 

Considering the California housing dataset [38], we develop an ML model for predicting house 
prices in any district in California, given information regarding the house in the districts (house 
age, number of rooms, number of bedrooms), the demography (population, income, house 
occupancy) and the location of the districts (latitude, longitude). As shown in the Figure 9 below, 
we can draw two 2D plots showing the effect of two features, namely the average occupancy 
“AveOccup” and the house age “HouseAge”, on the median house price. Clearly, we observe a 
linear relationship between the house price and the average occupancy, especially when it is 
less than 3 people. Furthermore, we can also draw a 3D plot showing the relationship between 
the house price and joint values of those two features. 

 

FIGURE 9: PARTIAL DEPENDENCE 2D/3D PLOTS FOR THE CALIFORNIA HOUSING DATASET [38] 

In general, the computation of PDP is intuitive and the interpretation is clear if the feature of 
interest is not correlated with the other features. However, the biggest issue with PDP is the 
assumption of independence which is often violated in practice. Another disadvantage of PDP 
is that the realistic maximum number of features in a partial dependence function is two, as 
humans can’t process three- or higher dimensional plots. 

2.3.6 T-SNE 

A common challenge in the AI domain is the analysis of high dimensional data, which often 
times is hard to visualise in a human-understandable way. One popular algorithm that addresses 
this challenge is t-distributed stochastic neighbour embedding (t-SNE). t-SNE is an 
unsupervised dimensionality reduction technique that aims at finding an accurate low-
dimensional representation of high-dimensional data points. Typically, the low-dimensional 
representation is generated in a 2D or 3D space [39]. This could allow the ML practitioner to 
explore the high-dimensional data and its arrangement in a more visually comprehensive 
manner, which would be otherwise impossible in a space with more than three dimensions. One 
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practical example for using t-SNE for visualisation purposes is presented by L. Maaten and G. 
Hinton [39] in Figure 10. The figure demonstrates how data samples from the popular MNIST 
dataset can be visualised in a 2D plane. The MNIST dataset contains handwritten digits 
represented as 28 by 28 pixel images (i.e. 784 dimensions). By applying t-SNE, the authors 
managed to map the high-dimensional data into an equivalent 2D representation, where each 
number has its own cluster [39]. This makes the visualisation and consequently the data analysis 
and exploration more straightforward. 

 

FIGURE 10: T-SNE APPLIED ON THE MNIST DATASET [39] 

In terms of the inner workings, t-SNE is based on the Stochastic Neighbor Embedding (SNE) 
[40] algorithm, but improves upon it by using an alternative cost function and a t-distribution 
instead of Gaussian when computing the point similarity in the low-dimensional space [39]. The 
algorithm follows a multistep process that can be summarised as follows [39]: 

1. First, t-SNE measures Euclidean distance between the high dimensional data points and 
converts these into conditional probabilities in the form 𝑃(𝑥)|𝑥$). This illustrates the probability 
that 𝑥$ would pick 𝑥) as its neighbour, if neighbours were determined based on their probability 
density value under a Gaussian distribution centered at 𝑥$ [39] . In other words, data points 
with small Euclidean distance would also have a high probability to be picked as neighbors [39] 
. 

2. Afterwards, t-SNE maps the high dimensional representations of all pairs 𝑥$ and 𝑥) into 
their lower dimensional counterparts 𝑦$  and 𝑦)  [39] and computes the low dimensional 
similarities between these points in a similar manner as in step 1. However, as mentioned above, 
in the low dimensional space, t-SNE utilises a student’s t-distribution instead of Gaussian to 
compute the similarity between the points [39]. The conditional probability in the low 
dimensional space is denoted 𝑄(𝑦)|𝑦$). 
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3. Finally, t-SNE tries to find a low dimensional representation that minimizes the 
difference between  𝑃(𝑥)|𝑥$) and  𝑄(𝑦)|𝑦$) [39]. This is achieved with the help of a gradient 
descent based on Kullback-Liebler divergence [39], which compares the difference between 
𝑃(𝑥)|𝑥$) and 𝑄(𝑦)|𝑦$) for all data samples and re-arranges these into identical clusters as the 
ones previously observed in the high dimensional data representation. 

In the context of XAI, t-SNE can be utilized successfully as a pre-modelling explainability 
technique. As mentioned previously, one of the main advantages of t-SNE is making high-
dimensional data human-understandable by visualizing it in a lower two- or three-dimensional 
space. This could be particularly useful during the exploratory data analysis step of many 
Machine Learning pipelines. Additionally, as demonstrated by Karpathy [42], in specific use 
cases t-SNE can also be used to examine and validate the behaviour of ML models.  

Despite being very useful for visualising high-dimensional data, sometimes t-SNE might 
generate low-dimensional representations that can be misinterpreted and even misleading [41]. 
Additionally, t-SNE is fairly slow when applied on large datasets and requires hyper-parameter 
optimisation, in order to achieve decent results. 

2.3.7 LAYER-WISE RELEVANCE PROPAGATION 

In recent years the Computer Vision domain has gained a lot of popularity and was subject to 
a lot of technological advancements. However, one challenge that remains unsolved is the 
explainability of the model predictions. The main reason is that most ML models perform their 
tasks (e.g., classify images, detect objects, etc.) in a black-box manner. Layer-wise relevance 
propagation (LRP) is an XAI technique that addresses this challenge. In particular, LRP provides 
the ML practitioner with insights about the model decision by visualizing the individual feature 
values that contributed most for the generated prediction.  

This idea is illustrated in Figure 11, where a classifier predicts that the original input image 
contains a “timber wolf”.  By applying it on the classifier for this particular input, LRP generates 
a heatmap where pixels of particular significance for the model prediction are marked with 
more intense colours. By examining the original image and the corresponding heatmap 
generated by LRP, the ML practitioner or a domain expert could assess if the model's decision 

FIGURE 11: LRP EXAMPLE (GENERATED WITH HTTPS://LRPSERVER.HHI.FRAUNHOFER.DE/IMAGE-CLASSIFICATION) 
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is reasonable and supported by the correct patterns in the input features [43], instead of 
additional external factors (e.g. “Clever Hans” behaviour [44]). 

 

FIGURE 12: BACKPROPAGATION OF RELEVANCE FROM THE OUTPUT TO THE INPUT LAYER (TAKEN FROM [43]) 

When it comes to its inner workings, LRP is based on the idea of propagating the so-called 
“relevance scores” from the output layer through the hidden layers back to the input layer [43]. 
This process is visualised in Figure 12 and in Figure 13, where the relevance propagation from 
the network’s prediction back to the input features is demonstrated. In both figures more 
intense colours indicate higher relevance score.  The relevance score of each neuron is 
computed with the help of the so-called “propagation rules” [43]. The most basic rule is denoted 
by G. Monavon et al. as “LRP-0” and has the following formula [45]:   

𝑅) = ∑
*

𝑎)𝑤)*
∑+
)𝑎)𝑤)*

𝑅* 

In this formula, 𝑗 and 𝑘 represent neurons from two consecutive layers in the neural network, 
where 𝑗 is the neuron in the lower layer and 𝑘 the neuron in the higher layer [43]. The concept 
behind this rule is fairly intuitive – the numerator expresses the contribution of neuron 𝑗 to 
neuron 𝑘 computed as the neuron activation multiplied by the corresponding weight value [43]. 
The result is then divided by the sum of all neuron contributions from the lower layer (i.e. the 
denominator), which enforces the so-called “conservation property” [43] that states that the 
whole amount of relevance value received by a neuron has to be redistributed in the exact same 
amount to the lower layer [43] - i.e. no loss of relevance value is allowed to occur during the 
backpropagation through the network layers. In the LRP-0 formula above, since the neuron 𝑗  
contributes to multiple neurons in the next layer, its relevance score is computed as the sum of 
its contributions to all neurons in this next layer, which is expressed as the outer sum in the 
LRP-0 equation above [43]. By applying the LRP rules from the output towards the input layers, 
the relevance scores are propagated and can be used to build a heatmap similar to the one 
represented in Figure 13. The upper part of this figure depicts a prediction for the class “cat” 
that is obtained by forward-propagation of the pixel values {𝑥,}, and is then encoded by the 
output neuron 𝑥-. In the lower part of this figure, the output neuron is assigned a relevance 
score 𝑅- = 𝑥-  representing the total evidence for the class “cat”. Relevance is then 
backpropagated from the top layer down to the input, where {𝑅, } denotes the pixel-wise 
relevance scores, that can be visualized as a heatmap. 

Such visual representations are extremely useful for explainability purposes. However, as 
discussed by G. Montavon et al. [43], despite being fairly intuitive, the universal application of 
LRP-0 rule across all neurons in the network has its flaws and the usage of more robust 
propagation rules could be beneficial. Such alternative rules are presented by the authors in 
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[43] . Important to note here is that LRP is flexible and allows using different propagation rules 
in the different network layers [43] . Choosing a propagation rule with the optimal parameters 
depends on the explanation quality provided by LRP [43]. In that context, G. Montavon et al. 
suggest the evaluation of LRP explanations quality with regards to two main XAI properties - 
fidelity [46] and understandability [43]. More specifically, the ML practitioner using LRP should 
strive to find and use parameters and propagation rules that maximise the fidelity and 
understandability of the generated explanations. 

 

FIGURE 13: LRP METHOD VISUALISED (TAKEN WITHOUT CHANGES FROM [45]) 

With this in mind, LRP is a flexible XAI technique that delivers human-understandable 
explanations. Due to the wide variety of existing propagation rules, it can be applied to 
multitude of ML models [43]  and can be implemented efficiently with the help of current SOTA 
libraries [43]. 

