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Abstract 

The security of machine learning-based systems not sufficiently addressed at the 
present time. Methodologies for modelling threats and assessing the security 
posture of machine learning-based systems are required. In this document, we 
review existing approaches to threat modelling conventional and machine learning-
based systems. We identify their limitations and provide improvement directions. 
Among these solutions, we identify a comprehensive list of vulnerabilities exposed 
by machine learning-based systems and exemplify how they can be used to infer the 
extent to which machine learning-based systems are exposed to security threats. 
We perform threat modelling of both centralized and distributed training and 
inference paradigms. The result of this analysis enables the identification of fine-
grained security requirements for machine learning-based systems. 
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EXECUTIVE SUMMARY 

Artificial intelligence (AI) and machine learning (ML) based systems expose new security 
vulnerabilities that conventional computer systems do not. In order to ensure their reliability 
even in adversarial conditions, ML systems must be resilient against attacks that would exploit 
these vulnerabilities. The recommended approach to securing computing systems is via threat 
modeling where valuable assets that compose a system are listed and security threats and 
vulnerabilities that can be exploited to achieve an attack against each asset are identified. The 
result of threat modeling describes the current security posture of a system, and it is typically 
used to improve it. 

While several threat modeling approaches exist and can be applied to machine learning 
systems, they suffer from their generic yet abstract processes, which have low practical value 
if not used by experienced security experts.  These approaches usually require a high level of 
technical knowledge about the system being studied, known or potential security 
vulnerabilities, and an understanding of how attacks work. In the case of ML applications, this 
knowledge is missing because vulnerabilities and attacks that exploit them are new and still 
largely unknown to security experts. To address this issue, several new security frameworks 
specifically tailored for analyzing the security posture of machine learning systems have been 
introduced by public organizations including ENISA, MITRE, NIST, IBM, Microsoft, and 
WithSecure. These frameworks address different aspects of a security assessment, from 
threats to vulnerabilities to impact to risk. However, each framework is an individual initiative 
and there isn’t a lot of consistency between them. Moreover, they suffer from a lack of 
applicability and require significant knowledge of machine learning security. A comprehensive 
and usable standard for machine learning system security is yet to be defined. 

To improve and make machine learning security frameworks more practical, it is necessary to 
demonstrate how threat modeling of machine learning systems is performed. We attempt to 
do this by first providing a comprehensive view of the main algorithmic, supply chain, and 
deployment vulnerabilities that are specific to ML systems. Then we discuss how these 
vulnerabilities affect the security of such systems depending on a) the phases in their lifecycle: 
training or inference, and b) the deployment architecture used: centralized or distributed. This 
document aims to strike a trade-off between specificity and generalizability of presented threat 
modelling examples by examining the aforementioned inference and training paradigms. We 
conclude that no one paradigm is better from a security standpoint and each architecture 
provides different trade-offs between security, privacy, and performance. 

This threat modeling exercise enables the identification of new security requirements for 
machine learning systems to improve resilience against machine learning-specific attacks. For 
instance, data and model integrity must be enforced and verified during any exchange. The 
number of parties involved in model execution and training must be limited, and access to the 
ML model must be restricted and monitored. The security of the systems used for training and 
deployment of ML models is paramount and must be protected at all costs.  
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1. INTRODUCTION 

1.1. SCOPE AND OBJECTIVES  
Artificial intelligence (AI), or more precisely, machine learning (ML) techniques are being 
integrated into an increasing number of systems to enable intelligent automation. As machine 
learning solutions become components of complex solutions, they will also be targeted by 
cyberattacks. Vulnerabilities in machine learning solutions can jeopardize the security of the 
system they are integrated into because a complex system is only as secure as its weakest 
component. While conventional cybersecurity is required to protect large and heterogeneous 
computer systems, the security of machine learning-based systems must also be addressed.  

Machine learning systems are different in nature from conventional algorithms and computer 
programs. They learn their behavior and make decisions based on data gathered from the 
environment they are deployed in. Consequently, machine learning systems present different 
vulnerabilities, can be exposed to different threats and targeted by different attacks than 
conventional computer systems. This generates a situation where conventional approaches 
used to analyze the threats and vulnerabilities of computer systems and the means to protect 
them may not be best suited or effective when applied to machine learning systems.  

The security of computer systems is traditionally examined using threat modeling approaches. 
Tried-and-tested threat modeling methods exist to analyze conventional computer systems. 
These are generic enough to be adapted to machine learning systems but raise challenges 
regarding the large customization required to apply them. This customization can only be 
achieved using a high level of expertise in security, AI/ML, and security of machine learning, 
which is currently in short supply. Thus, a few initiatives and associated frameworks have 
recently emerged to specifically address the security of machine learning systems. However, 
and by large, these are isolated and conceptually divergent, leaving no holistic standard for 
threat modeling of machine learning systems. 

In this document, we explore security threats against machine learning-based systems and 
methods to identify them. We are interested only in the security threats that target machine 
learning systems but are irrelevant to systems not employing machine learning components. 
Since threats are an abstract concept, which exist only if vulnerabilities exist and can be 
exploited, we also cover the analysis of vulnerabilities of, and attacks against machine learning 
systems. We want to identify all major machine learning-specific vulnerabilities that can 
compromise the confidentiality, availability and integrity of machine learning models and their 
data. Using this knowledge of vulnerabilities and the attacks that can exploit them, we infer 
how machine learning systems are exposed to security threats based on a) phases in their 
lifecycle: training or inference, and b) deployment architecture used: centralized or distributed.  

This analysis will provide a more fine-grained view and present a comparison of the different 
threats against machine learning-based systems depending on design choices. It will hopefully 
enable machine learning practitioners to make more informed decisions and better ponder 
security requirements during the design and deployment of machine learning-based systems. It 
will also empower security experts with a better knowledge of machine learning-specific 
security threats and the processes required to identify them. Based on this analysis, we will also 
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infer fine-grained security requirements to help better protect machine learning-based systems 
against cyberattacks. 

1.2. STRUCTURE AND ORGANIZATION 
This document defines the necessary technical background in Section 2, including useful 
security concepts and main machine learning system architectures for training and inference. 
We also describe the threat modeling process and give several examples of existing approaches 
to threat model conventional computer systems.  

In Section 3, we discuss the limitations of conventional threat modeling approaches with 
regards to machine learning systems. We continue by presenting vulnerabilities that machine 
learning-systems expose, namely algorithmic, supply chain, and deployment vulnerabilities, and 
provide some examples of attacks that exploit them. Finally, we review frameworks that have 
been recently proposed by both the industry and public organizations to start addressing the 
security of machine learning-based systems. 

Section 4 is dedicated to security analysis of machine learning-based systems based on phases 
in their lifecycle: training or inference, and on the deployment architecture they use: centralized 
or distributed. For each paradigm, we define the access to machine learning system assets by 
the different parties involved, we identify the vulnerabilities exposed by these systems and 
describe the effectiveness and likelihood of different attacks that can exploit them. 

Finally, Section 5 concludes this document by identifying new security requirements for 
machine learning-based systems. 
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2. BACKGROUND 

2.1. DEFINITION OF SECURITY CONCEPTS 
To assess the security and model the threats against machine learning-based systems, it is 
paramount to understand the basic security concepts and terms. This section defines and 
highlights the relationship between the main security concepts, which are depicted in Figure 1. 

 

FIGURE 1: SECURITY CONCEPTS AND THEIR RELATIONSHIP TO ONE ANOTHER 

2.1.1. SECURITY ATTRIBUTE 

According to NIST Special Publication 800-53 [1] titled “Security and Privacy Controls for 
Information Systems and Organizations”, a security attribute is “an abstraction that represents 
the basic properties or characteristics of an entity with respect to safeguarding information. Typically 
associated with internal data structures—including records, buffers, and files within the system—and 
used to enable the implementation of access control and flow control policies; reflect special 
dissemination, handling or distribution instructions; or support other aspects of the information 
security policy.”   

Security attributes may be associated with either active or passive assets by means of attribute 
binding where the attribute type and value are also defined. The type and possible values of a 
security attribute depend on the context and type/values that are meaningful in one context 
may not be so in another context. By binding a security attribute to an asset, an organization 
can enforce information security policies like access control or information flow control. 
Popular attributes that find wide applicability in many scenarios are included in the CIA triad – 
Confidentiality, Integrity, and Availability. Confidentiality sets the limits of disclosure of an 
asset. Thus, a confidential asset is designed to be kept inaccessible/unreadable to all parties, 
aside from those authorized. Integrity refers to the state of an asset being unchanged or 
untampered from its original state. Finally, Availability refers to an asset being accessible when 
needed, despite system or service disruption. Nevertheless, these generic security attributes 
have to be defined and understood in the context of machine learning systems since they have 
a different meaning than for conventional systems. 
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2.1.2. VULNERABILITY 

A vulnerability in IT can be defined as a “weakness in the information system, system security 
procedures, internal controls, or implementation that could be exploited or triggered by a threat 
source” [2]. In other words, it is a flaw or a security implication that can arise due to various 
design choices in an organization’s asset associated with its information systems. An attacker 
taking advantage of such a security vulnerability could compromise the system's confidentiality, 
integrity, and accessibility. A few examples of known vulnerabilities are Heartbleed, 
Shellshock/Bash, and POODLE [3]. Tainted datasets and unrestricted access to model 
parameters on deployed machine learning models can be considered vulnerabilities in the 
domain of AI/machine learning security.  

The Common Vulnerabilities and Exposures (CVE) is the de facto international standard for 
identifying vulnerabilities that feed into the US National Vulnerability Database [4]. CVE is an 
international, community-driven effort to identify, define, and catalogue publicly disclosed 
cybersecurity vulnerabilities, and is used globally to drive vulnerability awareness. CVE is an 
open data registry and vulnerabilities can be conveniently accessed via their assigned CVE IDs 
by any stakeholder who wishes to protect their systems against attacks.  

Vulnerabilities can go undetected during the implementation/design phase for various reasons. 
In an informed environment, certain design decisions are taken based on the severity of the 
vulnerability, and reasonable amendments are made to mitigate the security risk through 
suitable security control methods. In this way, the security attributes of the organization’s 
assets are preserved in the stakeholders' interests.   

2.1.3. THREAT 

A threat can be defined as "any circumstance or event with the potential to adversely impact 
organizational operations (including mission, functions, image, or reputation), organizational assets, 
or individuals through an information system via unauthorized access, destruction, disclosure, 
modification of information, and/or denial of service. Also, the potential for a threat-source to 
successfully exploit a particular information system vulnerability" [2]. An adversary exploiting 
system vulnerabilities can give rise to threats causing impairment on asset confidentiality, 
integrity, and/or availability.  

A threat in a system can give rise to more threats causing a chain reaction effect. It is vital to 
identify a threat's origin (human or natural such as earthquakes, power failures, etc.) and source 
(intent and method) before applying suitable threat management and control techniques [5]. 
Security threats can be identified through threat modelling and analysis.   

2.1.4. ATTACK 

An attack is defined as “an operation, whether in offence or defence, intended to alter, delete, 
corrupt, or deny access to a computer data or software for the purposes of propaganda or deception; 
and/or partly or totally disrupting the functions of the target computer, computer system or network, 
and related computer-operated physical infrastructure if any; and/or producing physical damage 
extrinsic to the computer, computer system or network” [6]. An attacker may attempt to exploit a 
vulnerability of a system to materialize an actual attack. To achieve the objectives of an 
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attacker, they can follow characteristics of being harmonized, organized, launching in enormous 
scales, being regimented, scrupulously designed with demanding time and resources [7].   

Examples of attacks include security attacks such as Denial of Service (DoS), eavesdropping, man-
in-the-middle (MITM) attacks; privacy attacks, including Data Reconstruction Attack (DRA), 
Property Inference Attack (PIA), and Membership Inference Attack (MIA). In the domain of machine 
learning, two example categories of attacks are poisoning attacks and evasion attacks.   

2.1.5. SECURITY RISK 

In the former standard, security risk is defined as “a measure of the extent to which an entity is 
threatened by a potential circumstance or event, and typically a function of: (i) the adverse impacts 
that would arise if the circumstance or event occurs; and (ii) the likelihood of occurrence”, according 
to NIST SP 800-30 “Guide for Conducting Risk Assessments” [8].  

The common understanding of security risk is considered the triplet, including assets/values, 
threats, and vulnerabilities. The most generic version of three-factor perspectives is as follows: 
Security risk = f(asset value, threat, vulnerability), where f denotes a function, for example a 
multiplication. The security risk assessment model [9] consists of four principal steps as follows:  

● Identification. Identify all critical assets in the system and relevant sensitive data. For 
each critical asset, create a risk profile.  

● Assessment. Assess identified security risks for critical assets, and analyze the 
correlation between assets, threats, vulnerabilities, and mitigating actions and then 
determine how to plan risk mitigation.  

● Mitigation. Define a mitigation action and enforce security controls for each identified 
security risk.  

● Prevention. Finally, implement and deploy tools to minimize threats and vulnerabilities.  

