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ABSTRACT

Nanoparticles of fullerenes and their water-soluble derivatives have been firmly
introduced into solution of medical problems. Although there are still debates about their
toxicity and long-term consequences of their application in the clinic, the success of
fullerenes application in some sections is undeniable, in particular, in photodynamic
therapy (PDT) of cancer tumors. Besides there are interesting data on radiotherapy
where fullerenes appear to be more transporters than drugs, but due to own
cytoprotective properties, the fullerene adducts can also participate in the combined
treatment. This review evaluates the status of these sections of fullerene chemistry in
terms of development and recent trends.
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1. INTRODUCTION

Due to its unique spherical structure, C60 has a possibility to accept up to 6 electrons [1] and
possesses extended π-system. When C60 is subjected to action of light, then an electron
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moves to higher energetic level, thereby producing an excited singlet C60 that reacts with O2
to form a singlet oxygen (1О2) [2,3]. Fullerenes are exclusively effective generators of the
singlet oxygen with quantum yield of 1О2 close to one [4]. They absorb in UV- and in visible
spectrum [5] that allows their usage in photodynamic therapy (PDT). Originally formed the
singlet excited state (SC60*) undergoes intercombination transition into a triplet state (TC60*).
The triplet excited state is an excellent acceptor of electrons and potential producer of the
superoxide anion radical O2

-. (Fig.1). A latter way is more pronounced in organic solvents,
predominantly, in polar ones, especially, in the presence of reducers such as NADH [6].

Fig. 1. Mechanisms of generation of singlet oxygen and superoxide radical by
fullerenes

Increasing number of functional groups added to fullerene, leads to decreasing of quantum
yield of the singlet oxygen. Toxicity is significantly decreased or even is fully absent in
hydrophilic fullerenes [7]. Under UV- irradiation the fullerenes demonstrate the ability to
generate reactive oxygen species (ROS) with rate of 10 nmol mL-1 min-1 as confirmed by
ESR method [8]. The efficiency of fullerene photocytotoxicity depends on the degree of
modification as well as on the size of the fullerene cage [9]. More extended π-system
generates a higher phototoxicity. That is why the photodynamic activity of C70 is greater than
C60-fullerene.

Recently the development of nanotechnology caused a careful investigation of medical
capabilities of carbon nanoparticles, in particular, fullerene derivatives (adducts).
Nanoparticles of 1-100 nm in size have principally others physical and chemical parameters,
mechanisms and biomedical application. This is due to location of majority of their atoms at
interphase of outer surface of the particles that, in turn, leads to new quantum and
mechanical mechanisms of their action. To imagine the size of nanoparticles let’s take a
height of a child of 4 years old to be equal to 1, then a diameter of the red blood cell will be
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in the range of 10-5-10-6, diameter of hepatitis C virus is ~10-7, of carbon nanotube - ~10-8-10-

9, and of water molecule – 10-10 [10]. In the scale of nanoparticles the fullerenes are included
to the levels from individual molecules up supramolecules and assemblies.

Now there is understanding of general parameters that are of fundamental importance to
medical applications of fullerenes. Among these parameters there are a size of nanoparticles
and an ability of self-aggregation due to the structure of the side chains and the formation of
hydrogen bonds. The size and shape of the nanoparticles define the morphology of the
aggregates which depends on the method of fullerene preparation. As a rule smaller
nanoparticles demonstrate higher cytotoxicity (although there are exceptions) which have
caused by various factors, in particular, by the ability of small nanoparticles to integrate into
proteins, membranes and DNA helix [11-14] affecting signaling pathways of apoptosis [15]
that represented in Fig. 2.