2.3.8 OCCLUSION SENSITIVITY 

Occlusion sensitivity is an explainability method that is agnostic to the underlying model that is 
used for classification. To generate explanations based on occlusion sensitivity, the input data 
of a Convolutional Neural Network is systematically occluded with a grey mask, with which the 
prediction of a trained CNN model is estimated for variation in classification score on the basis 
of an initial prediction of the CNN model on original input data (i.e., unoccluded image). 
Considering a trained model f: ℝàℝ that takes input 𝑋 = (𝑥!  , . . . , 𝑥. ), a real value vector of 
features, and outputs a score. The output score is compared to the defined threshold for the 
classification decision. To understand the features that impact the prediction of the output of 
the model f(x) for a specific input, a local linear approximation of the decision function f(𝑥)≈ 
∑ [ᐁf(𝑥K)]$ 	 ∗ (𝑥$ − 𝑥/N)	.
$0!	OPPPPPPPQPPPPPPPR

2#

 where 𝑥$  is a reference point, can be used [48].  The contribution of 

feature i to the prediction is denoted by summand 𝐻$. A feature xi is strongly relevant if it differs 
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from the reference value 𝑥$ , and the model output should be sensitive to the presence of that 
feature, i.e., [ᐁf(𝑥K)]$. An explanation for the prediction can then be formed by the vector of 
relevance scores 𝑅$. It can be given to the user as a histogram over the input features or as a 
heatmap.  

A summary of the algorithm is described below (graphical flow is also presented in Figure 14). 
Using occlusion explainability method, input 𝑥$ is perturbed using a patch 𝑚𝑎𝑠𝑘$ , where 𝑚𝑎𝑠𝑘$ 
represents the indicator vector for the patch and “•" denotes the element-wise product. The 
difference of the score of the occluded output and the score of the original output is compared 
as  𝐻$ =f(𝑥)  - f(𝑥	 • (1 − 𝑚𝑎𝑠𝑘$))  to understand how perturbation affected the function. (𝐻$)$ 
represent the location where the occlusion has caused the strongest decrease of the function 
and can be used to build a heatmap for visualization. 

 

FIGURE 14: GRAPHICAL PRODUCE OF OCCLUSION SENSITIVITY METHOD (AUTHORS’ OWN CONTRIBUTION) 

Occlusion procedure algorithm  

Input: Data image to occlude with occlusion mask, Image index by 𝑋$ 

§ Estimate the shape of the image (𝑋$) 
§ Estimate length of the image (𝑋$) 
§ Produce occluded version 𝑋344  <- Copy (𝑋) 
§ Select occluding value mask  
§ Estimate area to be occluded (wsize*widx) 
§ Assign occluded value to the area 

Output: Occluded image 

Occlusion sensitivity have gained importance for rapid localization of critical features from 
images. By applying diffusion weighted magnetic resonance imaging (DWMRI) method is 
possible to identify radial diffusivity information from data of patients that have parkison 
diseases [47].  To explain further the intuition behind the localization of critical features, we 
rely on an IoT based artificial intelligence model for identification of nature objects (see Figure 
15). Here, occlusion sensitivity was performed by hierarchically masking varying portion of the 
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input images from DWMRI. The hierarchical occlusion sensitivity approach was found to 
localise important features that influences prediction of the model 20 times more than baseline 
techniques used and provided opportunity for faster explanation of model’s intuition. 

 

FIGURE 15: OCCLUSION SENSITIVITY FOR INTERPRETABILITY FOR MEDICAL IMAGING IN IOT APPLICATIONS 
(AUTHORS’ OWN CONTRIBUTION USING THE TOOL [118]6) 

2.3.9 CAM AND GRAD CAM 

Class Activation Map (CAM) and Grad CAM are local, post-hoc XAI methods. They use the 
back-propagation mechanism and explain Convolutional Neural Networks, a deep learning 
algorithm for imagery data. For CNN, this means propagating backward from the last layer to 
find the corresponding features in the image causing the output and highlighting them to 
provide the explanations [50].  

CAM: Conventionally, in CNN, the end of the network structure consists of a fully connected 
layer, followed by a softmax layer [51]. CAM uses a particular type of convolutional neural 
network, where the fully connected layer is replaced by a global average pooling (GAP) layer 
(Figure 16). It was observed that using the GAP layer in this way helps to avoid overfitting and 
was used to regularize training data [51]. For this particular type of CNN, CAM proposes that 
the weighted average of the feature map from the last layer convolutional layer generates the 
localization map of features causing the output [49]. Figure 16 shows the working of CAM; the 
model identifies an Australian terrier in the image, performs the weighted average of the 
feature map by using the weights of the softmax layer, and highlights discriminative parts of 
the image causing this output. The outputs are normalized for visualization [49] [52] [53]. 

If 𝐹*  is the output of GAP layer, and 𝑆4 	 is the output of the softmax layer for class 𝑐 , 
mathematically they can be represented as [49]: 

 
6  The original input image can be found here: https://hawaiibirdingtrails.hawaii.gov/wp-
content/uploads/Muscovy-Duck-female_Michelle-Moore-1024x1024.jpg 
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FIGURE 16: CLASS ACTIVATION MAPPING: CAM HIGHLIGHTING THE DISCRIMINATIVE IMAGE REGIONS USED BY CNN 
FOR CLASSIFYING THE AUSTRALIAN TERRIER [49] 

𝐹* = ∑ 𝑓*(𝑥, 𝑦)5,7 , 

where 𝑓*(𝑥, 𝑦) is the activation of unit k in the last convolutional layer at the location (𝑥, 𝑦) 

𝑆4 = ∑ 𝑤*4* 𝐹*, 

where 𝑤*4 are the weights of 𝐹* for class 𝑐. Replacing the value of 𝐹* in the last equation we 
have, 

𝑆4 =X 𝑤*4
*

X 𝑓*(𝑥, 𝑦)
5,7

=	X X 𝑤*4𝑓*(𝑥, 𝑦)
5,7*

 

From the definition, the class activation map 𝑀4 for class 𝑐	 at each spatial element can be 
defined as: 

𝑀4(𝑥, 𝑦) = 	X 𝑤*4𝑓*(𝑥, 𝑦)
5,7

 

Thus, essentially the output of softmax layer  𝑆4 = ∑ 𝑀4(𝑥, 𝑦)5,7 , and hence 𝑀4(𝑥, 𝑦),	the class 
activation map directly indicates the importance of the activation at (𝑥, 𝑦) causing the output 
as class 𝑐. 

Grad-CAM: In contrast to CAM, which applies to a particular CNN network with GAP layer, 
Grad-CAM can be applied for CNN with fully connected layers. It generalizes CAM by taking 
the gradient of the scores for a given class w.r.t. the feature map activations and then performs 
the global average pooling (equation 1 below). After this, it performs the weighted average 
using these new weights, which is similar to CAM. In Grad CAM, an additional ReLU layer is 
added after this to generate the feature visualizations (equation 2 below). Thus, the steps 
before ReLU provide a generalization of the CAM algorithm to be applied to other fully 
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connected CNN networks. Mathematically the new gradient 𝛼*4 , and the Grad-CAM heat map 
𝐿89:.;<=>4  can be defined by [52] [53]: 

(eq. 1) 𝛼*4 =
!
?
∑ @A$

@-%(5,7)5,7   

(eq. 2) 𝐿89:.;<=>4 = 𝑅𝑒𝐿𝑈(∑ 𝛼*4 	𝑓*(𝑥, 𝑦)* ) 
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3 ACCOUNTABILITY AND RESILIENCE ANALYSIS OF IDENTIFIED AI 
ALGORITHMS 

After having discussed the required technical and theoretical foundations, the following section 
constitutes the main section of this deliverable document. More specifically, we will analyse the 
identified algorithms with respect to their accountability and resilience characteristics in the 
following section. We will begin the section by analysing the explainability (since we see the 
explainability of ML algorithms as one of the means to achieve accountability in SPATIAL) of 
the algorithms and identifying applicable XAI methods. Furthermore, to characterize the 
resilience of the algorithms, we will investigate the six ML algorithms with respect to their 
resilience to adversarial ML attacks. Finally, we review the four SPATIAL use cases and illustrate 
their need for accountable and resilient ML algorithms.  

3.1 ANALYSIS OF IDENTIFIED AI ALGORITHMS 
In the following section, the identified algorithms are analysed with respect to their 
accountability and resilience. Thereby, we explore the explainability of ML algorithms, in order 
to understand their accountability. This is justified by the fact that we see the explainability of 
ML algorithms as a means to achieve accountability in SPATIAL. Therefore, algorithms are 
examined concerning their intrinsic explainability as well as the explainability enabled through 
state-of-the-art XAI methods. An overview of the identified applicable XAI methods for each 
discussed algorithm is illustrated in Table 1, where a “tick” means a certain XAI method can 
(while a “cross” means cannot) be used for a corresponding ML algorithm. 