2.1.6. ASSET 

In general, an asset is defined as “an item of value to stakeholders, that may be tangible (e.g., a 
physical item such as hardware, firmware, computing platform, network device, or other technology 
component) or intangible (e.g., humans, data, information, software, capability, function, service, 
trademark, copyright, patent, intellectual property, image, or reputation)”, according to NIST SP 
800-160 Vol. 2 [10]. Furthermore, the value of an asset is determined by stakeholders based 
upon the value of the loss of this asset during the whole life cycle of the system.  

In the cybersecurity domain, an asset is any data or device owned by an organization, that is 
involved in system activities, including hardware (e.g., servers and switches), software (e.g., 
critical applications) and confidential data. Therefore, security assets are prime targets for 
various vulnerabilities and threats. The principal goal of information security controls is to protect 
and ensure the security attributes, including confidentiality, integrity and availability (CIA), of 
assets from cybersecurity attacks, illegal access, use, disclosure, alteration, destruction, and 
theft. Security experts must assess the impact of each potential threat and then apply 
appropriate mitigation actions.  
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2.1.7. SECURITY CONTROL 

Security controls are safeguards and countermeasures designed to protect the security 
attributes of an asset: confidentiality, integrity and availability. They are used to reduce the 
security risk related to the asset by mitigating its vulnerabilities. Security controls are 
implemented by or on the asset to improve its security. They can be the following:  

● Corrective controls are meant to limit the impact of a security incident, e.g., by patching 
the existing vulnerability. 

● Detective controls are meant to identify a security incident, e.g., by deploying a method 
to detect attacks that exploit the vulnerability. 

● Preventive controls are meant to prevent a security incident from occurring, e.g., by 
blocking attacks that exploit the vulnerability. 

● Deterrent controls are meant to dissuade attackers from causing a security incident, e.g., 
by defining sanctions for exploiting the vulnerability. 

Security controls can be further classified according to the way they are implemented. They 
can be physical, procedural/administrative, technical or legal/regulatory. This report is primarily 
aimed at technical security and machine learning experts. Consequently, and for the sake of 
conciseness, we primarily focus on technical controls meant to address technical vulnerabilities 
in machine learning systems.  

Security controls are often mapped to information security standards. Their implementation 
ensures that information systems comply with defined security standards in addition to 
improving the security of systems on which they are deployed. For example, the ISO/IEC 27001 
standard for information security specifies 114 security controls to protect information systems 
[11]. The National Institute for Standards and Technology (NIST) cybersecurity framework also 
lists over 100 security controls in its core definition [12].  

Security controls are linked to the mitigation specification of well-known vulnerabilities, such 
as the ones listed in the Common Vulnerabilities and Exposures (CVE) repository [4], to indicate 
which control(s) can mitigate each identified vulnerability.  

2.2. MACHINE LEARNING SYSTEM ARCHITECTURE 
The security threats and risks towards a system can be partially understood through its attack 
surface. An attack surface is the set of functionalities that can be interacted with, and that might 
allow an adversary to affect the functioning of the system. In a typical information system, the 
attack surface consists of its interfaces (machine-to-machine interfaces and user interfaces), 
and where an attacker could execute code, or intercept or modify stored or transferred data. 
To understand the attack surface of machine learning systems, we present their architecture, 
first on a general level and then based on different architectures that exist for training machine 
learning models and using them for inference.  

2.2.1. MACHINE LEARNING SYSTEM OVERVIEW 

2.2.1.1. Machine learning pipeline & machine learning model lifecycle 
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The attack surface of machine learning systems significantly resembles the attack surface of 
traditional software systems. Figure 2 shows a typical machine learning pipeline with the main 
assets that interact with the machine learning model at different stages of its lifecycle.  

 
FIGURE 2: OVERVIEW OF A MACHINE LEARNING PIPELINE, FUNCTIONALITY AND DATA FLOWS 

From right to left, the 'intelligent' predictions or decisions in the picture are performed by the 
machine learning model, which is the asset deployed as a part of the operational system. The 
machine learning model infers predictions based on inputs, usually through a programming 
interface (the API boundary in the picture). 

Before a machine learning model is deployed, it is trained. The training process involves feeding 
the model various inputs and changing the model's parameters until it makes expected 
predictions. The model may be based upon an existing pre-trained model, thus reducing the 
training effort. The training process also relies on external libraries that implement common 
machine learning training algorithms and serialization algorithms to store and transfer both data 
and machine learning models. As a part of the training process, the model will also be validated, 
using a separate set of data reserved for that purpose. The machine learning model may also 
be re-trained, occasionally or continuously (online learning), and re-validated each time this 
happens. 

Training and validation data are provided through data sources and a data storage system, on 
the left-hand side of the picture. Data sources can be numerous and of different types, including 
private customer data, public data from a repository, and commercial data. 

The assets in this figure can be divided in three categories: 

● Assets that are common to both conventional software systems and machine learning 
systems, and that can be protected using conventional security approaches. These 
include: 

○ External libraries and tools, e.g., those used for training and data handling 
○ Platforms, e.g., used for storage, training and deployment  
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○ The query interface towards the machine learning model 
● Assets that exist both in conventional software systems and machine learning-based 

systems, but have different characteristics in the case of machine learning systems 
(discussed in the following section): 

○ Inputs to inference, which are analogous to inputs of a traditional, non-machine 
learning software 

○ Output predictions, which are analogous to the outputs of traditional software 
○ The machine learning model itself, which is analogous to a traditional software 

that processes inputs and produces an output 
● Assets specific to machine learning systems: 

○ Data sources 
○ Training and validation data and associated processes 
○ Pre-trained model(s) 

2.2.1.2. Specificity of machine learning systems 

In contrast to a traditional software program, the behavior of a machine learning model is 
learned from the data it is trained with. This has four main implications that, compared to 
conventional software systems, increase its attack surface, and introduce new vulnerability 
types. 

First, as the model behavior is learned from training data, information contained in the training 
data is inherently embedded into the machine learning model and by transitivity into its 
predictions. This means that the machine learning model and its predictions could be used to 
compromise the confidentiality of the training data and its data sources, even if the training 
data is well protected using encryption and secure storage mechanisms.  

Second, the fact that the model behavior is learned from data means that an attacker can 
compromise a machine learning model by compromising its training data or its data sources. 
Any compromise (e.g., loss of integrity) of these assets prior to training will be transferred into 
the model during training. 

Third, it is hard to verify machine learning models. Unlike traditional software libraries, it is 
difficult to read the code of a machine learning model and identify potential flaws and threats 
(which can be further aggravated by the non-deterministic decision-making of some models). 
Furthermore, while input-output-based validation of machine learning models can produce 
statistical evidence of their expected functionality, validation results cannot prove their 
correctness for all the possible inputs. This naturally brings about supply chain attack risks since 
third-party machine learning models are often used either “as is” or as a foundation for training 
other models. 

Fourth, it is difficult to reliably detect adversarial data inputs, both for training and for inference. 
The reason why machine learning is used in the first place is to cope with the fact that we 
cannot define explicit rules to model some data or a phenomenon in an explicit manner. 
Consequently, there are typically no easy and scalable means to decide whether some input 
data is benign or malicious. Although a generic input format can be defined for expected inputs 
(e.g., a picture could be defined through its bitmap size and color depth), this level of input 
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syntax definition is generally too broad to detect adversarial inputs. This broad definition of 
input is often a requirement, since inputs are taken from the environment in which the machine 
learning system is deployed or from its users, and such input spaces cannot be narrowly defined. 
It also means that attackers can compromise machine learning systems by manipulating their 
environment or by controlling some of their users. 

These four implications explain why machine learning systems expose additional and different 
vulnerabilities compared to traditional software systems. These new vulnerabilities also imply 
the exposure to additional and different threats that must be considered when assessing and 
implementing security in machine learning systems. 

2.2.2. TRAINING ARCHITECTURES 

Model training is the most time- and resource-consuming stage of a machine learning pipeline 
(see Figure 2). The performance, efficiency, and scalability of this process are of utmost 
importance. To improve training, three approaches and corresponding training architectures 
have been established in recent years. Each architecture enables different security threats and 
vulnerabilities.  

2.2.2.1. Centralized training 

In centralized training, the training process is centralized on a single server, where both the data 
and the machine learning model are stored in one place [13]. This training paradigm is depicted 
on the left side of Figure 3. Data is collected from one or several data sources. Nowadays, to 
be able to process the steadily increasing amount of available data [13] [14] and achieve scaling 
at industrial levels, the central server is typically a high-performance computer equipped with 
one or more Graphical Processing Units (GPU) that enable the large number of parallel 
arithmetic operations typically needed during training. Such a machine offers sufficient 
computational, storage, and memory resources to be capable of consuming all the data and 
iteratively optimizing the machine learning model during training. The advantage of this 
approach is that the full knowledge represented in the data is directly available during the model 
optimization process. A centralized training architecture does not require any synchronization 
processes.  

The centralized approach comes with some drawbacks. First and foremost, a centralized 
training architecture does not scale well with larger amounts of data or model parameters. In 
recent years, a steadily increasing trend towards more and more available data has been 
observed [13] [14]. This elevated data availability enables the development of even more 
complex and higher-performing machine learning models with an exponentially increasing 
number of parameters [15]. However, central servers have reached their limits in terms of both 
storing and processing data and model parameters [13] [15]. To cope with an increased amount 
of data and model parameters while still maintaining a centralized training architecture, the 
central server would need to be scaled vertically by enhancing its computing and storage 
capacities or utilizing hardware that is specially designed and optimized for machine learning 
processes (e.g., TPUs, ASICs, or FPGAs) [15] [16]. However, this approach is very cost-intensive 
and limited by current technological developments as well as physical constraints (e.g., minimal 
transistor size and corresponding chip size) [14]. Another disadvantage is that the central server 
represents a single point of failure in the underlying system. If the operation of the server is 
disrupted, the whole training process may be compromised. 
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FIGURE 3: SIMPLIFIED AND SCHEMATIC ILLUSTRATION OF THE CENTRALIZED TRAINING (LEFT), DISTRIBUTED 
TRAINING (CENTER), AND FEDERATED LEARNING (RIGHT) ARCHITECTURES. THE DEPICTED DISTRIBUTED 

TRAINING ARCHITECTURE REPRESENTS A DATA PARALLELISM APPROACH.  

2.2.2.2. Distributed training 

Distributed training overcomes the scaling problems of a centralized training architecture [14] 
[15]. In this scenario, a horizontal scaling approach (also known as "scaling out") is adopted [15]. 
More precisely, the workload of the machine learning training process is distributed across 
several worker nodes, and the execution of the training process is parallelized. In the distributed 
training process, multiple worker nodes jointly develop a common machine learning model. This 
allows for a significant increase in efficiency, as individual resources can be better utilized [15], 
and thus, training time can be reduced. This approach is more cost-effective than vertical 
scaling for the training of larger models since training on expensive hardware is replaced by 
distributed training on low-cost hardware instances [15]. However, this methodology comes at 
the cost of increased network communication. Distributed training requires intensive 
communication and regular synchronization between worker nodes [14]. As a result, the 
network connectivity between worker nodes influences the efficiency of the entire training 
process and, therefore, represents a bottleneck in this architecture [14]. A network topology 
with high bandwidth and low latency between the worker nodes is essential. In general, two 
fundamental paradigms of distributed training exist - data parallelism and model parallelism.  

Data Parallelism  

A distributed training approach that follows the data parallelism method is depicted in Figure 
3. In this paradigm, training data is partitioned into equally sized chunks and shared with worker 
nodes, which use their local data partitions to train local models in parallel. Local models are 
then aggregated into a global model. Data parallelism is typically used to accelerate the training 
process, or when training data is too large to be processed or stored on a single machine.  
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The most common data parallelism implementations use a central parameter server, depicted 
in the center of Figure 3. The parameter server is responsible for synchronizing and aggregating 
local models. After data is partitioned and distributed amongst worker nodes, the parameter 
server randomly initializes the parameters of a global model prior to the first training iteration. 
Next, the parameter server sends the initial model weights to all worker nodes. Worker nodes 
initialize their local models on these weights and then start to train on their local data partition. 
Once a local training epoch is completed, worker nodes send their updated local model 
parameters to the parameter server, which aggregates all interim results in the global model by 
averaging received parameters. The parameter server then sends the updated global model 
weights to each worker node. These steps are repeated until the parameter server measures a 
satisfying performance (e.g., accuracy) in the global model. Since the parameter server 
manifests a bottleneck and single point of failure in this approach, this role is typically replicated 
[14]. Multiple worker nodes typically act as parameter servers, which then coordinate the 
aggregation of the global model. This approach can be extended to a point in which no 
parameter server is required, and the worker nodes are directly connected in a peer-to-peer 
manner [15].  

Model Parallelism  

In distributed training, model parallelism is an alternative strategy to data parallelism. This 
approach is particularly advisable when a machine learning model is too complex, has too many 
parameters, and cannot be processed or stored on a single machine. In such scenarios, model 
parallelism is a way to distribute the complex model over several nodes. As the name suggests, 
model parallelism does not partition the data but the machine learning model itself. Individual 
components (i.e., layers in the case of deep neural networks) of the machine learning model are 
distributed to worker nodes, where they are incrementally improved and used for collective 
inference. In this scenario, all worker nodes have access to the entire training data set. Since 
individual parts of the machine learning model are distributed among the worker nodes, both 
training and inference require communication between all worker nodes. Two distinct 
approaches exist to implement model parallelism and partition the underlying machine learning 
model, namely vertical and horizontal partitioning [14]. In the former, the machine learning 
model is split between its layers, and individual layers are distributed to worker nodes. In 
contrast, in horizontal partitioning, the layers of the machine learning model are partitioned, 
and a worker node manages partitions of multiple layers. Both approaches are depicted in 
Figure 4 and discussed in more details in Section 2.2.3.3.  