Fig. 2. Effects of fullerenes (Fs) on some signaling pathways of apoptosis

Fullerenes are able to activate two contrary actions in the body, namely, a generation of
apoptotic or necrotic cell death due to the appearance of ROS or a protective of cells acting
as antioxidant agents (called sponges of radicals), in some cases, at the level of SOD-
mimetics. In the first case, the fullerenes can be considered as potential anti-tumor agents
[16-18] or preparations for PDT. As PDT agents fullerene derivatives may be a part of the
conjugates, aggregates and supramolecules. Development of strategy of fullerene based
nanoplatforms with drugs of different actions represents promising possibilities for carbon
nanomedicine [19], especially, in cancer therapy.
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A number of books that comprehensively describe an organic chemistry of fullerenes [2,20]
and their application in biochemistry and medicine [2,21,22] have been published. Many
reviews appeared [23-28] to describe the investigation of synthesis of new compounds
based fullerene, and their possible medical usage [29-35], in particularly, in PDT [27,36].
However, the trends in PDT as well as in the emergence of new fullerene derivatives are
changing very rapidly and this requires analysis of their medical options as effectors of the
apoptosis of normal and cancer cells.

Two aspects of development of fullerene chemistry are described in this work: new trends in
PDT with features of biological usage and possibilities of applying of fullerenes in
radiotherapy and radiodiagnostics.

2. PHOTOTOXICITY OF FULLERENES. PHOTODYNAMIC THERAPY

Photodynamic therapy as a treatment method involves the application of a photosensitive
substance or its metabolic precursor, followed by irradiation with a focused light of a certain
wavelength [28]. This results in the photochemical generation of singlet oxygen and/or ROS
in targeted tissues. The active species initiate oxidation of sensitive biomolecules, resulting
in the damage of cells, start of signaling pathways of apoptosis, autophagy, anoikis or
necrosis. An ability to significant accumulation in the tumor, to stability and rapid elimination
(clearance) as well as to the absence of general toxicity, synergistic effects with other drugs
and to the availability for the action of a specific wavelength light irradiation are necessary
properties of photosensitizers [29].

The method of PDT is widely used in cancer treatment. Two types of effects are
distinguished [31], where reacting agents are superoxide radicals or singlet oxygen (Fig. 1).
For fullerenes the method is based on the selective accumulation of photosensitizer in tumor
cells and its ability to generate both agents (singlet oxygen as well as superoxide radical)
under irradiation with light beam of definite wavelength. Thus, cellular uptake of a
preparation and selectivity of its action, namely, on cancer cells play a certain role in
damaging of a tumor.

Such selective necrosis of cancer cells was observed in the presence of the fullerene adduct
with some polyester chains and irradiation by light (λ=400-505 nm) [32].

Till now photosensitizers on the basis of carbon nanostructures did not pass clinical trials
and are not allowed for their practical use [30]. Nevertheless, investigations are widely
carried out with hope for their further usage. When PDT is fullerene mediated it can be used
to damage multiple types of cancer cells including head and neck, breast and esophageal
cancers which poorly respond to other kinds of cancer therapy.

Fullerene adducts that exhibited the phototoxic effect against cancer cells are shown in
Table. 1.
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Table 1. Effect of light irradiation in the presence of fullerenes
I. Fullerene adducts as a protectors against the photoirradiation

Fullerene adduct Cells Conditions Effect Ref.
C60(OH)44 8H2O (I)
C60(OH)6-12 (II)
C60(OH)32-34 7H2O (III)

Skin
keratinocytes
HaCaT

UVA, UVB ROS acceptors: (I)>(III)>(II).
(I) shows higher protective effect in UVB than
in UVA

70

Carboxyl-fullerene[C60] HaCaT UVB Reduction of blocking cell proliferation. Without
the participation of Bcl-2 family

71

PVP/C60 HaCaT UVA Blocks the signaling pathways of apoptosis 73
C60 incorporated into the
phospholipid membrane

HaCaT UVA, 10 J sm-2 74.5
nm, C=150ppm

Chronic UVA to 4 J
sm-2. In total 76 J sm-

2.
250 ppm, C=0.75 ppm
C60

restoration of the cell viability

Inhibition of cell damages

74

75

C60 integrated in
liposomes

HaCaT UVA (12 J sm-2), UVB
(500 mJ sm-2), 75.6
nm

Prevention of cell morphological degeneration
from OH radicals

77

Tris-malonyl-C60 A431 UV The maintaining a network of cytoskeleton
components is carried out only in the presence
of the substance during irradiation