Furthermore, the ML algorithms are studied in terms of their vulnerability to adversarial attacks 
(e.g. poisoning attacks, evasion attacks, data inference attacks, and model stealing attacks) to 
explore their resilience. Specifically, we will identify literature (see Table 2) that has studied the 
vulnerability of specific ML algorithms against these attacks. To limit the scope, we will 
distinguish between data poisoning attacks, evasion attacks, data inference attacks, and model 
stealing attacks. In this context, data poisoning attacks aim to comprise ML models at training 
time by supplying poisoned training data. Here, the attacker aims to degrade the trained model's 
prediction performance (e.g., in terms of accuracy) [116] or implant backdoors [116]. In 
contrast, evasion attacks, data inference attacks, and model stealing attacks target to 
compromise models at inference time. More precisely, an attacker aims to use evasion attacks 
to generate adversarial examples. The latter are minimal perturbations of the input that result 
in an altered and invalid output prediction of the attacked model during operation [117]. Thus, 
the intended behaviour of deployed ML models can be selectively altered by the attacker. On 
the other hand, data inference attacks try to attack deployed ML models to obtain information 
about the used training data [117], which can lead to serious privacy issues.  Alternatively, 
model stealing attacks can result in a violation of intellectual property rights. Here, an attacker 
attempts to mimic the behaviour of an ML model by approximating the model and its internal 
parameters based on obtained input-output pairings [117]. 
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TABLE 1: OVERVIEW OF THE APPLICABLE XAI METHODS OF THE IDENTIFIED ML ALGORITHMS 

 
DNNs SVMs Decision 

Trees 
Random 
Forests 

GBTs & 
XGBOOST 

Bayesian 
Networks 

LIME ü ü ü ü ü ü 

SHAP ü ü ü ü ü ü 

Counterfactual 
Explanations ü ü ü ü ü ü 

Permutation Feature 
Importance ü ü ü ü ü ü 

Partial Dependence 
Plots ü ü ü ü ü ü 

t-SNE ü ü ü ü ü ü 

LRP ü û û û û û 

Occlusion Sensitivity ü û û û û û 

CAM and Grad CAM ü û û û û û 

 

3.1.1 (DEEP) NEURAL NETWORKS 

3.1.1.1 Accountability and Explainability 

Neural networks cannot be considered as transparent machine learning models by default. Even 
the simpler forms of neural networks such as multi-layer perceptrons are not inherently 
interpretable for a human. With increasing depth of neural networks’ layers, the black-box 
nature of the model increases, drifting the model further away from its inherent interpretability. 
Each additional neuron layer adds a set of weights and activation functions that contributes to 
the final output of the model. The raw arrangement of these weights is not conceivable directly 
by the end user and thus they are not useful in interpreting how the model has identified the 
input attributes and generated the output. This results in an overall weak explainability and thus 
only limited accountability. However, as depicted in Table 1, a range of XAI tools can be used 
to achieve the explainability of neural networks on local and global level. Saliency based 
methods such as SHAP and proxy-based methods such as LIME can be used to interpret the 

Algorithm 
XAI Method 
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model locally. SHAP is even capable of giving global interpretation of neural network models. 
Counterfactual explainers are another great example of local interpreters that can be applied 
to DNNs. LRP, occlusion sensitivity, and CAM/GradCAM are specifically designed DNN 
interpretation techniques that are used to understand important areas of an input especially 
when image data is involved. Furthermore, permutation feature importance and PDP 
techniques are also applicable to neural networks to gain global level explainability. 

3.1.1.2 Resilience 

Neural networks have a complex architecture by design, and as a result, they are vulnerable to 
many attack vectors. Identifying the effect of an attack on a neural network is even harder to 
localize due to their large parameter space. From data collection and training to deployment 
and inference, neural networks are open to adversarial attacks. Basically, the intention of 
training a neural network is finding a delicate balance between generalization and 
discrimination of data over the targets. Sometimes a simple fault-injection in the model can 
cause catastrophic misclassifications depending on the applications.  

Poisoning attacks occur when the training data/algorithm is manipulated by an attacker with 
malevolent intents. Poisoning attacks on NNs are heavily studied in current literature. In a 
clean-label poisoning attack [58][59][60][62] even the expert data labellers would fail to 
identify the poisoned inputs. These attacks are also capable of creating backdoors in neural 
networks [60]. The NN model itself can also be poisoned if the attacker has access to model 
parameters [61]. 

Attackers can commit evasion attacks on neural networks under black-box or white-box 
configurations using carefully crafted data samples embedded with imperceptible adversarial 
noise. Such attacks could either affect selected targets or decrease the general prediction 
accuracy. Adversarial samples are generated utilizing various elements of NNs such as the 
gradient [63] [64], model score [65] and decisions [66].  

Already trained NNs which are not publicly available (or black-box) are open to model stealing 
attacks where the adversaries try to extract the model parameters which can be used to obtain 
similar results as the original model [67] [68]. Model stealing lays the groundwork towards 
generating adversarial examples.  

Inference attacks are also a widely studied class of attacks when it comes to neural networks. 
Here the adversary’s motive is to determine things such as whether a datapoint belongs to the 
original dataset (membership inference) [69], the dataset as a whole (model inversion) [70], or 
extra information learned by the model that are not related to the original task 
(attribute/property inference) [71].  

The effect of some of the above-mentioned attacks can be mitigated with adversarial training 
and ensemble methods. Most of the current defences only prevent specific types of adversarial 
attacks where the need for more general prevention mechanisms is required more than ever 
[72].  
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TABLE 2: IDENTIFIED REFERENCES OF THE RESPECTIVE ADVERSARIAL ATTACKS AGAINST THE ML ALGORITHMS 

 
DNNs SVMs Decision 

Trees 
Random 
Forests 

GBTs & 
XGBOOST 

Bayesian 
Networks 

Poisoning Attacks 
[58][59] 
[60][61] 
[62][72]  

[73] [75]  [88][89] 
[91][101] 

[106] 
[91][105] 

[110] 
[111] 

Evasion Attacks 
[63][64] 
[65][66]  

[76][77] 
[78][79]  

[89][90] 
[91][92] 

[93] 

[89][91] 
[94] 

[91][92] 
[94][95] 

/ 

Model Stealing 
Attacks [67][68] 

[80][81] 
[82]  [96] [98][102] [103] / 

Data Interference 
Attacks 

[69][70] 
[71]  

[83][84] 
[85]  

[97][98] 
[99][100] 

[102] [107] / 

3.1.2 SUPPORT VECTOR MACHINES 

3.1.2.1 Accountability and Explainability 

SVMs are widely used in networking and security due to its faster inferencing and its capability 
to classify non-linear numerical data. There are mainly two types of SVMs – namely linear SVMs 
and kernel trick SVMs. Linear SVMs are more interpretable on their own. Here, the weights of 
the model can be broken down to a product between input sample and weight vector. 
Therefore, the weights in linear SVMs are directly representative for the importance of the 
features identified by the model. On the other hand, SVMs that use kernel trick are more 
suitable to classify large non-linear datasets. SVMs achieve this by transforming these feature 
spaces into linearly separable higher dimensional spaces. With this transformation, the model 
loses some interpretability making the weights and parameters of the model losing its linear 
relationship with feature importance.  SVMs that operate on two- or three-dimensional data 
provide a high level of explainability, since their decision boundary can be directly visualized in 
2D or 3D plots. However, SVMs operating on high-dimensional data are losing this 
characteristic. In this case, dimensionality reductions could be used to visualize the decision 
boundary. However, these methods make it difficult to understand the relationship between 
original data features and model predictions. As an alternative, model-agnostic XAI methods 
such as LIME, SHAP, and counterfactual explanations can be used with SVMs to achieve local 
explainability (see Table 1). 

3.1.2.2 Resilience 

Algorithm 
Attack Type 
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SVMs are extensively proposed in tasks such as malware detection, intrusion detection and 
spam filtering.  However, SVMs themselves are susceptible to many of the commonly seen 
attack types among ML models such as poisoning, evasion, model stealing, and data inference 
attacks. SVM with kernel trick (k-SVM) are also vulnerable to adversarial attacks just like the 
linear SVM. When it comes to real world application of SVM, it becomes imperative to reinforce 
the security of the model itself despite the type of application.  

Dataset poisoning attacks are perceivable in SVMs during the training process or even when 
retraining on data collected after deploying it in an unsupervised or semi-supervised manner.  
If the adversary has access to feature samples and the training dataset, then it is quite possible 
to stage a label flipping attack or even create backdoors in the model. Even without the full 
training dataset, adversaries can perform limited knowledge poisoning on SVM models through 
surrogate datasets. Poisoning attacks on SVMs are extensively studied in the recent literature 
[73] [75]. 

Evasion attacks in SVMs are studied under perfect knowledge (white box) and limited 
knowledge (black box) conditions. As opposed to poisoning attacks, evasion attacks happen 
during the testing phase or deployment stage. In recent literature these attacks are studied with 
reference to SVMs under various applications including spam filtering, network intrusion 
detection, etc [76] [78]. Kernel trick SVMs are no exception and can be compromised through 
evasion attacks executed through gradient-descent [79]. In malware detection using SVMs, it 
has been shown that the effectiveness of evasion attacks can increase when it is combined with 
other attack types such as collusion [77].  

Model stealing/extraction attacks on SVMs can reveal the exact decision boundary making 
them significantly dangerous [80]. Lowd-Meek attack in [81] is considered a successful method 
to steal linear SVM models. Similarly, kernel trick SVMs are also susceptible to model stealing 
attacks as shown in [82]. Membership inference attacks and attribute inference attacks on 
SVMs can be potentially used to violate the privacy of users when it comes to social media 
information such as shown in [83][84].  

As means of protection against privacy related attacks, differential private SVMs are a popular 
proposal in related research [85]. Adversarial training of both linear and kernel SVM models is 
also commonly seen in literature to make trained models robust against evasion attacks. 

3.1.3 DECISION TREES 

3.1.3.1 Accountability and Explainability 

A decision tree is an ML algorithm that offers high expressive power in modelling linear and 
non-linear relationships, while still providing intrinsic interpretability. As already described in 
Section 2.2.3, a decision tree performs a series of hierarchical decisions, each involving a single 
feature at a time that is tested against a threshold value. Each prediction from a decision tree 
can be explained by providing the path from the root to the prediction leaf, and each test 
involved in reaching that leaf. Thereby, each node in the path can be interpreted as a human 
understandable text description in the form of “If … then … else”. In other words, a decision tree 
resembles human reasoning by providing a transparent concatenation of human-
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understandable if-then-else explanations [86]. Thus, decision trees provide local explainability 
by enabling transparent reasoning of individual decisions.  