2.2.2.3. Federated learning 

A special form of distributed training that implements an extreme form of data parallelism is 
called Federated Learning (FL). Federated learning aims to preserve privacy by not requiring 
clients to share local data with a central server. Instead, only updates from a locally trained 
machine learning model are shared [17] [18]. Therefore, federated learning is beneficial for 
applications where data privacy is essential. It can also be applied when the training data is 
already highly distributed. In such cases, federated learning avoids the communication 
overhead of sending the distributed data to a central repository. The high-level concept of 
federated learning is illustrated on the right side of Figure 3. This approach allows multiple 
clients to jointly train a common machine learning model without ever revealing their local data. 
Instead, the clients use their local data to iteratively train a local model, which is then sent to a 
central parameter server. After each training iteration, the parameter server aggregates the 
local client models into a global model using an algorithm called FederatedAveraging (FA) 
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[17]. McMahan et al. introduced this algorithm to deal with the problem of unbalanced and 
non-iid data present in the federated learning scenario [17]. In federated learning, the data is 
not equally distributed among clients. More precisely, each client can collect a different amount 
of data that could even follow different distributions in contrast to what global data aggregation 
would do (e.g., some labels can be overrepresented or underrepresented on some clients). 
Hence, a naive averaging of machine learning models independently trained on distinct non-iid 
subsets would result in an arbitrarily weak aggregated model [17]. Therefore, FA follows a 
different approach.  

In the very first step of the FA algorithm, a global model is initialized with random weights and 
shared with all clients. The remaining steps of the FA algorithm can be described as follows [17] 
[18]. The parameter server randomly picks a subset of clients and shares the current global 
model with them. Next, those clients update their local replica of the model using their local 
data. Afterward, they share their updated model parameters with the parameter server in a 
synchronized fashion. The parameter server then aggregates the gathered model parameters 
by using a weighted sum of the individual parameter updates. This procedure is repeated until 
a satisfying global model is achieved.   

There exist alternative peer-to-peer federated learning architectures which do not rely on a 
central parameter server for aggregation. Local models are exchanged between clients and 
aggregated by the clients themselves. While still protecting the data confidentiality, peer-to-
peer federated learning has a large communication overhead since local models need to be sent 
more than once to each client participating. Also, the convergence to a single global is complex 
and requires the implementation of some consensus mechanisms, which further increases the 
communication and computation overhead for each client. To cope with these overheads, some 
hybrid federated learning architectures have also been developed. 

2.2.3. INFERENCE ARCHITECTURES 

Inference is the process where a trained machine learning model is used to produce output 
predictions based on inputs. Data inference is a lighter operation than model training but it can 
still cause constraints on resources such as time, bandwidth, and memory, based on the volume 
and type of data that needs to be processed. Further, inference depends upon how the model 
is stored in the network, as shown in Figure 4. We discuss below different ways of storing a 
model and performing inference based upon the scenario in question.  



D1.2: Security threat modeling for AI-based systems   

  
SPATIAL project is funded by the European Union’s Horizon 2020 research and innovation 
programme under grant agreement N° 101021808. 

 Page 22 of 59 

 

 

FIGURE 4: SCHEMATIC DIAGRAM FOR CENTRALIZED INFERENCE (LEFT), LOCAL INFERENCE (CENTER), AND 
DISTRIBUTED INFERENCE (RIGHT) ARCHITECTURES.  

2.2.3.1. Centralized inference 

Centralized inference is performed when the machine learning model is stored on a central 
server. This is the traditional way of storing machine learning models, where the model is large, 
and clients may not have enough storage or computational capacity to perform inference. 
Clients and servers engage in a client server protocol, where the client creates a query-based 
communication for the inference tasks, as shown on the left in Figure 4. Typically, this scenario 
exists in a cloud computing architecture, where most of the computation is performed on the 
server and the network bears only the communication costs.  

Since each input is sent to the server for inference, this type of communication process may 
pose privacy risks for sensitive data and security risks while transmitting data over the network. 
If the processing power of the edge device can support data pre-processing, like feature 
extraction, these tasks are typically performed locally before sending data over the network, 
which can reduce the privacy exposure. This can also help to distribute the processing between 
client and server.  

Central inference can also incur delays as it is dependent on communication with the server. 
Sending queries to a server and waiting for a response increases communication time and can 
also cause network congestion and packet loss for high volume data. Thus, this type of 
inference is problematic for time-sensitive applications like autonomous vehicles or healthcare 
applications. Further, communication is also dependent on the availability of the server, and 
systems such as these also suffer from a single point failure. Thus, the failure of the central 
server can cause the whole application to fail.  

For data types with higher memory requirements (such as images and videos) and for high 
volume data, high bandwidth communication is required, and APIs for big data can be used to 
enable more efficient communication. Data from different sources can also be aggregated and 
sent for efficient use of bandwidth. Some applications that support this type of communication 
are REST APIs for inference querying, and open-source big data platforms like Hadoop and 
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Apache Spark. These libraries can also perform batch inference for high influx inference 
requests on a network.  

2.2.3.2. Local inference 

Local inference can be performed where the machine learning model is small enough to be 
stored on a local device. If there exists a global model in the network, a copy of such a model is 
stored at the edge, as illustrated in the center figure of Figure 4. Otherwise, a locally trained 
model can be used for inference. Local inference also enables special cases of federated 
learning where the global model can be retrained using local data and without further 
aggregation, to create a more personalized model. This type of inference can be used in 
applications needing more tailor-made results based upon one’s preferences. Since inference 
data is locally accessed and does not need to be transmitted over the network, this method also 
preserves privacy. Thus, it is also suitable for applications that deal with sensitive content, such 
as personal data.  

Since no data is transmitted over the network, local inference also has low communication costs 
and network congestion is low during inference. This method can be used for time-sensitive 
applications such as autonomous driving, where latency and transmission overhead need to be 
minimized. Thus, this method supports fast computation and can provide a better user 
experience. Nevertheless, the speed of inference also depends on the data type and hardware 
used. NVidia Jetson is an example of a high-performance piece of hardware that provides high 
speed edge computing solutions. It comes with an inbuilt GPU for parallel computing and high-
speed interface to support larger volumes of incoming data [19]. In addition, plug-in devices 
like Intel Neural Compute Sticks can also be used to perform local inference on resource 
constrained edge devices. They do not come with GPUs but do contain specialized hardware 
acceleration units designed for deep neural network inference [20].  

2.2.3.3. Distributed inference 

Distributed inference is performed when a machine learning model is too big to fit on a single 
entity such as an edge device. This process is often used when devices do not contain enough 
memory to run the full model. In such cases, a machine learning model is split into parts and 
distributed over several devices (worker nodes) across a network, as shown on the right in 
Figure 4. Each device runs part of the machine learning model and participates in each inference 
step.  

Deep neural networks are a type of machine learning model that may need to be split such that 
they can be run on edge devices. Some deep neural networks (such as those used for visual 
classification and segmentation) contain multiple layers of convolution and pooling in their 
architecture. These types of deep neural network can be distributed in one of two ways. Layer-
wise splitting assigns each layer to an individual device as shown in Figure 5.  In cases where 
even a single layer is too computationally expensive to fit on a device, individual layers are split 
across convolutional units as depicted in Figure 6.  
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FIGURE 5: LAYER-WISE SPLITTING OF THE NEURAL NETWORK  

 

 FIGURE 6: SPLITTING ACROSS THE LAYERS OF THE NEURAL NETWORK MODEL  

 

Layer-wise splitting  

In layer-wise splitting one or more layers are distributed across different devices of the network 
based upon their computational capabilities. As shown in Figure 5, layer-wise computation 
happens in a sequential manner where each device with lower layer (early stages of the 
network) communicates with the next layer. Each device runs an independent task that can be 
computed individually. Results are passed to the next device in the sequence, and so on. One 
drawback to this approach is that the devices later in the sequence must wait for the previous 
devices to finish their tasks. Task division is based on cluster properties such as the number of 
workers and their computational capacities. Neural networks of the type discussed usually 
contain higher dimensionality layers at the start, designed to learn the fine-grained information. 
Lower layers reduce in size due to high dimensional convolutions. When a model such as this 
is split layer-wise, computational requirements gradually decrease further down the layers. To 
handle layers with computational constraints not suited to edge devices, high-dimension layers 
can be offloaded to the cloud [21].   

Across-layer splitting   

In this type of splitting, some, or all the layers of the convolutional network are split into a 
predefined size based on the computational capacity of the edge devices in the network. Since, 
in neural networks, the low layers are computationally expensive, their computation is divided 
across multiple devices, as depicted in Figure 6. One drawback of this method is that the devices 
cannot complete their tasks independently. They need to communicate with multiple devices 
during the execution of their task as the computation of each layer is dependent on the outputs 
of the previous layers from different devices. Thus, there is a need for communication with 
different devices after the execution of each layer. This increases communications overhead on 
the network.  Another drawback of this method is related to the difficulty of providing 
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explanation for decisions that are computed for part on different devices. A global picture of 
the decision process is usually required to provide explainability. 

2.3. THREAT MODELING 

2.3.1. RATIONALE AND GOAL 

Threat modeling is a process by which an asset and its environment are examined through the 
lens of security. It is a theoretical exercise that aims at improving the security of an asset or a 
system by identifying and understanding potential threats against it. This process allows 
countermeasures that can prevent or mitigate the effects of these threats to be defined. Threat 
modelling aims to capture, structure, and analyze all the information that affects the security of 
a system. It enables informed and rational decision-making about the security efforts required 
when designing and deploying a system, considering the security risk associated with it. It also 
documents the security posture of a system, which can be used as assurance in the situation 
where a security incident happens.   

The threat model resulting from the exercise typically includes the following elements: 

● A description of the system to be modeled, its functions and components. 

● A list of the system’s interactions and parties who can interact with it. 

● Assumptions about how the system works, which can be validated or challenged. 

● A list of potential threats to the system. 

● A list of vulnerabilities that can be exploited by attacks that realize defined threats. 

● Security controls that can be used to mitigate threats and attacks. 

● An approach to validate the model, the threats, and the effectiveness of defined 
controls. 

In addition to producing a “model of threats”, the process also identifies potential vulnerabilities 
and a prioritized list of security improvements to the design, implementation, and deployment 
of the analyzed system. 

Threat modeling can be applied to a wide range of systems and serves as an integral part of the 
development lifecycle of any system, from the design phase, through the development phase, 
and onward after the system is deployed and running. Systems get updated, their environments 
evolve, and threats against them also evolve, causing the need to reassess their security at 
different stages during their lifecycle. The process remains the same, but the information 
becomes more granular as the definition of the system is refined, starting from a conceptual 
and high-level threat model, and refining it throughout the system’s lifecycle. The threat model 
must be at least updated when security incidents occur, new features are released, and when 
architectural changes are made. 

Threat modeling can bring many benefits that go beyond traditional security. It enables the 
identification of security requirements, it can be used to predict new forms of attack, and it can 
be used to think about threats beyond conventional attacks that relate to the specific 
application and workings of the system in question. It is a tool of anticipation, to detect 
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problems before starting implementation, to spot design flaws that testing, and code review 
would overlook, and to remediate problems before they have a negative impact. 

Threat modeling is an integral part of security risk assessment. In contrast to risk assessment, 
threat modeling puts the asset at the center of the exercise, brining focus onto what an 
organization deems most important. Each threat model is tailored to a particular system and is 
very application specific. The threat modelling process often ignores cost in favor of focusing 
on determining the impact of a security attribute being compromised should a threat realize. 

2.3.2. EXISTING APPROACHES 

2.3.2.1. STRIDE 

The STRIDE framework is a threat modelling and security requirements gathering approach 
proposed in 1999 by Microsoft [22]. This method was developed in the context of Microsoft’s 
Security Task Force and was recommended for use to secure all Microsoft products [22]. Today, 
STRIDE continues to be a standard threat modelling approach used by Microsoft and is even 
integrated into the Microsoft Threat Modelling Tool [23]. The STRIDE method structurally 
identifies threats, vulnerabilities, and security requirements during the design phase of an IT 
system. STRIDE’s goal is to determine and collect a list of threats and vulnerabilities as soon as 
possible by systematically analyzing the attack surface of a system and identifying critical assets 
and services. Subsequently, developers and system designers can immediately react to the 
identified threats and derived security requirements by adapting the system’s design. Thus, 
potential threats can be eliminated, or sophisticated mitigation approaches implemented. 
STRIDE divides threats and security requirements into six different categories. These can be 
derived from its name since STRIDE is a mnemonic that stands for [22]:  

● Spoofing identity. In this threat category, attackers pretend to be a known entity 
attempting to gain access to a system. For example, attackers could obtain the 
credentials of legitimate users and use this authentication information to access a 
system. Thus, identity spoofing violates the authentication of the underlying IT system.  