Besides local explanations of individual decisions, a decision tree also provides global 
explainability due to its decomposability and algorithmic transparency, which enables a global 
analysis of the trained model [87] During the training process, the decision tree generates 
transparent prediction rules, which represent the knowledge learned from the provided training 
data. These generalizing prediction rules render the decision-making process globally 
comprehensible. Furthermore, they allow for revealing the impact of individual data features 
on the decision process, which enables deeper insights and analyses.  

In summary, a decision tree with its inherent interpretability provides both local explainability 
of individual decisions and global explainability of the decision tree model, resulting in a high 
degree of accountability. However, the high transparency comes at the cost of significantly 
reduced expressive power compared to the other black-box models discussed in this work (e.g. 
DNNs or random forests). In addition, we would like to mention that while many of the local 
and global XAI methods discussed in this paper can be applied to decision trees (see Table 1), it 
is generally not necessary due to their inherent interpretability [87]. Instead, decision trees are 
often used in XAI methods due to their intrinsic trade-off between interpretability and 
expressive power. For example, decision trees can be used as surrogate models to approximate 
opaque black-box models and thus enable the explainability of these.    

3.1.3.2 Resilience 

In recent years, several works have demonstrated the vulnerability of decision tree models to 
adversarial attacks, which raises serious security concerns regarding their resilience 
characteristics. For example, several authors report that data poisoning attacks can be used 
against decision tree models with high effectiveness. For instance, Mozaffari-Kermani et al. [88] 
draw attention to poisoning attacks in the domain of eHealth by describing a data injection 
attack that injects malicious samples into the training data. Their experiments analysed the 
accuracy of decision tree models when performing binary classification with varying injection 
rates. Thereby, they observed a significant accuracy drop of the attacked decision tree models, 
demonstrating the vulnerability of decision tree models against data injection attacks. In 
another example, Newaz et al. [89] aimed to comprise an ML-based smart healthcare system 
consisting of eight different smart medical devices by applying data poisoning attacks. In the 
conducted experiments, the authors poisoned the dataset with data modification methods and 
evaluated the accuracy drop. This work reports an accuracy drop of up to 27.31% in their 
experimental settings, which indicates again the vulnerability of decision trees to poisoning 
attacks. 

In addition to poisoning attacks, various existing work demonstrated that decision trees are also 
vulnerable to evasion attacks. For example, besides poisoning attacks, Newaz et al [89] also 
investigated the vulnerability of their ML-based smart healthcare system against evasion 
attacks. More specifically, the authors were able to execute the HopSkipJump [90] attack  in a 
white-box setting and successfully generated adversarial examples against a decision tree 
model, which suggests that decision tree models are vulnerable to this attack. Successful 
evasion attacks against decision tree models have also been demonstrated in the area of ML-
based NIDSs.  Alhajjar et al. [91] successfully applied perturbation methods based on generative 
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adversarial networks against decision trees and showed that these are vulnerable to adversarial 
examples. Finally, Chen et al. [92] demonstrated the vulnerability of tree-based ML models to 
adversarial examples by successfully applying multiple evasion attacks, including Papernot’s 
[93] 𝐿D-versions of Kantchelian’s [94]. However, the authors not only showed the vulnerability 
of tree-based models but also proposed an algorithm to construct more robust trees.  

Model stealing attacks have been identified as another vulnerability of decision tree models. In 
[96], Tramer et al. attacked decision trees from the online service BigML7. They demonstrated 
that they were able to successfully extract model parameters of the underlying decision trees 
with relatively few input-output API queries. This manifests the vulnerability of decision trees 
against this kind of attack and emphasizes that the deployment context of decision tree models 
must be carefully chosen and strongly protected to provide confidentially and protect 
intellectual properties. 

Finally, some researchers have also demonstrated the vulnerability of decision trees against 
data inference attacks. In [97], Truex et al. demonstrated a successful membership inference 
attack (MIA) against decision trees in a black-box setting. In this context, it was shown that the 
effectiveness of the attack in terms of MIA accuracy depends strongly on the training dataset 
used and the attacker’s knowledge. Similarly, Ruiz de Arcaute et al. [98] also successfully 
demonstrated MIA attacks against decision trees and other tree-based models. In contrast, 
Fredrikson et al. [99] address privacy issues of ML-as-a-Service platforms like BigML. More 
precisely, they introduced new model inversion attacks and demonstrated that these can be 
used to infer sensitive data features from deployed decision tree models in both a white-box 
and black-box setting. Furthermore, Mehnaz et al. [100] propose two new model inversion 
attribute inference attacks in which the adversary’s goal is to learn some sensitive attribute 
about an individual whose data is within the training set. Once again, the attacks could be 
successfully applied against decision trees.  All presented research works provide evidence that 
decision tree models are highly vulnerable to inference attacks, highlighting serious privacy 
issues and stressing the relevance of appropriate protection mechanisms. 

3.1.4 RANDOM FORESTS 

3.1.4.1 Accountability and Explainability 

Random forest is an ML method that uses an ensemble of decision trees to combine individual 
tree predictions into a strong aggregated prediction that relies on the wisdom of the crowd [86] 
(see Section 2.2.4). Hence, as an ensemble method, a random forest aggregates a large number 
of weak trees into a strong predictive model that performs better than individual trees but loses 
the intrinsic interpretability of the latter. Although each decision tree represented in a random 
forest is inherently interpretable (see Section 3.1.3), the aggregated predictions of the 
ensembled random forests model are neither interpretable nor explainable, since a random 
forest as an ensemble method is not differentiable. Furthermore, due to the highly parallel 
character of a random forest, individual decisions are no longer comprehensible for human 
users due to the sheer complexity, which causes random forests to be perceived as opaque 
black-box models. In conclusion, a random forest does not provide local explainability of 

 
7 BigML: https://bigml.com/, as of date 15.05.2022 
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individual predictions. To counteract this problem, post-hoc XAI methods are typically applied 
to provide explanations and accountability for individual predictions of a random forest. As 
shown in Table 1, local model-agnostic XAI methods like LIME, SHAP, or counterfactual 
explanations can be used in this context. 

Although individual predictions of a random forest are no longer transparent or 
comprehensible, Breiman [19] has already shown in his visionary paper that the individual 
underlying decision trees of a random forest can be used to represent the importance of input 
features accurately. Thus, a trained random forest can provide indications of the most relevant 
input features in a dataset with respect to the output variable. This allows users to develop an 
intuition for the dataset. Hence, a random forest provides a simple form of global explainability. 
As can be observed from Table 1, other global XAI methods such as permutation feature 
importance or PDP are also applicable to random forests to explain a trained model globally. 
However, it must be mentioned that these methods show strong similarities to the idea of the 
variable importance described by Breiman. 

3.1.4.2 Resilience 

Similar to decision trees, many recent studies showed that also random forests as tree-based 
ensemble methods are vulnerable to adversarial attacks, which poses serious security concerns 
in their application and calls for appropriate countermeasures. For example, Takiddin et al. [101] 
demonstrated successful poisoning attacks against random forest models in the context of 
electricity theft detection. Specifically, they were able to show a significant reduction in the 
accuracy of the RF-based theft detector by injecting malicious data into the dataset. To 
counteract this vulnerability, the authors recommend using ensemble averaging in order to 
build more robust detectors by averaging the outputs of different detectors. In [106], Dunn et 
al. also demonstrated successful poisoning attacks against random forest models in the context 
of IoT systems. Their findings suggest that the random forest model's accuracy drop is 
proportional to the rate of poisoned data. As a final example of successful poisoning attacks 
against random forest models, we would like to mention the paper [91] already discussed in 
Section 3.1.3.2.  Besides data injection attacks against decision trees, Alhajjar et al. [91] also 
demonstrated the applicability of this attack to random forest models. However, the authors 
also mention that attacks against ensemble methods are, on average, less effective meaning 
ensemble methods are more resilient to adversarial attacks than single decision trees. 

In addition, the vulnerability of random forest models against evasion attacks has been 
demonstrated many times. For example, two algorithms were proposed by Kantchelian et al. 
[94], one that finds an optimal evading instance based on a mixed-integer linear program and 
one that is computationally faster but does not find an optimal instance. The authors applied 
these attacks against random forest models and their results show that minimal input 
perturbations, especially regarding 𝐿! - and 𝐿& -norm, suffice in order to obtain a different 
classification result, demonstrating the vulnerability against evasion attacks. As another 
example, we want to refer again to the already discussed work [91]. Besides the other attack 
variants already mentioned above, the paper from Newaz et al. [89] also studies evasion attacks 
against smart healthcare systems based on random forests. They demonstrated that random 
forest models are vulnerable to Zeroth Order Optimization attacks, as they were able to craft 
adversarial examples successfully. Finally, Alhajjar et al. [91] could also show in the already 
presented work that random forests are vulnerable to various adversarial generation methods 
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in the context of NIDSs, providing evidence for the vulnerability of random forests against 
evasion attacks. 

Recent studies have also shown the vulnerability of random forests against data inference 
attacks. For example, Ruiz de Arcaute et al. [98] successfully applied membership inference 
attacks against random forest models, suggesting their vulnerability to this kind of attack. As 
another example, in [102], Luo et al. successfully applied a feature inference attack against a 
random forest model in a federated learning context, where the performed attack was based 
on so-called generative regression networks. However, in order to confirm these early findings, 
further research effort is desirable. 

In contrast, model stealing attacks against random forest models seem to be a field of research 
that has not received much attention so far. In fact, we could only identify one paper from Liu 
et al. that successfully applied model stealing attacks to random forests [102]. This is probably 
due to the fact that random forests as an ensemble method provide only non-differentiable and 
non-decomposable aggregated predictions of individual decision trees, which only allows an 
imprecise estimation of the learned target function [96]. This may be a reason that renders 
random forest models relatively resilient to this type of attack. More intensive research is 
needed to confirm this assumption and is, therefore, a recommendation for future work. 

3.1.5 GRADIENT-BOOSTED TREES AND XGBOOST 

3.1.5.1 Accountability and Explainability  

Gradient-boosted tree and XGBoost models do not provide local explainability by default. 
These models consist of an ensemble of many decision trees, in which each decision tree is an 
inherent interpretable model (see Section 3.1.3). While the prediction from each decision tree 
used in a gradient-boosted tree model is explainable, the overall prediction provided by the 
ensemble of trees is not locally explainable. The reason is that each tree has its own decision 
path that is independent from the path of other trees, and it is not possible to identify the exact 
contribution of each feature in a given prediction. 

On the other hand, gradient-boosted tree and XGBoost models are globally explainable, 
meaning that the importance of each feature in the model and for predictions in general can be 
known. Based on the ensemble of trees learned during training, it is possible to determine how 
important each feature is in the model that has been learned. In fact, the global explainability 
of gradient boosted trees is sometimes used for determining feature importance and 
performing feature selection. 

The prediction of gradient-boosted tree models can be nevertheless locally explained using 
additional post-hoc explainability approaches. One commonly used approach for gradient-
boosted trees is the Breakdown method. It measures how much a given prediction changes 
when the value of a single feature changes. It computes the difference between smooth 
prediction scores from the model while modifying each feature individually and it infers the 
corresponding contribution of each feature in the final prediction. This way, it is possible to 
know the exact weight of each feature on a specific prediction, providing this local 
explainability. In particular, Table 1 shows the specific XAI methods that can be used to provide 
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local explainability for Gradient-boosted Trees and XGBoost are LIME, SHAP, or counterfactual 
explanations. 

3.1.5.2 Resilience 

Gradient-boosted tree and XGBoost models provide good overall resilience to adversarial ML 
attacks. Although some authors [105] [91] demonstrated that ensemble classifiers can be 
vulnerable to poisoning attacks that degrade the overall accuracy of the model, these attacks 
are rather ineffective against gradient-boosted tree models because these models do not 
generalize over errors in the training data. On the other hand, their tendency to overfit the 
training data and their low generalization ability makes them vulnerable to backdoor attacks, 
where only a few targeted errors are aimed for during inference. 

Two main characteristics of gradient-boosted tree and XGBoost models makes them relatively 
resilient to evasion attacks. The first is their composition of many simple models that have 
different contributions in each prediction. As we discussed, each model is independent and 
many of these models must be fooled for the ensemble to provide an incorrect prediction. It is 
difficult to craft an adversarial example that would consistently fool many independent models 
[104]. Evasion attacks against these models are even complex in a black box setting where an 
attacker would not know how many weak models compose the models and must be fooled. 
The second characteristic is that gradient-boosted tree models are non-differentiable, i.e. it is 
not possible to compute a gradient for the loss of these models that can be propagated back to 
their inputs. The most effective evasion attacks to craft adversarial examples rely on gradient 
loss computation and backpropagation of this gradient to algorithmically modify adversarial 
examples. None of these effective attacks can be applied to gradient-boosted tree models 
because they are non-differentiable. Black box evasion attacks and white box evasion attacks 
on a surrogate differentiable model can still be performed but their effectiveness is lower than 
that of white box evasion attacks. Despite the discussed relatively high resilience of gradient-
boosted trees against evasion attacks, some studies have practically demonstrated that these 
still can be used against gradient-boosted trees and ensemble classifiers [94] [91] [95]. As a 
countermeasure, Kantchelian et al. [94] suggest Adversarial Boosting to create robust gradient-
boosted trees that are more resilient to evasion. Similarly, Cheng et al. [92] propose a method 
to train XGBoost models robust against evasion attacks. 

On the other hand, early research results have shown that gradient-boosted tree models are 
vulnerable to model stealing attacks, some work being able to steal the functionality of such 
models using moderate number of queries [103]. Although the vulnerability of these models to 
data inference attacks has not been well studied yet, the authors of [107] already found that 
gradient boosted models are less vulnerable to MIA attacks. Nevertheless, we conclude that 
the vulnerability of gradient-boosted trees and XGBoost to model stealing and data inference 
attacks is a property that needs to be explored further in future work.  

3.1.6 BAYESIAN NETWORKS 

3.1.6.1 Accountability and Explainability  

The main objective of using state-of-the-art XAI methods is to provide informative answers of 
“why”, “what-if” or “how” questions to both AI developers and end users. Bayesian networks, 
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which are probabilistic graphical models built on expert knowledge and statistical data, can 
manage uncertainty, and provide global explanation in the model, reasoning and evidence. 
Reasoning in Bayesian networks is therefore often referred to as “what-if” questions of an ad-
hoc scenario. The flexibility of a Bayesian network allows for these questions to be predictive, 
diagnostic, and inter-causal [108]. According to [108], explanations in Bayesian Networks can 
be classified into 3 categories: explanation of the evidence, explanation of the model, and 
explanation of the reasoning. Apart from well-established reasoning methods, the probabilistic 
framework of a Bayesian network also allows for global explanations in evidence.  

Although BNs are suitable to encapsulate a complex decision-making process thanks to the 
graphic models representing probabilistic priors and the interdependencies between variables, 
the local explainability of BNs is still limited. For instance, to explain a prediction of a disease 
based on some observed evidence, we need to consider not only the most significant evidence, 
but also understand how this evidence affects the probability of this disease through 
unobserved variables. Furthermore, BNs lack interpretation and explanation due to complex 
and indirect relationships between nodes, especially in the big DAG graph. Therefore, to 
increase the level of trust, the local explanation of inner workings of BNs must be taken into 
account. 

In general, the use of Bayesian networks for explainability is still ad-hoc and not as well 
organised as XAI methods in the literature. Specifically, not only are the inner workings of 
Bayesian networks seeming complicated to most end-users, but the explanation of probabilistic 
reasoning is also challenging and as such results appear to be counter-intuitive or wrong. In the 
literature, existing work improved the explainability of Bayesian networks mainly based on 
graphical, visual aids or natural language approach [109]. Thus, the explainability of Bayesian 
networks still needs to be improved. 

3.1.6.2 Resilience 

Similar to other AI algorithms, such as Support Vector Machines or Neural Networks, Bayesian 
Networks are vulnerable against data poisoning attacks that aim at corrupting the AI model by 
contaminating the data in the training phase. In [110], the authors studied the robustness of 
BNs structure learning algorithms against traditional one-step data poisoning attacks by 
investigating two subclasses of data poisoning attacks-model invalidation attacks and targeted 
change attacks.  In model invalidation attacks the model is invalid due to the poisoning of its 
training dataset. In comparison, by targeted change attacks the goal of the attacker is to create 
or remove a link in the BNs graphical model. In [111], the same authors further investigated 
long-duration data poisoning attacks against Bayesian network structure learning algorithms.  

Unfortunately, to the best of our knowledge, no relevant literature could be identified that has 
studied the vulnerability of Bayesian network models to evasion attacks, model stealing attacks, 
and data inference attacks. Since this seems to be a not well-studied research field, we cannot 
conclude evidence-based statements about the resilience of Bayesian networks to this kind of 
attacks. Therefore, we recommend profound research efforts in this direction for future work 
to obtain better knowledge about the resilience of Bayesian networks. 
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3.2 ACCOUNTABILITY AND RESILIENCE 
REQUIREMENTS FOR THE SPATIAL USE CASES 
After having analysed the identified ML algorithms regarding their accountability and resilience, 
we will review the four ML-based SPATIAL use cases for which the application of the analysed 
algorithms is of significant importance. In this context, we aim to stress the relevance of 
accountable and resilient decision-making models to these practical use cases. However, we 
would like to mention that we only provide a short summary of the use cases here. We refer 
the interested reader to SPATIAL deliverable D1.1 and future technical deliverables for more 
details.  

3.2.1 USE CASE 1: PRIVACY-PRESERVING AI ON THE EDGE AND BEYOND 

Our first use case - provided by Telefonica Investigacion Y Desarrollo SA (TID) - is an edge-
based federated learning platform which involves numerous client devices and trains an ML 
model in a distributed and privacy-preserving manner. The use case envisions an environment 
where multiple machine learning applications are using personal data at a large scale. While 
such large-scale machine learning applications have been predominantly centralized (i.e. all data 
of users/clients/devices need to be uploaded to cloud platforms for learning), the recent 
advances in Federated Learning (FL) allows to build ML models in a decentralized fashion close 
to users’ data, without the need to collect and process them centrally.  

We aim to design the platform to be able to train all the ML models described above through 
Federated Aggregation, as a solution to privacy of user data. As Federated Aggregation is the 
key process of the use case, we provide a general description of it as the requirement.  

Any ML algorithm whose objective function can be written as a finite-sum objective of the 
following form can be employed in our platform:  

min
(∈ℝ&

𝑓(𝑤), 

in which 𝑓(𝑤) is defined as: 

𝑓(𝑤) = !
G
∑ 𝑓$(𝑤)G
$0!   