● Tampering with data. Here, threats describe the malicious modification of (sensitive) 
data without authorization. The attacker's goal is to stay undetected as long as possible. 
As a result, this threat category affects the integrity of the system.  

● Repudiation. This category describes threats in which an attacker or malicious user 
cannot be traced for executing a (potentially dangerous) operation, or the execution can 
be denied. As the name implies, this violates the non-repudiation security property of 
an IT system.  

● Information disclosure. This class of threats describes the publication or access of 
(sensitive) information to unauthorized entities. Any disclosure of sensitive information 
would violate the confidentiality of the system.  

● Denial of service. This group describes threats that attempt to exhaust the resources 
(e.g., computational or storage resources) of a service so that it is temporarily 
unavailable. Such attacks damage the availability of the underlying IT system.  

● Elevation of privilege. In this final category, threats that allow unprivileged users to gain 
privileged access to system components or operations are gathered. By exploiting this 
unauthorized access, malicious users can compromise and significantly damage the 
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underlying system. Therefore, the elevation of privileges violates the authorization 
mechanisms of a system.  

2.3.2.2. P.A.S.T.A. 

PASTA is a popular threat modeling framework introduced by Uceda-Vélez and Morana in 2015 
and which stands for Process for Attack Simulation and Threat Analysis [24]. The PASTA 
framework abstracts the system under examination in seven steps to be carried out as the 
system is being designed. This methodology can also be applied to existing systems. The main 
goal of the PASTA framework is to provide a holistic view of the threat landscape by considering 
both technical requirements and business objectives. Different from alternative threat modeling 
frameworks, PASTA considers business context to determine the impact that threats may have 
on business. PASTA allows analysts to simulate attacks and thus determine potential threats 
and devise possible countermeasures. As PASTA mainly focuses on attacks, it is defined as a 
“risk-centric” framework and provides as its output a list of threat-score pairs that may help 
practitioners evaluate the vulnerabilities of their systems. The seven stages of PASTA are as 
follows:  

● Identify business objectives as well as security and compliance requirements  

● Capture the system boundaries and the dependencies between hardware and software 
components  

● Decompose the application into elementary units that can be further analyzed for threat 
modeling  

● Enumerate threats and attacks by prioritizing the most probable ones  

● Map vulnerabilities in the system to threats identified in the previous steps. 
Vulnerabilities found during this step should be enumerated and scored with standard 
tools.  

● An attack modeling stage then uses formal methods for attack analysis that identify how 
attacks can leverage system vulnerabilities.  

● The last stage is used to quantify business impact and identify risk mitigation 
strategies.   

2.3.2.3. Trike 

Trike [25] is an open-source threat modeling methodology which focuses on a requirements 
model designed to ensure that the level of risk assigned to each system’s asset is acceptable by 
its stakeholders. The Trike threat modelling methodology consists of two models, namely 
Requirement Model and Implementation Model [26].  

● Requirement Model is the foundation of Trike, enabling coordination among 
stakeholders and different teams to identify security characteristics of a system – its 
intended actions, its assets, and who interacts with the system. It defines which existing 
rules apply to intended actions, and then builds an actor-asset-action matrix to 
represent all the data in a convenient tabular format.  

● Implementation Model aims to provide a Data Flow Diagram (DFD) to illustrate both 
the data flow and user performed actions within a system. It first identifies unintended 
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actions in the system and how they interact with the system’s states. It then maps those 
actions and states of the system into the DFD, enabling a clearer understanding of the 
implementation of the system’s components.  

Trike aims to build a risk model from the completed threat model based on all collected data 
from previous steps, for example assets, roles, actions and threat exposure. It is used to first 
create attack graphs representing all possible attacks that can compromise the system. The 
Trike model assesses the threat risk values using a five-point probability scale for CRUD (a.k.a., 
“create”, “read”, “update”, and “delete”) actions and evaluates actors based on their permission 
level for each action (e.g., “always”, “sometimes”, and “never”). Based on the calculated threat 
risk values (e.g., by “simply multiplying threat exposure by the largest applicable vulnerability risk” 
[2]), it then defines security controls or mitigating actions to address prioritized threats and 
assigned risks.  

However, as the Trike model requires some human intervention to perform an attack surface 
analysis of a system before threat assessment and assignment of acceptable risk scores, it is 
challenging to apply in large and complex systems. Also, the Trike model is not scalable in 
nature. Moreover, the usage of the Trike model is limited because its versions 1.5 and 2.0 have 
not been well documented.  

2.3.2.4. DREAD 

The DREAD model [27], which has been proposed by Microsoft, “quantitatively assesses the 
severity of a cyberthreat using a scaled rating system that assigns numerical values to risk 
categories”. The DREAD model allows security teams to better understand security risks and 
then to quickly reduce risks to an acceptable level. The DREAD model consists of five 
components to calculate the risk rating for a given threat by asking the following specific 
questions.  

● Damage (D): How bad is the problem? This component enables understanding of the 
potential damage a particular threat is capable of causing.  

● Reproducibility (R): Does the attack work reliably? This component identifies how 
reliable the attack is and how easy it is to replicate.  

● Exploitability (E): How much work is it to launch the attack? The main goal of this 
component is to analyze the system’s vulnerabilities and to discover how much 
expertise and effort an attacker must put in to launch the attack on the system.  

● Affected Users (A): How many users would be affected by the attack, for example all 
the users or just some of them? 

● Discoverability (D): Is it easy to detect the attack? This component aims at determining 
how easy it is to identify and detect potential cyberattacks in the system infrastructure.  

The DREAD model is solid because of the independence between its five factors. The overall 
threat rating is calculated by summing the scores obtained across these five factors. Inputs are 
weighted between 0 and 10. Depending on the overall threat rating, the risk severity categories 
for a threat are assigned to critical, high, medium, and low. Overall, the DREAD model enables 
calculation, comparison, and prioritization based on the severity of discovered threats. 
Furthermore, the DREAD model is customizable and adaptable to almost any situation.  
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However, the major disadvantage of using the DREAD model is that extensive cybersecurity 
expertise and up-to-date domain knowledge about potential attack vectors and vulnerabilities 
is required to ensure that risk analysis is complete and accurate.  
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3. THREAT MODELING MACHINE LEARNING SYSTEMS 

3.1. LIMITATIONS OF EXISTING THREAT MODELS 
As discussed in Section 2.3.2, many threat modelling approaches such as STRIDE, DREAD, and 
Trike were developed to analyze and improve the security of information and software systems. 
Given these approaches are generic enough to be applied to literally any system, it follows that 
they should be suitable for analyzing the security of machine learning systems. The initial steps 
of threat modeling relate to developing a system description – its functions, components, 
parties interacting with it, and assumptions about how it works. Such a description is valid and 
applies to threat modelling in machine learning systems. Similarly, PASTA’s description of the 
system environment and its relationship to business objectives, can also be applied to machine 
learning systems since the description is independent of technical specifications and only 
relates to functionality. The initial steps of a threat modelling exercise also enable the 
identification of sensible threats against machine learning systems since they are similar to 
conventional information systems. Such threats relate to the compromise of security attributes 
(confidentiality, integrity, availability) of the system’s assets.   

Even though existing threat modelling processes can be used for the initial threat analysis of 
systems containing machine learning functionality, they must be executed by experts who 
understand business objectives, asset values, and who have a technical understanding of both 
cyber security and machine learning. While many security experts are technically savvy in the 
realm of conventional information systems, they often have little technical understanding of 
machine learning systems and algorithms. This limits their ability to perform a thorough analysis 
and identify relevant threats.  

The problem with applying existing threat modeling approaches to machine learning systems 
increases further when attempting to identify model-specific attack vectors, exploitable 
vulnerabilities, and relevant security controls. These steps require expertise and up-to-date 
domain knowledge about potential attack vectors and vulnerabilities related to the system’s 
assets. The requirement for technical domain expertise is a common limitation of virtually all 
threat models. However, for conventional systems that have been used and studied for a long 
time, this limitation is partly addressed by decades of historical documentation based upon 
observations and analyses of real world cyberattacks. As a result, information about known 
vulnerabilities, attack vectors, and security controls is often baked into threat modelling 
frameworks for conventional systems, such as STRIDE.   

Even though many vulnerabilities and proof-of-concept attacks have been demonstrated 
against machine learning models, not a lot of documented security knowledge exists in this 
field. Many new attack methodologies and vulnerabilities are, indeed, still being uncovered. 
Beyond the early conventional steps of threat modeling, additional security analysis is 
necessary to mitigate machine learning-specific threats and to improve the security of the data, 
models, and training/inference processes themselves.   

The limited integration of technical and security information regarding the type of assets that 
machine learning systems are composed of in existing threat modeling approaches and 
frameworks holds these frameworks back with regards to effectively threat modeling machine 
learning-based systems. Vulnerabilities and attack vectors against these assets cannot be 
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effectively identified, causing potential attack vectors to be missed. For instance, if a security 
analyst does not know that information contained in training data will become embedded into 
a resulting machine learning model and in its predictions (discussed in Section 2.2.1.2), they 
won’t be able to identify threats related to attacks designed to expose confidential data. This 
lack of information can lead to vulnerabilities being missed and an underestimation of the 
impact of successful attacks against the system. Altogether, this lack of domain knowledge can 
lead to underestimation of security risks against the system and an inability to decrease its 
resilience against attacks.  

Security threats against machine learning systems can be quite different to threats against other 
systems. Threat modelling approaches designed for systems that utilize machine learning need 
to be specifically designed to address vulnerabilities and attack vectors against assets that those 
systems are comprised of. The link between threats, vulnerabilities, attack vectors and security 
controls, need to be linked if security risk are to be properly mitigated. In the remaining sections 
of this chapter, we address these issues by identifying vulnerabilities specific to machine 
learning systems and reviewing initiatives that have emerged to improve the threat modeling 
of machine learning systems.  

3.2. VULNERABILITIES OF MACHINE LEARNING SYSTEMS 
In this section, we present vulnerabilities specific to machine learning systems and classify them 
into three categories – algorithmic, supply chain, and platform. Table 1 further summarizes 
these vulnerabilities together with associated security attributes that can lead to compromise.  

The CIA (confidentiality, integrity, and availability) approach works in a slightly different way in 
the context of machine learning models. Confidentiality is not limited to the prevention of 
access to a machine learning model but also to ensuring that its output predictions do not leak 
information that can be used to understand and reproduce its decision making or reconstruct 
its training data. Integrity relates to preserving expected behavior, level of performance, and 
quality of predictions under any conditions, including attack. Availability refers to the idea that 
accurate predictions are produced, that reflect those seen in testing, and in a timely manner. 

TABLE 1: OVERVIEW OF VULNERABILITIES AGAINST MACHINE LEARNING SYSTEMS, THE MACHINE LEARNING 
LIFECYCLE PHASE THEY TARGET (TRAINING OR INFERENCE), AND THE SECURITY PROPERTY THEY COMPROMISE 

(CONFIDENTIALITY, INTEGRITY OR AVAILABILITY). 

Vulnerability ML lifecycle 
phase 

Threatened assets & security properties   
Training data ML model Predictions 

Model poisoning Training (Integrity) Integrity Integrity 
Availability 

Model evasion Inference   Integrity 
Model stealing Inference  Confidentiality  
Training data inference Inference Confidentiality   
Compromised machine 
learning library 

Training + 
Inference Confidentiality Integrity Integrity 

Availability 
Compromised pre-
trained model Training  Integrity Integrity 

Availability 
Compromised 
serialization library 

Training + 
Inference 

Integrity 
Confidentiality Integrity Integrity 
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Compromised training 
platform Training 

Confidentiality 
Integrity 

Availability 

Confidentiality 
Integrity 

Availability 
 

Compromised 
deployment platform Inference  

Confidentiality 
Integrity 

Availability 

Integrity 
Availability 

3.2.1. ALGORITHMIC VULNERABILITIES 

Machine learning models expose new algorithmic vulnerabilities that are not present in 
conventional systems. They are outlined in the following sections. 

3.2.1.1. Model poisoning 

Model poisoning is a type of attack designed to alter a machine learning model via influence 
over its training data or its training process [28]. Model poisoning attacks compromise the 
integrity of a machine learning model. In a data poisoning attack, an adversary injects malicious 
data inputs to the model’s training set designed to distort the model’s ability to accurately 
classify inputs. In this way, an attacker alters the accuracy of the machine learning model for 
their own purposes. A model attacked in this fashion may become impractical for real-world 
use. As such, data poisoning attacks can also impact the availability of a machine learning 
system.  

Multiple approaches exist to launching data poisoning attacks [28]. For instance, a label 
modification technique can be used to modify the labels of existing data in supervised learning 
datasets. Such an attack may be launched when an adversary cannot inject inputs directly into 
the existing training data. Alternatively, attackers can inject their own inputs into the training 
set using a data injection attack. Finally, in a data modification attack, the adversary alters the 
existing training data rather than adding new samples into the training set.   

An alternative possibility for poisoning is backdoor attacks. It is a form of adversarial attack 
where the attacker poisons a small part of the training data and creates trigger patterns in the 
model that can be activated during inference [29]. The model may perform well on most inputs, 
but its accuracy may drop only for specific inputs with backdoor triggers, such as inputs that 
satisfy some secret or inputs having certain property chosen by the attacker. These poisoning 
attacks will therefore affect the integrity of the machine learning model.  