 

Here, 𝑛 denotes the number of samples across all clients and 𝑓𝑖(𝑤) is defined as loss of prediction 
on seen examples, i.e., 𝑙 (𝑥𝑖 ;𝑦𝑖 ;𝑤), using the trained model with parameters 𝑤. All data available 
in the system (𝑛	data	points) are partitioned over 𝐾 clients, each client k with a subset of indices 
𝑃𝑘. Then, the problem objective can be rewritten as: 

𝑓(𝑤)  = ∑ G%
G
𝐹*(𝑤)H

*0! , where 𝐹*(𝑤) =
!
G%
∑ 𝑓$(𝑤)$∈I%  

Each client 𝑘 executes, for example, a stochastic gradient decent (𝑆𝐺𝐷) step (iteration 𝑡) on the 
local data available, 𝑔𝑘=∇𝐹𝑘 (𝑤𝑡). Assuming C=1, at iteration 𝑡 , the server aggregates all 
gradients and applies the update on the global model: wt+1 ←  𝑤J − 𝜂∑

G%
G
𝑔*H

*0! , 
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since 	∑ G%
G
𝑔*H

*0! = ∇𝑓(𝑤J)  where 𝜂	 is a fixed learning rate. Equivalently, every client can 
perform the update as: 𝑤J"!* ⟵𝑤J − 𝜂𝑔* 	and the global model is 𝑤J"! ⟵∑ G%

G
𝑤J"!*H

*0! . 

In fact, this process can be repeated for 𝑡 ∈ 𝐸 iterations locally per client, before sharing models 
with the server in 𝑅 rounds. Therefore, the client can iterate the local update 𝑤* ⟵𝑤* −
𝜂∇𝐹*p𝑤*q for 𝐸 times, before the aggregation and averaging at the central server, per round r: 
𝑤9"! ←  𝑤9 − 𝜂∑

G%
G
𝑔*H

*0! . 

It becomes apparent that factors such as 𝐸 iterations per client, 𝐶 clients participating in each 
round, and 𝑅 rounds executed can have high impact on model performance, and communication 
cost incurred in the infrastructure to reach it. These factors have to be carefully chosen based 
on an examination of the impact. 

3.2.2 USE CASE 2: IMPROVING EXPLAINABILITY, RESILIENCE AND 
PERFORMANCE OF CYBERSECURITY ANALYSIS OF 4G/5G/IoT 
NETWORKS 

We are living in Industry 4.0 and the Internet of Things is undoubtedly a critical component of 
the fourth industrial revolution. While there are so many factors contributing to this rise, one 
of the most important is the development of 4G/5G technologies, whose fast speed allows IoT 
devices to produce and transmit data faster than ever. The combination of 4G/5G, IoT, and AI 
brings us a complete solution to deal with such a flood of data, as the digital information 
collected by connected devices and 4G/5G smartphones can now be efficiently contextualised 
and analysed by ML technologies for automated decision making. However, existing AI-based 
systems have three major issues in the 4G/5G/IoT context: (1) lack of real-world datasets; (2) 
lack of explainability; and (3) lack of resilience against adversarial attacks. We therefore provide 
this use case to tackle the above challenges by considering security, explainability and resilience 
requirements during the design and development of our AI-based components and then 
evaluating our AI models on a real testbed regarding those requirements. Concretely, our main 
objectives are (1) producing real-world datasets, especially for 4G/5G and encrypted network 
traffic, as training datasets to improve accuracy of AI models; (2) enabling explainability features 
of existing AI algorithms in our different AI-based systems, such as Montimage Monitoring Tool 
(MMT)-Probe for anomaly detection and MMT-RCA for Root Cause Analysis (RCA); and, (3) 
considering the security threats, such as model evasion, model poisoning or backdooring, that 
emerge from the rapid adoption of AI algorithms in 4G/5G/IoT networks. 

The growing popularity of traffic encryption increases user security and privacy at the individual 
level, but also becomes a big challenge for performing traffic analysis. This raises the need for 
advanced analysis techniques based on other criteria, such as network packet and flow 
behaviour analysis. With the introduction of network encryption protocols, such as Transport 
Layer Security (TLS), the accuracy and efficiency of conventional Network Intrusion Detection 
Systems (NIDS) using rule and signature-based monitoring detection methods is greatly 
reduced without being able to analyse packets’ payload. Moreover, the variety and dynamicity 
of network malware poses a significant challenge on traffic monitoring tools in terms of 
flexibility and generalisation of their algorithms. One of the most emerging solutions for these 
problems is applying Machine Learning for the analysis.  
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In the 5G/IoT context, an early detection and prediction of potential anomalous behaviours in 
the network enables fast reaction to them, preventing financial loss, malicious damage and 
service degradation. AI has been shown to help detect hidden or abnormal traffic patterns that 
can lead to security threats or service unavailability in 5G/IoT networks. For instance, [54] 
leverages the clustering algorithm DBSCAN to effectively detect anomalies caused by radio 
attenuation and Software Defined Network (SDN) misconfiguration for self-healing of 5G Radio 
Access Networks (RAN). [55] applies different ML models to predict attacks and anomalies in 
IoT systems and finds that Random Forest techniques perform comparatively better than 
others. 

RCA plays a vital role in the Network-/System-Management process to accurately identify the 
cause of faults or security incidents in different domains, such as IT operations and 
telecommunications. The root cause diagnosis becomes highly intractable or even impossible 
because of the complexity and heterogeneity of emerging mobile networks (e.g. introducing 
virtualized functions, Software-Defined Networking), coupled with the increasing number of 
Key Performance Indicators (KPIs) and data related to end-users, devices, services and 
networks. Also, human-based mitigation actions become more challenging and time consuming 
in complex 5G/IoT systems. This leads to the need of an automated tool helping humans to 
troubleshoot a system and determine which events are causally connected and which are not. 
AI has been recognized as an appealing option for fostering automated RCA, thanks to its ability 
to process a large amount of data, uncover complex non-linear relationships within the data, 
and deliver faster and accurate conclusions. 

Our real pilot corresponds to a 4G/5G/IoT solution consisting of an eNodeB/gNodeB based on 
a Software-Defined Radio, a portable 5G Core solution, and the MMT security monitoring 
framework. All applications discussed above involve different AI techniques for different 
security purposes, thus explainability, resilience and accountability are three critical and 
important aspects in the Use Case 2. Specifically, the cybersecurity analysis and protection of 
the network, encrypted traffic analysis and RCA developed in our security monitoring 
framework will employ advanced AI techniques and algorithms to validate the improvements, 
especially in terms of accountability, resilience and transparency. Our current feature selection, 
similarity learning and Bayesian networks techniques may need to be improved to make them 
more resilient to adversarial attacks, transparent and explainable, and privacy-aware. 
Furthermore, we will also consider the trade-off between the accuracy of AI models and other 
aspects in the context of the Use Case 2. 

3.2.3 USE CASE 3: ACCOUNTABLE AI IN EMERGENCY eCALL SYSTEM 

As part of Use Case 3 of SPATIAL project, the Fraunhofer Institute for Open Communication 
Systems (FOKUS) will investigate the design and implementation of an automated, effective, 
accountable, and privacy-preserving AI-based system that operates on heterogeneous eHealth 
data and can accurately recognize emergency situations. The described AI functionalities will 
be integrated into a modern, IP-based, rich-media emergency communication system, which 
will enable automated, well-informed, and explainable automated emergency calls (eCalls). 
Precisely, FOKUS will build on the results of the EU-funded H2020 project EMYNOS8 (nExt 

 
8 EMYNOS: https://www.emynos.eu/, as of date 26.04.2022 
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generation eMergencY commuNicatiOnS), which proposed a specification for a Next 
Generation 112 (NG112) emergency communication system. NG112 represents an evolution 
of traditional phone-based emergency communication systems. It aims to overcome the 
limitations of legacy systems such as the transmission of caller location, the forwarding of 
emergency calls, or the integration of sensor data and IoT architectures.  

In this context, EMYNOS designed, defined, and implemented a platform for VoIP-based9  
bidirectional emergency communication that enables to share additional information, e.g. the 
location or sensor data of a patient, directly with the emergency call centre during an 
emergency call. Based on this system, Use Case 3 aims to fully automate the process of 
emergency detection and the ensuing triggering of an emergency call by collecting, monitoring, 
and analysing diverse and relevant health data such as a patient's blood pressure, heart rate, 
oxygenation, blood glucose levels, or body temperature. Effective AI methods and Machine 
Learning algorithms will be applied to analyse this heterogeneous sensor data. More 
specifically, high-performing supervised Machine Learning algorithms, such as Random Forests, 
Deep Neural Networks, or Recurrent Neural Networks, as well as unsupervised algorithms, 
such as Autoencoders, could be applied to detect anomalies in the gathered eHealth sensor 
data. 

Since emergency communications systems and their applications are to be considered safety-
critical infrastructures, the accountability and resilience play a decisive role in the design and 
integration of such systems and applications. In this context, particularly resilience is of utmost 
importance. In order to protect the security infrastructure and its applications and to guarantee 
continuous functioning of the underlying mechanisms, it must be ensured that the developed 
systems and applications are adequately protected against cyberattacks and can withstand 
them. Regarding the AI-based system to be developed in Use Case 3, special focus must be 
placed on resilience against adversarial ML attacks. On the one hand, the system must be 
resilient against data poisoning and backdoor attacks. This ensures an uncompromised training 
process of the underlying ML model and is a prerequisite to guarantee that the ML-based 
system effectively and reliably recognizes emergency situations. On the other hand, the 
developed system must also be protected against evasion attacks, which aim to compromise 
the ML-based system at interference time. For example, adversarial examples could be used to 
trigger hoax calls in Use Case 3, which overload the emergency communication system and 
block it for serious, urgent emergencies. Besides the attack vectors mentioned above, it must 
also be taken into account that the eHealth data collected and processed in Use Case 3 must 
be considered as highly sensitive personal data and thus requires strong protection. Therefore, 
the ML-based system must also be resilient to and provide countermeasures against data 
interference and model stealing attacks. These attacks attempt to obtain information about the 
training data and used model parameters, which could lead to privacy leaks and intellectual 
property violations. Besides countermeasures against these attacks, additional privacy-
preserving methods, such as differential privacy, should be considered due to the highly 
sensitive nature of the processed data in this use case. 