In the federated learning paradigm, model poisoning attacks take a different form. Rather than 
poisoning their local data, clients will directly tamper with their local machine learning model. 
Their goal is to generate a local machine learning model which, when aggregated with other 
benign local machine learning models, will result in a compromised global model with low 
accuracy. 

When considering reinforcement learning, model poisoning attacks take yet another form since 
the data is directly taken unlabeled from the environment. One approach to poisoning in 
reinforcement learning is similar to label modification. However, given that labels are computed 
using the reward function in reinforcement learning, poisoning relies on compromising the 
reward function used to train the machine learning model such that an incorrect reward is 
computed for valid inputs.  
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3.2.1.2. Model evasion 

Model evasion attacks [30] are the most common attacks on machine learning systems. Evasion 
attacks target the inference phase of the machine learning model lifecycle and compromise the 
integrity of the machine learning model’s predictions. Such attacks aims to change the expected 
(and often correct) output of the machine learning model using well-crafted malicious inputs, 
a.k.a. adversarial examples, to confuse machine learning models into making incorrect 
predictions. Evasion attacks typically aim to obtain a misclassification while making minimal 
modifications to the sample to be misclassified. For example, an attacker can implement an 
evasion attack to bypass a network intrusion detection system (NIDS) by minimally modifying 
malicious network packets while preserving their malicious utility and remaining undetected by 
the NIDS. 

From an attacker’s point of view, the more information about the target AI-based system is 
available, the more likely an attacker can successfully trick the model. Evasion attacks do not 
require any access to the model’s training datasets but do require some level of knowledge of 
the target model. According to the threat model, existing adversarial attacks can be classified 
into three categories: white-box, grey-box, and black-box attacks, with differences being in the 
knowledge and capabilities of the attacker [31]. While in white-box attacks, attackers have 
complete knowledge of the target model, including model architecture and parameters, the 
knowledge of attackers in black-box attacks is limited to only querying the target model to 
obtain complete or partial information, thus making the generation of adversarial examples 
more difficult. In grey-box attacks, adversaries are assumed to have limited knowledge of the 
structure of the target model. Some evasion attacks against well-known AI models are proposed 
in the literature, for example kernel-based classifiers [32] and deep neural networks [33].  

3.2.1.3. Model stealing 

Model stealing attacks, also called model extraction, are adversarial machine learning attacks 
that compromise the confidentiality and the intellectual property of a machine learning model 
during inference. They can be used to steal the machine learning model, and as a steppingstone 
to launch other attacks, e.g., white-box evasion attacks. The confidentiality of machine learning 
models deployed behind a prediction API are theoretically protected because they only provide 
query/response interactions to their clients, and do not reveal the internal decision process of 
the model.  This deployment protects the intellectual property, competitive advantage, and 
business value of the machine learning model for its owner who has invested time, money and 
expertise to train it.  

However, machine learning models leak information about their internal decision logic through 
the query/response interactions provided during inference. By carefully crafting adversarial 
queries to the machine learning model (via an API), an attacker can exploit the information 
contained in returned predictions to reconstruct a surrogate machine learning model with 
similar performance and a similar behavior as the victim model. Thus, the target model’s 
predictions serve to leak information and compromise its confidentiality. Model extraction 
attacks are typically iterative. Adversaries make several queries and use them to train a 
surrogate model. This surrogate is then used to find new queries that will improve its 
performance and the process repeats until a satisfying copy of the victim model is obtained. 
Several such model stealing attacks have been demonstrated and are able to reconstruct the 
surrogate of complex machine learning models using hundreds of thousands to millions of 
queries [34] [35] [36]. For instance, the popular natural language processing, BERT transformer 
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model, can be stolen for somewhere between €100 and €1000 [37]. Also, a credit risk 
prediction model can be stolen using the German Credit Card dataset within 10 minutes and 
using only 1150 legitimate queries [38].  

The effectiveness of a model stealing attack depends on the knowledge the attacker has about 
the target model. Limiting the information available about the model architecture, its training 
algorithm, its optimization method, or its training data limits its vulnerability against a model 
stealing attack. Increasing the granularity of predictions, e.g., label vs probability, and reducing 
details communicated to the client, limits information leakage and mitigates the model’s 
vulnerability to such attacks. 

3.2.1.4. Training data inference 

Data inference attacks take advantage of the information leaked by machine learning systems 
and use this information to compromise the confidentiality of training data and threaten the 
privacy of individuals or organizations whose data was used in training sets. Two main types of 
inference attacks exist – membership inference, and model inversion (a.k.a. attribute inference 
attack).  

Membership inference attacks assume a situation where access to a model is readily available 
(as was explained in our definition of black-box attacks). Such an attack attempts to identify if 
a record is included in the training data. There are many cases where this attack can have a 
serious impact, such as when the attack attempts to uncover sensitive personal data such as 
purchase records, location, or medical records. The basic idea of a membership inference attack 
is to learn the difference between the target model’s behavior with inputs that were already 
seen in training data set and from inputs from unseen data. A representative methodology, 
shadow training, can be found in [39]. More vulnerable target models are those that are 
overfitted and trained with data with less diversity since this difference will be clearer.   

Model inversion attacks assume a situation where an attacker already has partial knowledge 
about a data record and tries to infer the information of the missing attributes. The attack 
methodology is similar to that of membership inference attacks. In this case, the attacker 
repeatedly queries the target model with different possible values of a missing attribute and 
analyzes outputs to discover the value that is indeed in the corresponding record of the training 
data set [40]. Again, overfitted models are more vulnerable to this attack since their behavior 
for the records in the training data and other general records varies more. A study of a practical 
example of this attack can be found in [41], which is able to extract personal attributes of online 
social media users from publicly available attributes.   

3.2.2. SUPPLY CHAIN VULNERABILITIES 

External components, libraries and pieces of code used in machine learning systems can be 
potentially compromised and used to attack the resulting model or system. The provenance 
and integrity of these external components must be verified to prevent supply chain attacks. 
Besides conventional supply chain vulnerabilities related to compromised third party software, 
machine learning systems leverage specific third-party components like machine learning 
training libraries, pre-trained machine learning models and serialization libraries, which can be 
compromised by supply chain attacks. Verifying the integrity of these components raises new 
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challenges compared to verifying the integrity of conventional software and it creates new 
threats against machine learning systems. 

3.2.2.1. Compromised machine learning libraries 

The most common machine learning supply chain attack relates to compromising machine 
learning training and inference libraries. Most machine learning libraries, e.g., TensorFlow, 
PyTorch, ScikitLearn, etc. are maintained by open communities and are susceptible to 
potentially malicious actors. The detection of such a compromise is challenging since it is 
difficult to validate the output of a training algorithm. Most machine learning training algorithms 
are stochastic, the machine learning model they train depends upon some randomness, and we 
cannot formalize or verify what is a valid non-compromised machine learning model. 

The compromise of machine learning libraries often consists of augmenting the training 
algorithm with extra code, which adds extra functionality to the trained machine learning 
model. One example is the addition of backdoors in the machine learning model during training 
in the same way as for backdoor poisoning attacks, but without the need to compromise the 
training data [42]. Another example of library compromise aims to encode part of the training 
dataset into the trained machine learning model, such that this sensitive data can be later leaked 
when the model is made publicly available for inference [43]. This training data can be extracted 
and reconstructed either through direct access to the model or simply by querying it during 
inference.  

3.2.2.2. Compromised pre-trained models 

Due to the monetary cost, artificial intelligence expertise, and large data volume required to 
train high-performance machine learning models, many AI practitioners resort to using pre-
trained machine learning models that they repurpose for different tasks using transfer learning. 
Transfer learning consists of retraining a powerful pre-trained machine learning model for a 
different task while preserving and benefiting from the knowledge already embedded in it. 
Transfer learning is a very popular practice because it reduces costs and the need for a large 
volume of data to train a baseline high-performance machine learning model. The GPT-3 
language model or the Inception image model are examples of pre-trained models commonly 
used as basis for transfer learning. 

However, transfer learning comes with security threats since it leads to using untrusted 
machine learning models trained by external parties and which can be potentially compromised. 
As we already pointed out, it is very difficult to verify whether a machine learning model is 
compromised, since it is not possible to specify its valid behavior for all possible inputs. For 
instance, attacks have been demonstrated where pre-trained machine learning models are 
poisoned with backdoors that transfer to any machine learning model re-trained from this 
compromised base model [44]. 

3.2.2.3. Compromised serialization libraries 

Serialization libraries are commonly used to package training data and machine learning models. 
These libraries typically come from external parties and are used not just for machine learning 
applications, but to package a variety of different types of data. Intentionally malicious 
modifications could be made to such libraries such that serialized data and machine learning 
models will be compromised after being unpacked. It has been demonstrated that serialized 
datasets can be modified to inject poisoning or backdoor attacks during the deserialization 
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process [45]. Similarly, machine learning model integrity and accuracy can be compromised by 
performing random weight modifications during deserialization.   

3.2.3. DEPLOYMENT VULNERABILITIES 

External cloud services are commonly used to control the cost of training and deploying 
machine learning models. Some cloud services even provide customed solutions for machine 
learning specific tasks, e.g., AWS Sagemaker or Microsoft Azure machine learning, which 
provide standard machine learning libraries and monitoring solutions as part of their offering. 
The compromise of training or deployment platforms can jeopardize the security of machine 
learning systems despite having all their components and algorithms secured. Secure and 
trusted machine learning processes and components can be replaced by malicious ones at will 
by the platform supposed to execute them. 

3.2.3.1. Compromised training platform 

In the context of system security, if the platform where training occurs is compromised, any 
training-focused adversarial attack can be executed since the adversary would have full access 
to both the model and its training data. In this scenario, the integrity of the machine learning 
model can be compromised, its performance can be degraded, and it can be backdoored. The 
adversary may augment the machine learning model with additional functionalities designed to 
leak information about the training data. A compromised training platform thus presents a 
significant threat against the confidentiality and integrity of both a machine learning model and 
its data. 

An adversary who compromises a training platform can also reveal confidential information 
about both training data and the target model. This threat is more subtle since it would be very 
difficult to notice, especially if the adversary is honest but curious. The adversary could easily 
copy and distribute the trained machine learning model – this represents the same 
consequences as a model stealing attack: compromising both business advantage and 
intellectual property. 

3.2.3.2. Compromised deployment platform 

The machine learning model’s deployment platform is the system where the model is hosted 
for inference. It this platform is compromised, the integrity of the model itself and of its 
predictions are also compromised. In this case, an adversary can choose to alter the system to 
return predictions that differ from those expected by the deployed model. The adversary can 
also replace the inference model with their own. This scenario can also be considered an 
evasion attack. By disabling the system, the adversary can deny the availability of the service 
to its clients. If an adversary gains access to a machine learning model’s deployment platform, 
the confidentiality of the machine learning model will also be compromised since it can be 
copied to another system and potentially leaked to others. An adversary compromising a 
deployment platform will be able to easily perform data inference attacks since they will have 
unrestricted white-box access to the model. 

3.3. FRAMEWORKS FOR MACHINE LEARNING SECURITY 
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To address security threats against machine learning systems, several public organizations and 
companies have started initiatives to systematize the knowledge and approaches for securing 
these systems. We present some of the major initiatives in this section. 

3.3.1. NIST ADVERSARIAL MACHINE LEARNING TAXONOMY 

The National Cybersecurity Center of Excellence (NCCoE) of National Institute of Standards 
and Technology (NIST) developed a taxonomy and terminology [46] specific to Adversarial 
Machine Learning, which inclusively refers to possible adversarial manipulations of machine 
learning systems.   

The taxonomy and terminology broadly cover adversarial attacks against machine learning 
systems, defenses, and their consequences. The document hierarchically organizes the 
taxonomy for each of the three following dimensions: Attacks, Defenses, and Consequences. 
We show an example subset of the taxonomy hierarchy in Figure 7. The taxonomy is built based 
on recent surveys (for example, [47] and [28]) of the literature on adversarial machine learning, 
and it identifies common aspects among them.   

This taxonomy organizes the domain upon key dimensions and provides a structural view of 
the space. For example, attacks are classified by target (from physical sensors to machine 
learning models), technique employed (e.g., obtaining data access, data poisoning, and model 
evasion) and type of knowledge available to the adversary (e.g., black box, gray box, white box 
attacks). Defenses are organized according to the steps of the machine learning model lifecycle 
they are applied, namely against training time attacks and testing time (inference) attacks. 
Consequences are classified according to the security attributes of the CIA triad: integrity 
violation, availability violation, and confidentiality violation.   

 
FIGURE 7: EXAMPLE OF THE NIST TAXONOMY ORGANIZED IN A HIERARCHICAL MANNER 

3.3.2. ENISA SECURING MACHINE LEARNING ALGORITHMS REPORT 
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In 2021, the European Union Agency for Cybersecurity (ENISA) published a study named 
“Securing Machine Learning Algorithms” [48] that focuses on cybersecurity threats specific to 
machine learning algorithms and machine learning-based applications. Based on a systematic 
review of relevant literature (more than 200 documents), the study provides a taxonomy for 
machine learning algorithms, emerging threats, vulnerabilities, and appropriate security 
controls for mitigation. By drawing attention to threats specific to machine learning algorithms 
and applications, the study aims to support the risk analysis and threat identification process 
performed by developers and designers of machine learning-based applications and systems.   

In their provided taxonomy, ENISA attempted to cover all steps of a typical machine learning 
pipeline i.e., data collection, data pre-processing, model training, model evaluation, monitoring, 
and more. Precisely, the identified threats, vulnerabilities, and recommended security controls 
were mapped to the individual steps of the machine learning pipeline. This enables a more 
granular and comprehensive analysis of the security of the whole machine learning pipeline in 
which developers and system designers can identify threats for each step and address them 
adequately. In this context, ENISA identified six high-level threats in their study: evasion, oracle, 
poisoning, model and data disclosure, compromise of machine learning application 
components, and failure or malfunction of machine learning application. Besides the listed high-
level threats, seven-sub threats were determined. Based on the identified threats, several 
concrete vulnerabilities associated with these threats were discussed in the study.   

The study identifies 37 recommended security controls that can be applied to mitigate the risk 
posed by the identified threats and vulnerabilities. ENISA categorized security controls into 
three categories: traditional security controls related to organizational and security policies, 
classical technical security controls, and security controls specific to machine learning-based 
applications and systems. Furthermore, security controls were mapped to specific threats and 
associated vulnerabilities. An excerpt of this mapping for the high-level Evasion threat is 
provided in Table 2.    

The study concludes that traditional security controls are not enough to protect machine 
learning-based applications and, thus, need to be completed by the proposed security controls 
specific to machine learning applications. The study stresses that there is no unique strategy 
that can be applied to secure machine learning algorithms. Instead, appropriate mitigation 
measures depend on the specific (business) use case and often represent a trade-off between 
security and performance. Since no general protection strategy is available, the authors aimed 
to provide the broadest possible overview of threats, associated vulnerabilities, and security 
controls in their study. Depending on use-case-specific threat modelling, it is up to the 
developers to pick and employ appropriate mitigation measures that are proportional the use-
case-specific threat level.  

TABLE 2: AN EXCERPT OF THE PROVIDED MAPPING OF THREATS, CONCRETE VULNERABILITIES, AND RECOMMEND 
SECURITY CONTROLS 
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3.3.3. MITRE ADVERSARIAL MACHINE LEARNING THREAT MATRIX 

The Adversarial machine learning Threat Matrix [49] is an open-source MITRE ATT&CK style 
framework [50] intended to position attacks against artificial intelligence-based systems. It 
was created by both industry and academic research groups to enable security researchers to 
navigate and orient themselves through the landscape of new and upcoming threats against 
artificial intelligence systems. In recent years, machine learning systems developed by big 
companies such as Google and Tesla were evaded or misled by cyberattacks and the industry 
seemed to be unprepared for adversarial machine learning vulnerabilities. This matrix aims to 
address this issue. As machine learning threats are based upon limitations in underlying machine 
learning algorithms and data analysis processes, unlike existing software and hardware system 
vulnerabilities, the creation of the Adversarial machine learning Threat Matrix with a curated 
set of machine learning vulnerabilities and adversarial behaviors is indeed necessary and 
important.  

The Adversarial Machine Learning Threat Matrix mimics the layout of the popular MITRE 
ATT&CK framework for cybersecurity, allowing cybersecurity and machine learning engineers 
to easily understand adversarial behaviors in terms of tactics and techniques. Figure 8 presents 
an excerpt of the Adversarial Machine Learning Threat matrix, which covers 12 attack stages 
against artificial intelligence-based systems as columns from left to right. Each column is a 
“Tactic”, that corresponds to broad categories of adversary techniques. Each cell is a 
“Technique”, which belongs to a tactic group. Some popular adversarial machine learning 
techniques are discussed in detail in Section 3.2 of the report. For example, the technique 



D1.2: Security threat modeling for AI-based systems   

  
SPATIAL project is funded by the European Union’s Horizon 2020 research and innovation 
programme under grant agreement N° 101021808. 

 Page 40 of 59 

 

“Evade machine learning Model” [51] allows us to explore existing model evasion attacks with 
some real case-study examples and then understand the attack procedure step by step.  

 

FIGURE 8: AN EXCERPT OF THE ADVERSARIAL MACHINE LEARNING THREAT MATRIX  

The Adversarial Machine Learning Threat Matrix is still an early attempt to develop knowledge 
related to how machine learning systems are vulnerable to machine learning attacks. New 
attacks and real case studies against production machine learning systems need to be updated 
frequently in this framework to reflect the rapidly evolving adversarial machine learning attack 
lifecycle and new machine learning threat vectors [52].  

3.3.4. MICROSOFT THREAT MODELLING AI/MACHINE LEARNING SYSTEMS 

To improve threat modeling practices specific to artificial intelligence-based systems, Microsoft 
has created two living documents – “Failure Modes in Machine Learning” [53] and “Threat 
Modeling AL/ML Systems and Dependencies” [54], that will evolve over time with the threat 
landscape. The former is written for a wide interdisciplinary audience, like lawyers and policy 
makers. It organizes failures and consequences of attacks into different categories. The latter 
targets more technical users, like security engineers and data scientists. It is designed to help 
them identify potential machine learning threats and vulnerabilities and then use the Microsoft 
threat modeling framework to plan for appropriate countermeasures.  

Failure Modes in Machine Learning [53] consists of two main sections about intentional and 
unintentional failure modes. It provides a brief definition of attacks and includes illustrative 
examples from the literature. As shown in Table 3, the intentional failure mode section provides 
details about intended attacks, compromised security attributes by asset, knowledge required 
by an attacker, and access and authorization violation information. 

TABLE 3: AN EXCERPT OF INTENTIONALLY MOTIVATED FAILURES SUMMARY TABLE [53]  
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Threat Modeling AL/ML Systems and Dependencies [54] is divided into two sections, focusing 
on some new questions to ask when threat modeling artificial intelligence-based systems and 
specific mitigation solutions used at Microsoft against existing attacks, respectively. Still 
considering model stealing attacks, the following questions could be asked in a security review 
and proactive/protective mitigation actions like minimizing or obfuscating the details returned 
in prediction APIs are proposed:  

● “What is the impact of your model being copied/stolen?”  

● “What would it take to get your model to return a result that tricks your service into 
denying access to legitimate users?”  

● “Can your model be used to infer membership of an individual person in a particular 
group, or simply in the training data?”  

3.3.5. WITHSECURE SECURITY SELF-ASSESSMENT QUESTIONNAIRE 

Assessing the security risk associated with a machine learning system is currently challenging 
due to three main factors: 

● A lack of awareness about vulnerabilities and attacks specific to machine learning 
systems. 

● A lack of understanding of the attack vectors leading to exploitation of vulnerabilities 
once machine learning models are integrated into larger systems. 

● Limited availability of experts with a deep understanding of both security and machine 
learning. 

To partially address these challenges, and similar to Threat Modeling AL/ML Systems and 
Dependencies [54], but in a more comprehensive manner, WithSecure designed three 
questionnaires to assist machine learning practitioners, security experts, and decision makers 
in the risk assessment process [55]. These questionnaires contain leading questions to help 
understanding of security risks associated with machine learning systems. The questions were 
designed to help respondents gain understanding into the vulnerabilities and possible attacks 
against their own machine learning systems. The questions also hinted at measures that can be 
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adopted to reduce vulnerabilities and mitigate attacks. The three questionnaires were defined 
as follows: 

● Risk and impact assessment, designed to assess how well the respondent manages the 
security risks associated with their machine learning system(s). It analyzed approaches 
to threat analysis and impact assessment both in a generic context and when 
considering security threats specific to machine learning systems. 

● Attack surface and vulnerabilities assessment, designed to help identify the attack 
surface of machine learning systems and to discover potential vulnerabilities at 
several stages during their lifecycle. 

● Security of your machine learning system assessment, designed to assess the 
security and robustness of machine learning systems. The questionnaire was intended 
to help identify if the respondent was aware of security threats against their own 
systems and how they might discover potential vulnerabilities. It explored whether 
recipients had processes and techniques in place to mitigate potential attacks. 

Each questionnaire was designed to be answered individually by people in different roles. An 
organization answering all three questionnaires gained a complete picture of the security 
posture of the assessed machine learning system. The goals of these three questionnaires were 
four-fold: 

● Raising awareness about security threats against machine learning systems. 

● Assisting machine learning practitioners to assess the security of their own machine 
learning systems. 

● Sharing solutions and practices that can improve the security of machine learning 
systems. 

● Using the collected answers to infer global trends about the current state of machine 
learning system security. 

3.3.6. VULNERABILITY ASSESSMENT TOOLS 

Practical tools have been developed to empirically assess the vulnerabilities of machine learning 
systems. These tools can be launched against actual machine learning systems to evaluate their 
reliability and robustness against attacks that exploit known algorithmic vulnerabilities, 
including evasion, poisoning, and data inference attacks. These tools can be used on deployed 
systems, to assess vulnerabilities, or during system development to improve robustness. Several 
free and open-source adversarial machine learning libraries of this kind are available. They 
typically provide interfaces to popular machine learning frameworks such as TensorFlow, 
PyTorch, and scikit-learn. 

The Adversarial Robustness Toolbox (ART) library initiated by IBM and maintained by the Linux 
Foundation [56] is among the first and most complete of these security assessment libraries, 
providing several evasion, poisoning, extraction, and data inference attacks. Nevertheless, 
completeness comes with complexity, and ART requires significant machine learning expertise 
and knowledge of adversarial machine learning attacks to be used effectively. Microsoft 
Counterfit [57] is another generic tool for security testing of machine learning systems that can 
be operated with less familiarity with machine learning skills thanks to its command line 
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interface. Many other specialized libraries have also been published like CleverHans [58], which 
focuses on evasion attacks or MIA [59] for data inference attacks. Many of these libraries also 
include defenses against the attacks they provide. 

These empirical assessment tools are useful for developing an understanding of vulnerabilities 
in the context of machine learning systems, which is an important step of for threat modelling. 
However, current libraries for machine learning vulnerability assessment implement attacks 
that are restricted to a few tasks and type of models (such as neural networks). They are also 
limited to specific data types (such as image data), and they do not generalize over other data 
types. Consequently, they cannot be applied to any machine learning context and are mostly 
useful for studying neural networks that process images and text. These libraries need to be 
improved further to be more generic and easier to apply on any machine learning system. 

3.3.7. ARTIFICIAL INTELLIGENCE INCIDENT DATABASE 

The artificial intelligence incident database is an open repository of documented failures from 
real-world artificial intelligence systems. Its goal is to record and make available information 
about unforeseen and dangerous failures of intelligent systems, such that designers of future 
artificial intelligence systems may avoid repeating documented bad outcomes. The database is 
intended to be used by artificial intelligence system architects, developers, and policy makers 
to mitigate future risks of failure in artificial intelligence systems. Anyone can contribute to it 
by reporting the artificial intelligence incidents they have witnessed. It currently contains over 
1,000 reported incidents such as autonomous cars killing pedestrians, trading algorithms 
causing a market flash crash, and facial recognition systems misidentifying innocent people as 
criminals and causing their arrest. The database is in ongoing development, and it now includes 
taxonomies to analyze and document incidents in a consistent manner. The format of each 
incident report is partly inspired from the aviation and computer security industries. In their 
current form, reported incidents contain information about the consequences of the incident 
based on the Microsoft artificial intelligence Fairness Checklist [60] and about the data used in 
the failing artificial intelligence system using the datasheet for datasets taxonomy [61]. 

The artificial intelligence incident database is not security oriented nor restricted to security 
incidents. Reported incidents can be caused by genuine mistakes, misconfigurations, or simply 
unforeseen events that are not malicious or adversarial in nature. Moreover, the current 
taxonomy for reporting incidents does not cover information that would be required for 
security incidents, such as the vulnerability exploited, severity of the vulnerability, or means to 
fix it. Nevertheless, it is already a relevant source of information in its current form and can be 
used to identify how artificial intelligence systems can fail. Non-adversarial failures can often 
be translated into security threats and associated vulnerabilities to exploit. The database is an 
ongoing initiative that can be further enhanced to be more security focused, by augmenting 
incident reports with artificial intelligence security taxonomies such as the MITRE adversarial 
matrix or the ENISA machine learning security taxonomy [48], as well as conventional 
information about security incidents such as the taxonomy of vulnerabilities from CVE [4]. 

3.4. SUMMARY 
Threat modeling is a complex exercise that goes beyond the simple identification of threats. It 
requires system descriptions, definitions of functionality, identification of components and 
parties that interact with them. Based on such a description, security threats against the system 
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can be identified, typically by a security expert. Existing threat modeling approaches are suited 
for performing initial steps, since they are generic to any system – they only require high-level 
knowledge of the machine learning system and conventional security expertise. 