In addition to resilience, accountability and explainability are essential aspects in the context of 
Use Case 3 and the automated AI-based emergency call functionality. If the system to be 
developed not just detects emergency situations but also provides explanations of the decision-

 
9 Here, VoIP denotes Voice over IP, in which IP stands for Internet Protocol. 
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making process by comprehensibly presenting why a situation is to be classified as an 
emergency, not only patients but also emergency call centre personnel and doctors can benefit. 
On the one hand, the transmission of sensor data and XAI explanations enables emergency call 
centre personnel to assess the situation better, initiate more targeted and effective medical 
measures, and recognize and reject hoax calls. On the other hand, thanks to the more 
transparent information available, doctors can better prepare themselves for the emergency 
situation and, if necessary, already instruct first responders. Patients also benefit from these 
improvements, as they may receive faster and more targeted medical assistance. Thus, all 
involved actors benefit from an increased explainability of the system to be developed in Use 
Case 3. 

3.2.4 USE CASE 4: RESILIENT CYBERSECURITY ANALYTICS 

The resilient cybersecurity analytics use case studies two representative cybersecurity 
applications that use ML for automated decision making. The first application relates to the 
automated detection of malicious documents using a supervised ML classifier. The second 
application relates to modelling different system behaviours, also using a supervised ML 
classifier, to identify the type of unknown hosts. In both these use cases, the ML classifier 
prediction triggers an automated response without human supervision, i.e. block the access and 
prevent from opening a document detected as malicious and respectively automatically 
applying a set of security rules based on the identified host type. These automated responses 
have consequences on the protected system and its users. They are responsible for preventing 
attacks from compromising the protected system and they can change the user experience, 
potentially interfering with how the user wants to operate the system. Consequently, the 
impact from incorrect decisions made by the ML classifier can be critical. The accountability of 
the ML classifiers and the explainability of their decision are important to justify (and cope with), 
the potential compromise of the protected system or the inability to use it as intended. The 
explanation for incorrect predictions can be used to improve the performance of ML-based 
detection systems and to fix their weaknesses. 

Beyond our two applications, explaining the prediction of ML models used for cybersecurity 
analytics is also highly relevant when these models support human decision. Explanation of 
prediction provides understanding to human operators. For instance, managed Detection & 
Response services require an understanding of the detected attacks to respond to it in the most 
appropriate manner: to block the attack and to recover from it. When new attacks are detected, 
it is also useful to create an intelligence about them and to infer the vulnerabilities they exploit. 
It prevents them from happening again in the future. The same requirement applies to forensic 
analysis where the main goal is to find the root causes of an attack. Explainable ML models 
support this investigation and build an understanding of security threats and of the vulnerability 
they exploit. It also enables to learn more information about identified attacks, classify them in 
categories and provide global trends about the type of attacks happening at a certain point in 
time. 

Resilience is naturally a primary requirement for resilient cybersecurity analytics, more 
important than explainability. In this use case, resilience relates mostly to the ability to resist 
adversarial machine learning attacks that can be launched by attackers wanting to compromise 
the system protected by a resilient cybersecurity analytic solution. The ML models used for 
resilient cybersecurity analytics have the main goal to counter cyberattacks, meaning that they 



D2.1: Accountability and Resilience Analysis   

  
SPATIAL project is funded by the European Union’s Horizon 2020 research and innovation 
programme under grant agreement N° 101021808. 

 Page 55 of 68 

 

exist only because attackers exist who want to compromise the protected system. As such, 
these ML models are natural targets for these attackers, wanting to circumvent and fool them. 
The accuracy and the availability of ML models’ predictions must remain consistently high, 
regardless of any attackers’ action. ML models must be at least as secure and resilient to 
adversarial ML attacks as the system they protect, i.e., they must not represent a weak link that 
can be easily compromised by an attacker. The security of ML models used in cybersecurity 
applications is additionally critical for the image of the cybersecurity vendor deploying them. If 
and ML-based security function gets compromised by an attacker, it is detrimental to the image 
of the vendor supposed to enforce the security of the system. 

The resilience of ML models to the most common adversarial ML attacks, like model evasion, 
model poisoning or backdooring [56] must be enforced to meet the resilience requirement. 
Resilience to attacks must be considered during the design of ML models and it must be 
completed with defences specifically designed to protect from these attacks. Resilience 
guarantees the integrity and the availability of the model, which are paramount properties to 
ensure the cybersecurity analytic functions. 

The resilience requirement is not limited to the only protection of the ML model properties. It 
is extended to protecting the confidentiality of the data that ML models used for resilient 
cybersecurity analytics are trained with. This data can be privacy-sensitive, depict user’s habits 
or contain personally identifiable information. For instance, internet browsing history is used to 
detect malicious websites, email content is used to detect spam and phishing emails, 
information about the file system and process launch is used to detect malicious programs, etc. 
These types of data contain private information from users of the protected systems, and they 
must remain confidential. ML models can leak information about the data they use during 
training through privacy attacks [57] such as model inversion or membership inference attacks. 
Resilience must enforce that data leakage from ML models is not possible and no privacy-
sensitive information should be possible to infer due to access to the ML model or its output 
predictions by an attacker. 

Considering the strong requirements for resilience and high accuracy, resilient cybersecurity 
analytics often use ensemble models such as Random Forest or Gradient-boosted trees. These 
types of models are recognized for their ability to reach top accuracy together with a relatively 
high resistance against adversarial machine learning attacks. On the downside, ensemble 
models are usually not locally explainable, but this use case can accommodate to prioritize 
accuracy and resilience over explainability. Our two applications in this use case will implement 
ensemble classifiers such as Random Forest and XGBoost. 
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4 DISCUSSION AND RECOMMENDATIONS  

In this section, we discuss the main findings of our conducted analysis regarding the 
accountability and resilience of the discussed ML models. In this context, we also want to 
identify recommendations and guidelines that can help to improve the accountability and 
resilience of the examined models. 

4.1 FINDINGS ON ACCOUNTABILITY 
The analysis performed in this document reveals that many of the high-performing ML models 
exhibit restricted local and global explainability. This shortcoming limits their accountability in 
security-critical and safety-critical applications. This is what we expected since many of the 
discussed ML algorithms (i.e., DNNs, SVMs, random forests, gradient-boosted trees, and 
XGBoost) are perceived as opaque black-boxes due to their enormous complexity. Therefore, 
their functionality is no longer transparent and comprehensible to humans. However, since 
understanding the functionality of a system is a basic requirement to make it accountable for 
its behaviour, an apparent conflict regarding limited accountability arises. Furthermore, the 
conducted analysis shows that intrinsic interpretable ML models like decision trees exist, which 
still offer a high degree of accountability. Decision trees offer an intrinsic trade-off between 
interpretability and expressive power and are, therefore, they are a good choice for applications 
that require a high degree of accountability. The downside of using decision tree is that they 
show a significantly reduced performance compared to the discussed black-box models. 
However, since efficiency and performance are of crucial importance for many applications, the 
use of black-box models will probably remain preferred in the development of ML-based 
applications.  

XAI methods can be used to provide explainability and thus improve accountability 

To enable accountability of systems based on black-box ML models, state-of-the-art XAI 
methods can be applied. In this context, methods exist that aim to explain individual decisions 
of black-box ML models and thus make individual decisions comprehensible and accountable. 
Such methods are referred to as local XAI methods and include, among others, methods like 
LIME, SHAP, or LRP (see Table 1). In contrast, global XAI methods like partial dependence plots 
or permutation feature importance exist. As the name implies, these try to provide a global 
understanding of the functioning of machine learning models. Typically, global XAI methods 
aim to explain the global relationship between the relevance of specific input features and the 
model prediction. In this context, the analysis also revealed that some black-box models exhibit 
intrinsic global explainability. For example, random forest models allow for an estimation of the 
relevance of input features to the predictions through feature importance [19].  

The best suited XAI method not only depends on the ML model but also on the application 

Table 1 summarizes the discussion about applicable XAI methods and presents an overview of 
the ML models analysed in this deliverable and their suitable XAI methods. However, it should 
be noted that while many of the XAI methods presented are theoretically applicable to certain 
ML algorithms, their practical applicability depends on the exact problem at hand. For example, 
local explainability methods such as LRP or occlusion sensitivity are typically employed for 
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explaining DNN models that process image data (e.g., CNNs). If, on the other hand, a DNN is 
used to perform network intrusion detection based on network traffic, feature relevance 
methods such as PDP or counterfactual explanations may be better alternatives.  

Expected explanations are subjective to the problem at hand and depends on user knowledge 

These two examples illustrate another challenge in applying XAI methods: explanations are 
highly subjective to the problem at hand and the knowledge of the targeted user. For example, 
non-expert users typically expect easy-to-understand low-level explanations such as the visual 
explanations provided by LIME or LRP. In addition, counterfactual explanations can be a good 
way to explain ML predictions to non-experts. Furthermore, domain-level experts may require 
more detailed explanations. Typically, they expect explanations that represent more complex 
relationships. Here, depending on the application, global XAI methods like permutation feature 
importance may be more relevant.  