Challenges appear when identifying vulnerabilities that can be exploited by identified threats. 
Specific assets of machine learning systems, such as machine learning models, machine learning 
libraries, and data expose new vulnerabilities that were unknown until recently, and which are 
not included in conventional threat modeling frameworks or conventional security taxonomies. 
These vulnerabilities create new attack vectors for which there are little to no security controls. 
To cope with the shortcomings of existing threat modeling approaches, we presented these 
new vulnerabilities and classified them in algorithmic, supply chain, and deployment 
vulnerabilities. Although we described attacks that exploit these vulnerabilities, discussions 
about security controls available to mitigate these attacks were omitted. Existing security 
controls are not suitable for preventing attacks – they only mitigate them, and they are typically 
application-, model- and/or data-specific. Thus, they are not generic enough to be included in 
global recommendations. 

Several parallel efforts have also been initiated by public organizations, including NIST, ENISA, 
and MITRE and companies including IBM, Microsoft, and WithSecure to cope with the lack of 
knowledge on vulnerabilities and attacks against machine learning systems. New security 
taxonomies specific to machine learning systems have been created, guiding questionnaires 
have been proposed to support threat modeling, repositories for gathering and documenting 
artificial intelligence incidents, and practical vulnerability assessment tools have been created. 
Nevertheless, while these efforts are complementary, they are still isolated and must be made 
compatible and integrated together to effectively assist in the threat modeling effort. 
Moreover, while taxonomies and questionnaires are rather generic, vulnerability assessment 
tools are restricted to a few machine learning systems and still incomplete. 

When introducing a threat modeling approach, one must meet a trade-off between generality 
– making the approach applicable to many systems – and specificity – making it easily 
actionable without a high level of expertise. 

Based on the description of vulnerabilities presented in Section 3.2, we aim to strike a balance 
between genericity and specificity by threat modeling dominant training and inference 
architectures. We focus on challenging threat modeling steps, namely identification of 
vulnerabilities they expose and attack vectors that exploit them. In the next section we illustrate 
three challenging steps of the threat modeling process for each architecture: 

● Defining entity access to machine learning system assets based on architecture. 

● Identifying the algorithmic, supply chain, and deployment vulnerabilities exposed. 

● Presenting attacks that can exploit them and a discussion of their effectiveness and 
likelihood.  
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4. SECURITY ANALYSIS OF MACHINE LEARNING ARCHITECTURES 

This section presents an analysis of security threats against machine learning systems from the 
perspective of their lifecycle. Machine learning-specific security threats arise mostly during 
either training or inference phases. Depending on the architecture used during each of these 
two phases, different threats exist. 

4.1. TRAINING ARCHITECTURES 
The training phase of the machine learning system lifecycle exposes one algorithmic 
vulnerability: the model poisoning attack. It further exposes all supply chain vulnerabilities, as 
well as the compromised training platform vulnerability.  

Compromised pre-trained machine learning models present a supply chain vulnerability. 
Starting with a pre-trained model exposes the model’s owner to the risk of it having been 
compromised by a potentially untrusted source. The same compromised pre-trained model 
might be shared with several parties, exposing them all to the threats described in Section 
3.2.2.2. 

4.1.1. CENTRALIZED TRAINING 

In centralized training the data sources, storage platform and training platform have access to 
training data. The storage and training platform are typically under the same authority and can 
be a single entity – the central server – which is also the system where the model is trained. 
The central server is the only party with access to the machine learning model. 

Algorithmic vulnerability: poisoning attack 

The first poisoning attack example defined in this document is illustrated by a centralized 
training architecture setup, where the training data is aggregated in a central location and 
training happens on a single machine. Poisoning attacks can be performed in two different ways 
in this setting. In the first method, one or several malicious data source(s) are used in a data 
injection attack. Data points are maliciously crafted such that when they are aggregated with 
legitimate data sources, part of the whole training dataset will be poisoned. The second method 
involves a malicious data storage platform that can perform a data modification attack on the 
whole training dataset that has been aggregated. The data modification attack is a bigger threat 
than the data injection attack since the adversary has the knowledge and ability to modify the 
whole training dataset. The data modification attack is more effective than data injection in 
centralized training and a malicious data storage platform is thus a bigger threat than a malicious 
data source with regards to poisoning attacks.  

Label modification attacks can be performed if external parties (not necessarily represented in 
our machine learning pipeline in Figure 2) are able to modify labels after data is collected, e.g., 
through feedback. This attack is less effective than data injection and data modification, and it 
is thus a moderate threat since adversaries will only be able to modify a small number of labels 
through feedback, and they will not have knowledge of the whole training set. 

Supply chain vulnerabilities 
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A machine learning model’s training process can be exposed to supply chain vulnerabilities in 
the form of compromised machine learning libraries supplied by potentially malicious external 
parties. Such an attack can be used to backdoor or poison a machine learning model, causing it 
to display lower-than-expected accuracy on respectively targeted or untargeted data. Such an 
attack can also cause the model to leak information about its training data during inference.  

Compromised serialization libraries affect all parties in the centralized training pipeline. Data 
sources and data storage platforms can easily by exposed to compromised data serialization 
libraries if they are not verified during the continuous build process. This is a relatively common 
scenario given that each data source may typically source its own library to serialize the data 
that must be sent to the storage platform. Thus, any part of the pipeline may potentially 
inadvertently source a compromised library. Similarly, the data storage platform itself may 
source a compromised library for serializing the aggregated dataset. The threat to the data 
storage platform is once again more important than it is on individual upstream data sources 
since it the threat affects the whole dataset, not just part of it. Finally, the training platform may 
source a compromised library for serializing the machine learning model before delivering it to 
the deployment platform. This threat is also severe since it leads to a complete and definite 
compromise of the machine learning model. Compromise at the data source or storage platform 
can be partly mitigated during training with data sanitization techniques. 

Deployment vulnerability: compromised training platform 

Centralized training architectures are exposed to threats against the privacy and confidentiality 
of the training data. Training data is often gathered from multiple clients and stakeholders. 
Privacy violations can occur if the gathered data contains sensitive or personal information. 
Data sources must fully trust the central storage and training server. This central entity must 
be adequately secured to prevent any compromise by an attacker, since the latter would get 
full access to all the sensitive training data at once.  

The central storage and training server also represents a single point of failure in the underlying 
system. In case its operation is disrupted, or if attackers succeed in compromising it, the security 
of the entire system is affected. An attacker compromising a training platform can replace a 
trained machine learning model with any alternative malicious model or simply make it 
unavailable. Central servers require high security protection to ensure the integrity and 
availability of training data, the training process, and the resulting machine learning model. 
Centralized training environments that use properly secured reputable cloud services are 
already likely well secured from such attacks. 

4.1.2. DISTRIBUTED TRAINING 

In distributed training, the data sources, storage platform and training platform all participate 
in the training process, similar to the centralized training case. However, and in contrast to 
centralized training, the training platform is composed of a central parameter server and several 
worker nodes. Both the parameter server and worker nodes have access to the training data 
and to the machine learning model, which they train jointly.  

Algorithmic vulnerability: poisoning attack 

The poisoning threat coming from malicious data sources and malicious storage platform, with 
respectively data injection and data modification attacks, applies in the same manner to 
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centralized and distributed training. In addition, worker nodes involved in distributed training 
can be compromised and poison the training of the model.  

In the data parallelism paradigm, compromised worker nodes can maliciously modify the chunk 
of data allocated to them with a data modification attack. A poisoned model is aggregated with 
other local machine learning models into a global model. In this scenario, the poisoned local 
model will partly compromise the global model. Poisoning attacks in distributed training settings 
can be improved if the malicious worker node directly modifies its local model instead of its 
training data. Knowing the model aggregation process, the worker node can craft its local model 
so that it overwrites the local model contributions from legitimate worker nodes. This poisoning 
attack is very effective in distributed training settings, and it is called a model replacement 
attack [62]. 

In the model parallelism paradigm, a compromised worker node can tamper with the 
intermediate data it produces during the optimization of its part of the model which is used as 
input to other nodes for optimizing their own part of the model. It can also tamper with the part 
of the model it is supposed to train, e.g., one layer of a neural network can be modified. In both 
cases, poisoning performed by a single worker node is a bigger threat against model parallelism 
than it is against data parallelism. While each worker node can modify only part of the model 
in model parallelism, a single malicious worker node will affect the whole model and can 
completely destroy its accuracy. For instance, modifying a single layer of a neural network, 
changes completely the whole model since all layers are interdependent. In any case, 
distributed training brings new parties in the training process, the worker nodes, increasing the 
attack surface for, and vulnerability to poisoning attacks when compared to centralized training. 

Supply chain vulnerabilities 

The exposure to using malicious machine learning libraries is extended to worker nodes in 
distributed training. It is expected that every worker node would use the same machine learning 
training library, as provided by the parameter server. Thus, the threat of compromised machine 
learning library is not increased when compared to centralized training: either all machine 
learning libraries are compromised if the central server has a compromised library, or they are 
not. Data serialization libraries can however be different for different worker nodes in the data 
parallelism model, where they are used to unpack batches of training data assigned to them. 
Each batch of training data can be compromised and poisoned if the receiving worker node 
uses a compromised serialization library to unpack it. 

Deployment vulnerability: compromised training platform 

The training platform is not a single entity anymore in distributed training. It is composed of the 
parameter server and the worker nodes. With more entities having access to the training data, 
data parallelism increases the threats against data privacy and confidentiality, when compared 
to centralized training. The likelihood of training data leakage increases since it requires only 
one node to be compromised and worker nodes may not be as secure as the parameter server. 
The impact of compromising a single node is nonetheless lower than a compromise of the 
parameter server or the central server in centralized training since it only leads to the adversary 
having access to a subset of the training data. In model parallelism, most worker nodes do not 
have access to the training data, only to intermediate parameters, reducing the threat of data 
leakage. On the other hand, a few worker nodes responsible for training the input layer of the 
machine learning model would have access to the whole training dataset. If one of these nodes 
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gets compromised, the adversary can leak the whole training set and compromise the privacy 
of clients that contributed to it. 

Beyond confidentiality, malicious worker nodes can also compromise the availability of their 
local model updates. In data parallelism, such attack could significantly delay the global training 
process, but measures can be deployed to cope with unavailability of worker nodes. For 
instance, their updates can be disregarded and only local models from responsive nodes could 
be aggregated. In model parallelism, such an availability attack stops the training process 
completely since each worker node is dependent on updates from another worker node. A 
single worker node under an availability attack would prevent the training process from 
completing. Integrity attacks can also be performed on malicious nodes and such attacks were 
described previously as part of the algorithmic vulnerability to poisoning attacks. 

4.1.3. FEDERATED LEARNING 

Federated learning is different from distributed training because data sources, called clients, are 
also the worker nodes that participate in the distributed training process. Consequently, there 
is no data storage platform in this paradigm. Each client has access to its own training data, their 
local machine learning model, and to the global machine learning model. The centralized 
parameter server has access to all local machine learning models and to the global machine 
learning model, but it does not have access to any training data. 

Algorithmic vulnerabilities 

Poisoning can be performed on clients because federated learning is typically performed on 
many untrusted clients. Thus, the likelihood of several malicious clients being involved in 
federated learning is high. Each client can poison its training data or its own local machine 
learning model in the same way as for the worker nodes in distributed training, with the goal 
that their poisoned local model will compromise the aggregated global model. Once again, the 
model replacement attack is a serious threat, since it is an effective poisoning attack that 
requires the compromise of a single client in federated learning [62]. 

Federated learning also exposes an additional algorithmic vulnerability that other training 
paradigms do not: training data inference. A malicious parameter server can run training data 
inference attacks on the local machine learning models sent by clients in order to reconstruct 
their local training data [41]. This threatens the confidentiality of training data and the privacy 
of clients. This threat is even more important in peer-to-peer federated learning architectures 
where local machine learning models are shared with many other clients, many of which are 
not trusted. Moreover, some malicious clients can also compromise the confidentiality of the 
training data held by other clients in the central aggregation paradigm. By re-training the global 
machine learning model in a specific manner and sharing the resulting local machine learning 
model with the parameter server, a malicious client can simultaneously train a discriminator and 
a generator machine learning model (Generative Adversarial Network) able to reconstruct the 
training data held by another client [63]. Federated learning is the only training paradigm that 
exposes the training data inference threat, which applies mostly to the federated training of 
neural network models. 

Supply chain vulnerabilities 
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The exposure to using malicious machine learning and serialization libraries applies to any client 
independently, since they typically choose libraries of their own for training local machine 
learning models and exchanging them with the parameter server. There is thus a higher chance 
that one or a few clients use compromised libraries that would threaten the integrity of their 
local model updates. The parameter sever is exposed to using a compromised aggregation 
library, which can tamper with the aggregation process of local models and threaten the 
integrity of the global model, leading to it being poisoned or backdoored. 

Deployment vulnerability: compromised training platform 

Federated learning offers good privacy and confidentiality guarantees for client data because 
no local data is shared with the parameter server or between clients. While algorithmic 
vulnerabilities which can compromise this property exist, there also exist defense solutions to 
mitigate them, such as secure aggregation [64]. 

On the other hand, and as pointed out earlier, the likelihood for clients to be compromised is 
high. This threat has little impact on the availability of local machine learning models. The 
federated learning process is designed to deal with potential client’s drop-off during training. 
The process relies on a large pool of clients, from which only a few are randomly selected to 
contribute to the training during each round. Thus, if a compromised client becomes 
unavailable, it can be easily replaced by another client from the pool. On the other hand, 
malicious clients pose a threat to the integrity of the global model and to training data 
confidentiality as previously pointed out. They are also a threat to the global model 
confidentiality since all clients receive a copy of the global model and can thus easily steal it 
and share it with third parties if they wish. In the peer-to-peer federated learning paradigm, the 
likelihood of local model aggregation compromise is also high since this aggregation is 
performed by any client. 