Developers need to find a balanced trade-off between performance and accountability 

To conclude the discussion about the accountability of ML models, it can be summarized that 
the selection of a suitable machine learning algorithm for a specific application always depends 
on many factors. Typically, the correct choice implies a trade-off between accountability and 
performance, for which a fair balance has to be found. In general, it can be observed that the 
more performant an ML model is, the less explainable and understandable it is, causing 
accountability to suffer. This trade-off has to be taken into account by developers of ML-based 
applications. The right ML algorithms have to be chosen carefully in order to find the best 
possible trade-off between the performance and accountability of an application. 

4.2 FINDINGS ON RESILIENCE  
In addition to accountability, this deliverable also analysed the resilience of the presented ML 
algorithms against adversarial attacks. We found from the existing scientific literature (as 
summarised in Table 2) that all of the discussed ML algorithms are vulnerable to adversarial 
attacks such as poisoning attacks, evasion attacks, data inference attacks, and model stealing 
attacks. Only for gradient-boosted trees and Bayesian networks, no research studies could be 
identified for some of the investigated attack variants. More precisely, no literature could be 
identified that investigates their resilience against data interference attacks for gradient-
boosted trees. For Bayesian networks, the available literature seems to be even more limited. 
No literature could be found for Bayesian networks regarding their vulnerability to evasion 
attacks, data inference attacks, and model stealing attacks. However, we do not conclude that 
these algorithms are resilient against these attacks. Instead, we suspect that this is still a not 
well-studied area of research, and further investigations are needed. In fact, it can be concluded 
from our analysis that all discussed ML models are vulnerable to certain adversarial attacks. 
This can lead to new attack vectors for ML-based systems, which raises new security concerns 
in integrating ML algorithms into traditional systems. 

Attack success rate depends on model visibility, attacker’s knowledge, and dataset 

As a further finding of the performed resilience analysis, we want to mention that the attacker's 
success rate depends strongly on the visibility of the attacked ML model. In general, white-box 
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models are more prone to adversarial attacks than black-box models. In the former case, the 
attacker has access to the model internals, whereas the attacker has only access to the model 
output in the latter case. Furthermore, it was found that the chance of success also depends on 
the attacker's knowledge. For example, in [97], a membership inference attack in a black-box 
setting was successfully applied to decision trees. The authors showed that the effectiveness 
of the attack in terms of MIA accuracy strongly depends on the attacker's knowledge but also 
on the training dataset used. This highlights the importance of protecting access to model 
internals for a deployed ML in the operational phase.  

The effectiveness of adversarial attacks against different ML models is difficult to compare 

We would also like to briefly discuss the possibilities of comparing the resilience of different 
ML models against the attacks. Many of the studies identified in the conducted analysis 
compare the effectiveness of applied attacks between different ML models. Thereby, the 
authors sometimes come to contradictory conclusions. For example, the authors of [94] argue 
that a random forest model is more vulnerable to evasion attacks than other ML models 
because of the smaller perturbation needed to change the classification outcome. In contrast, 
the authors of [91] conclude that models based on random forests are more robust as the 
evasion rate is lower in most experiments. These different conclusions highlight that the 
efficiency of the attacks against different ML methods cannot generally be compared and 
evaluated. This is due to the fact that the concrete results and attack success strongly depend 
on the different application domains, used datasets, and different metrics used to evaluate the 
performance decrease. Therefore, the effectiveness of the discussed attacks cannot be 
compared between the different ML models in an application-independent way. 

Initial protection and defence strategies against adversarial attacks exist 

The analysis also identified some first recommendations and guidelines that offer initial 
protection and defence strategies against adversarial attacks. For example, it is crucial to verify 
the data sources and supplied data used during training, in order to protect against poisoning 
attacks. Furthermore, several suitable anti-poisoning techniques and defence strategies exist 
against poisoning attacks, such as outlier detection, Reject On Negative Impact defence [74], 
or data sanitization defences [112] [113]. Moreover, also strategies to protect against evasion 
attacks exist. For example, the authors of [94] propose Adversarial Boosting, in which the 
combination of several ML models in an ensemble fashion makes it possible to develop more 
robust systems. In addition, some software frameworks exist that implement methods to 
protect against adversarial attacks and enable robust training (sometimes referred to as 
adversarial training) of ML models, e.g., the Python libraries Foolbox [114] and Adversarial 
Robustness Toolbox [115]. In this context, when deciding on an ML model, it can be useful to 
quantify and compare the robustness of different models by using these packages. Despite the 
guidelines and defence strategies mentioned at the beginning of this paragraph, our analysis 
findings emphasize the need for modelling attacker capabilities as well as the development and 
application of more powerful countermeasures and defence strategies. 
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5 CONCLUSIONS AND OUTLOOK 

This deliverable document analysed six different machine learning algorithms concerning their 
accountability and resilience characteristics. The findings of the conducted analysis will form 
the basis for further activities in the SPATIAL project, in which resilient accountability metrics 
will be proposed and integrated into existing ML algorithms. Hence, this document is intended 
to capture insights regarding current accountability and resilience characteristics and identify 
challenges towards establishing accountable and resilient AI. The selection of the algorithms 
analysed in this document is based on their potential relevance for the four SPATIAL use cases, 
which reflect the domains IoT, 5G, cybersecurity, and eHealth. Specifically, we analysed DNNs, 
SVMs, decision trees, random forests, gradient-boosted trees, and XGBoost. 

In SPATIAL, we understand the accountability of AI as the representation of the AI models in a 
way that they can be easily understood. Therefore, explainability plays a crucial role in our 
accountability analysis, as we understand the explainability of ML algorithms as a means to 
achieve accountability. Thus, we discussed the intrinsic explainability of ML algorithms based 
on their underlying algorithmic properties. However, since our findings show that many of the 
discussed models are non-comprehensible and non-transparent black-boxes, we also analysed 
the applicability of different XAI methods. These can be used to provide both local and global 
explanations of a black-box ML model, thereby increasing the understanding of its decision-
making process. A summary of the identified applicable XAI methods per algorithm is presented 
in Table 1.TABLE 1 

Based on our investigation, we can say that the identified state-of-the-art XAI methods can 
indeed be used to improve the local and global explainability of black-box models. However, 
we have to mention that the most appropriate XAI method for an algorithm cannot be 
determined a-priori and depends on both, the task at hand and the user to whom the 
explanations are addressed. The latter is motivated by the fact that explanations are subjective 
to the problem at hand and the user's knowledge. It can be summarized that the right choice of 
the ML algorithm and appropriate XAI methods depends on the tasks' accountability 
requirements. Since typically high-performing models exhibit less accountability, selecting the 
right algorithm always represents a trade-off between required performance and accepted 
accountability, for which the developer has to find a fair balance. For a more detailed discussion 
of the summarized findings, we refer to Section 4.1.  

Besides, the ML algorithms were investigated with respect to their resilience against adversarial 
attacks (e.g., poisoning attacks, evasion attacks, model stealing attacks, and data inference 
attacks). In order to draw conclusions about their resilience against these attacks, we have 
identified recent scientific literature that has looked into the algorithms' vulnerability to these 
attacks (see Table 2). Our findings show that all ML algorithms discussed are to some degree 
vulnerable to the studied adversarial attacks. This can lead to new attack vectors for ML-based 
systems, which raises new security concerns in integrating ML algorithms into traditional 
systems. In the conducted analysis, it was identified that adversarial attacks can cause 
significant degradation of model performance (poisoning attacks), serious operational issues 
(evasion attacks), privacy issues (data inference attacks), and violations of intellectual properties 
(model stealing attacks). In addition, there are indications that the actual success rate depends 
on the visibility of the ML model to the attacker (black-box vs white-box setting) as well as the 
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used dataset and the concrete application. This highlights the importance of protecting access 
to the internals of deployed ML models from third parties and potential attackers. Furthermore, 
this suggests that application-independent comparability of the vulnerability of ML models is 
difficult, which implies that no general statements can be made about the degree of 
vulnerability of the models. As a final finding, we note that initial protection and defence 
strategies against adversarial attacks already exist. These include anti-poisoning techniques 
such as outlier detection, Reject On Negative Impact defence [74], or data sanitization defences 
[112] [113] . But also methods like adversarial boosting [94]  or robust/adversarial training can 
provide protection against adversarial attacks. In this respect, some software frameworks 
already exist that implement some of the aforementioned defence strategies and support ML 
practitioners, e.g., the Python libraries Foolbox [120] and Adversarial Robustness Toolbox 
[115]. Again, we refer to Section 4.2 for a more detailed discussion on the mentioned findings. 

In conclusion, the findings obtained in this deliverable indicate that the discussed ML algorithms 
hold different resilience and accountability characteristics. Furthermore, the findings suggest 
that selecting a suitable ML algorithm always constitutes a trade-off between performance, 
accountability, and resilience. The problem of finding an optimal balance for this trade-off 
clearly demonstrates the need for appropriate measures to compare and assess the 
accountability, resilience, and accuracy of ML models. These aspects will be the focus of further 
activities in the SPATIAL project, in which resilient accountability metrics will be proposed and 
integrated into existing ML algorithms. 

Finally, we want to mention that we only studied the resilience of ML models against adversarial 
attacks in this deliverable. However, to achieve trustworthy AI, a more wholesome approach is 
required that considers the resilience of all components of an ML-based system. This includes 
the models analysed in this document, but also traditional components and all processing steps 
of an ML pipeline. These are also aspects that the SPATIAL project will investigate in further 
activities. 
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