4.2. INFERENCE ARCHITECTURES 
The inference phase of the machine learning system lifecycle exposes three algorithmic 
vulnerabilities: model evasion, model stealing and training data inference attacks. It further 
exposes vulnerabilities related to compromised machine learning libraries and serialization 
libraries, as well as a compromise of the inference platform.  

4.2.1. CENTRALIZED INFERENCE 

In centralized inference architectures, the machine learning model is deployed on a central 
server which provides an API for clients to submit queries and receive predictions. 
Consequently, the central server / deployment platform has access to the queries submitted by 
clients, the machine learning model, and its predictions. Clients have access to their own inputs 
and to the predictions from the machine learning model, which can have different levels of 
granularity, e.g., label, probability, prediction vector, etc. 

Algorithmic vulnerabilities 

Model evasion attacks can be run by API clients against a machine learning model deployed on 
a central server. In this setting, the attacker neither has direct access to the machine learning 
model nor knows what type of model they are interacting with, because the machine learning 
model is behind an API. This is a black-box evasion attack. Attackers can only repeatedly query 
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the machine learning model API with different inputs to get predictions in the form of labels, 
probabilities, or prediction vectors. Forging a successful adversarial example that can evade the 
target machine learning model requires many queries and the evasion attack will have a lower 
success rate than if performed in a white-box setting [65] [66]. The granularity of the 
predictions returned by the prediction API impacts the success of the attack. Fine-grained 
prediction vectors lead to more successful black-box evasion attacks than coarse-grained label 
predictions. 

Model stealing is an attack originally developed in the centralized inference setting, where a 
malicious API client wants to steal the machine learning model hosted on a central server and 
kept secret behind a prediction API [34]. This setting is thus highly exposed to model stealing 
attacks using API queries. The importance of the threat will mainly depend on the granularity 
of predictions. Coarse-grained predictions will again make model stealing attacks more difficult 
than fine-grained predictions [35]. Some rate limiting process for requests to the query API can 
also slow down model stealing attacks. 

Machine learning models deployed on a central server are vulnerable to all training data 
inference attacks which can be run in a black-box manner by API clients to infer information 
about the training data. Membership inference is among the most effective attacks in this black-
box setting [39]. Once again, the granularity of predictions heavily impacts the success of data 
inference attacks, and all data inference attacks will be less successful in this black-box setting 
than they would be in a white-box setting. 

Supply chain vulnerabilities 

Supply chain vulnerabilities are performed by exposing the central server to compromised 
machine learning libraries or compromised serialization. Both compromises threaten the 
integrity of model predictions. Such attacks lead to either the inputs to the machine learning 
model or its decision process being tampered. In such scenarios, the attacker will aim to 
maliciously modify model predictions. The serialization library used to format queries sent to 
the inference API can also be potentially compromised. This compromise leads to the same 
consequence of obtaining incorrect predictions as response from the inference API. 

Deployment vulnerability: compromised deployment platform 

A compromised deployment platform has heavy implications with respect to the confidentiality, 
integrity, and availability of a machine learning model and its predictions. Both assets can be 
completely modified to become incorrect, the server can refuse to provide an inference service, 
or it can leak the model to a third party. Nevertheless, the compromise of a central server to 
that extent is unlikely, especially if a trusted service provider is used. Considering a more 
realistic honest but curious deployment platform, the confidentiality of client queries can be 
threatened. If client queries contain personal identifiable or privacy-sensitive data, the 
malicious server can access and leak this information in a stealthy way that would remain 
unnoticed. 

4.2.2. LOCAL INFERENCE 

In local inference, a machine learning model, potentially trained by an external party, is deployed 
on clients. Thus, each client has access to the machine learning model, its predictions and to 
queries made to the model. If there is a central entity coordinating the distribution of machine 
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learning models to clients, it has only access to the machine learning model and it has no access 
to queries or predictions. The main threats in this scenario relate to the machine learning model 
and its predictions if these predictions are meant to be used by a party other than the client 
itself. 

Algorithmic vulnerability 

Model evasion attacks can be run by clients against the locally deployed model, via local 
inference. This type of attack is useful if the predictions from the machine learning model are 
not used by the client but by an external party, e.g., a malware detection system. Each client 
has direct access to the machine learning model, and it knows its type and its internal decision 
logic. Thus, white-box evasion attacks are possible. If such a model is deployed on many clients, 
an attacker can forge adversarial examples against its own local model that will evade machine 
learning models deployed on other clients. This type of attack can be used to craft malware 
samples that evade client-side machine learning-based malware detectors. 

Model stealing attacks can be performed against client-side models. but only if the model is not 
distributed in clear to clients, (such as if it is delivered to and run in a trusted execution 
environment that protects its confidentiality through a query API). Such attacks are very similar 
to those that can be performed against the centralized inference paradigm. The difference in 
the client-side scenario is that it is harder to implement mitigation techniques such as query 
rate limiting, since the owner has less control over the client-side system. Overall, model 
stealing attacks are easier to run in local inference settings. 

Training data inference attacks can be run against local machine learning models in order to 
infer information about the data used to train the model. It is an important threat in local 
inference since typically no client using the machine learning model has contributed to the 
training data (except if the model was trained using federated learning). The most effective 
white-box data inference attacks can be run in this setting since the adversary has direct access 
to the machine learning model and they know its type and its internal decision logic. Model 
inversion attacks that are able to fully reconstruct training data from scratch can be run 
effectively in this setting [41]. 

Supply chain vulnerabilities 

In a local inference setting, the compromise of machine learning libraries poses a significant 
threat to the integrity of the decision making of the model and thus the integrity of its 
predictions. A compromised serialization library can also pose a threat during the delivery of 
the machine learning model from an external party and to the client. The local machine learning 
model’s integrity can be compromised during this step, which happens before inference. 
Vulnerabilities related to compromised data serialization libraries do not apply here, since the 
data is generated and processed on the client and thus does not need to be serialized. 

Deployment vulnerability: compromised deployment platform 

The deployment platform is the client in this paradigm. The main threats from a compromised 
client are against the machine learning model. A malicious client can compromise the 
confidentiality, integrity, and availability of the machine learning model. A secondary threat 
exists against the predictions from the machine learning model, if used by an external party. A 
malicious client can compromise the integrity and availability of these predictions that are 
supposed to be delivered to the external party. 
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4.2.3. DISTRIBUTED INFERENCE 

In distributed inference, a machine learning model is split into multiple pieces and distributed 
across several devices or worker nodes. Each worker node only has access to part of the 
machine learning model. Depending on the paradigm, worker node other than the one making 
the request may have full, partial, or no access to the input data and to the model’s prediction. 
For instance, in layer-wise splitting, the node executing the first layer of the DNN model has 
access to the input data, the node executing the last layer has access to the predictions and all 
other nodes do not have access to any meaningful data. In across-the-layer splitting, each node 
has access to part of the input data and part of the prediction. 

Algorithmic vulnerabilities 

In a distributed inference setting, it is difficult to run any attack that would exploit the 
algorithmic vulnerabilities of machine learning systems. A single node neither has access to the 
full model, preventing any white-box attack, nor access to the input and predictions at the same 
time. This prevents black-box attacks that require both inputs and predictions.  The node that 
makes inference requests can run evasion, model stealing, and training data inference attacks 
in the same way as in the centralized inference scenario, in a black-box manner. Vulnerabilities 
to these three attacks are similar to the centralized inference scenario, with the exception of 
the fact that attacks exploiting them would take longer to complete since the inference process 
is slower due to communication overhead between hosts. 

Supply chain vulnerabilities 

Every node involved in a distributed inference process is vulnerable to attack via compromised 
machine learning libraries. If a single node uses a compromised machine learning library, the 
whole inference process will be compromised, and the machine learning model will return 
incorrect predictions. The same applies for serialization libraries, that are used for data 
exchange between nodes during the inference process. If one intermediate data sample is 
compromised during serialization, it jeopardizes the integrity of the whole inference process. 
Since all nodes are typically independent devices, that can be potentially compromised by 
different parties, the threat of one node using either a compromised machine learning or 
serialization library is very high. Each node represents a single point of failure since all are 
equally as important. 

Deployment vulnerability: compromised deployment platform 

If a single node in a distributed inference process has been compromised, the integrity and 
availability of its machine learning model and predictions are threatened. The confidentiality of 
the machine learning model and the input data is generally less threatened by the deployment 
platform compared to other inference architectures since no single node has full access to 
either of these assets. Nevertheless, a worker node, which is also a client in this setup, will have 
more knowledge about the machine learning model than a client in the centralized inference 
paradigm. It can know the type and general structure of the machine learning model along with 
some of its parameters which can help inferring the rest of the parameters via a model stealing 
attack. Nevertheless, it is worth noting that worker nodes in distributed inference are more 
susceptible to compromise than a server in a centralized inference scenario. Worker nodes are 
usually simple devices with limited computing capability and low security.   
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5. SECURITY REQUIREMENTS FOR ML ARCHITECTURES 

Two high level requirements for machine learning models related to their security and to the 
privacy of the data they use have been previously identified: 

● MOD.RQ.5: Resilience against adversarial machine learning attacks – machine 
learning models must be resilient against adversarial machine learning attacks 

● MOD.RQ.6: Protect data privacy - machine learning models should not leak 
information about their training data 

The detailed analysis of security threats against artificial intelligence-based systems presented 
in this report led to a definition of more fine-grained security and privacy requirements for 
machine learning models. These requirements aimed to mitigate the vulnerabilities specific to 
machine learning systems, in order to minimize the security risk generated by the threats we 
identified. As part of the security requirements for artificial intelligence-based systems, we 
identified the following requirements designed to address four algorithmic vulnerabilities: 

● SEC.RQ.2: Resilience against poisoning attack – machine learning models MUST be 
resilient against poisoning attacks 

● SEC.RQ.1: Resilience against evasion attack - machine learning models MUST be 
resilient against evasion attacks  

● SEC.RQ.4: Resilience against model stealing attack- machine learning models MUST be 
resilient against model stealing attacks 

● SEC.RQ.6: Resilience against training data inference attack - machine learning models 
MUST be resilient against training data inference attacks 

The document further recommended additional fine-grained security requirements to mitigate 
algorithmic, supply chain, and platform vulnerabilities inherent in artificial intelligence-based 
systems. These new security requirements, which are summarized in Table 4, are as follows. 

Enforcement and verification of training data integrity: The integrity of training data must be 
guaranteed between data sources and the training platform. This reduces the chance that 
poisoning attacks will happen. 

Enforcement and verification machine learning model integrity:  The integrity of the machine 
learning model must be guaranteed between the training platform and the inference platform. 

Limited number of parties involved in machine learning model training and inference: Every 
party involved in a machine learning pipeline can be a potential attacker. Considering 
distributed training and inference, the number of parties involved in these processes should be 
restricted to the required minimum. 

Control and monitoring of clients’ access to machine learning model: Increased knowledge and 
access to a machine learning model increases the success of most attacks against machine 
learning models during inference. This access should be restricted to a bare minimum to ensure 
functional requirements. The machine learning model should be as isolated as possible from its 
clients and every interaction must be monitored to detect potential abuse. 
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Secure training platform: The training platform for the machine learning model must be 
properly secured to prevent any compromise.  

Secure deployment platform: The platform where the machine learning model is deployed for 
inference must be properly secured to prevent any compromise. 

Verification of inputs from external parties: The provenance and integrity of inputs provided 
or computed by external parties, e.g., training data, local models, part of global model in 
distributed training, intermediate prediction results in distributed inference, etc. should be 
verified before use. 

Vetting and verification of external libraries: Providers of external libraries must be trusted. In 
addition, the provenance and integrity of external machine learning and serialization libraries 
used to process machine learning model or data should be verified. 

TABLE 4: SUMMARY OF NEW SECURITY REQUIREMENTS 

Identifier Security Requirements  Priority  

SEC.RQ.9  The integrity of the training data MUST be guaranteed 
between the data sources and the training platform. MUST  

SEC.RQ.10  
The integrity of the machine learning model MUST be 
guaranteed between the training platform and the 
inference platform. 

MUST  

SEC.RQ.11  
The number of parties involved in machine learning model 
training and inference SHOULD be restricted to the 
required minimum 

SHOULD  

SEC.RQ.12  
The machine learning model SHOULD be as isolated as 
possible from its clients and every interaction must be 
monitored to detect potential abuse. 

SHOULD  

SEC.RQ.13  The training platform for the machine learning model 
MUST be properly secured to prevent any compromise. MUST  

SEC.RQ.14  The deployment platform for the machine learning model 
MUST be properly secured to prevent any compromise. MUST  

SEC.RQ.15  The provenance and integrity of inputs provided or 
computed by external parties SHOULD be verified. SHOULD  

SEC.RQ.16  
The provenance and integrity of external machine learning 
and serialization libraries used to process machine learning 
model or data SHOULD be verified. 

SHOULD  
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