72
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II. Fullerenes in PDT

Fullerene adduct Cells Conditions Effect Ref.
C60 T-leukemic

lymphocytes,
Jurcat

UV, visible
12-50 nm,
50 μmole/L

Cytotoxic effect 35

C60 and C70 incorporated into lipid
membranes

HeLa λ>400 nm Phototoxicity of C70 is higher than C60. 60

С70, incorporated into surface-
cross-linked  liposome (cerasomes)

HeLa UV High photoreactivity 80

C60-aminoacid:
-Phe
-L-Arg

C60-folic acid

HeLa, 5 μg/ml,
visible light

The decrease of mitochondrial membrane
potential, viability, activity of antioxidant
enzymes: SOD, CAT, Gpx. An increase of
MDA level and magnification of caspase-
3.

32

Copolymer
C60-N-vinylpyrrolidone

HeLa,

osteogenic
sarcoma cells

100 μg/ml

5 μg/ml

30% of the cells are killed.
Damage of membrane cells.

42

Bis-methano-phosphonate-C60
(BMPF)

HeLa, 4 μmol/L,
green light

An increase in MDA. The enhancement of
lipid peroxidation.

30

Carboxy-C60 in present of Ca2+ Superhelical DNA
pBR 322

Visible light Cleavage at guanine bases.
Mono-substituted adducts are higher
phototoxicity

30

C60-pyropheophorbide Jurcat Phototoxicity 34
C60/PEG with different terminal
chains

PEG with methyl terminal structure
produces the maximum accumulation in
the tumor

38

Gd3+@C60/PEG PDT+MRT Theranostics 37
multimeric (crosslinked) PEG/C60 KB-tumor grafted

into mice
λ=670 nm
(10 min)

A raising the temperature up to 440 and
tumor regression

39

N-methyl pyrrolidine – C60 in
Cremophor EL-micelles

Irradiation through
the abdominal
wall

White light Predominance of necrosis 44
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Cationic micelles of poly(N-vinyl-
caprolactam)-C60

Photosensitizer, antiviral drug 40

Cationic adduct C60 (Fig. 4)
integrated into
liposome

HeLa Highly effective phototoxic agent 76

Carbohydrate substituted fullerene-
C60

Cancer cells

Normal fibroblasts

UV and
visible light
λ=355 nm, laser
irradiation

Selective degradation of cells and HIV-
protease

no cytotoxicity

62

64
Glycol chitosan-C60 KB-tumor of

human carcinoma
of the cervix

λ=670 nm Selective accumulation in the tumor and
high generation of singlet oxygen

66

Malonic acid-C70 400-700 nm Necrosis, blebbing 9
FHP1
FHP6
FHP12

Compound II is more phototoxic
due to higher intracellular uptake

61

C60(OH)x human retinal
pigment epithelial
cells

Visible light, 83 J
sm-2,
>5 μmole/L

Early apoptosis 54

C60(OH)24 Human lens and
retina cells

penetrate eye barriers 51,53

C60(OH)19(ONa)17 18H2O Different cells High phototoxicity 55,56
Deca cationic C84O2-Malonate
Quaternary Ammonium
iodide/triiodide Salts

The relation-ship of
the wavelength to
the cell photo-
toxicity in the
present of a donor
in the side chain (a
tertiary amine)

cyclic process enhancing the generation
of OH radicals

50
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(γCD)2/C60 HLE B3 UVA, visible, 2
μmole/L

1) high toxicity in the absence of
aggregation
2)  transport through eye barriers

57

α,β,γ-CD/C60 DNA 400 nm DNA cleavage: α<β<γ-CD 58
Conjugates C60 with lipophilic
meso-aryl- porphyrins with long
chain substituents

49

C60-porphyrin incorporated into
liposomal vesicles

Hep-2 1 μmole/L,
D=54 J/sm2

death of cancer cells (80%) 48

C60-porphyrin Hep-2 Caspase-dependent pathway of apoptosis 46
5,10,15,20-tetra-kis(4-
phenyl)porphyropolyvinyl-
pyrrolidone-C60 (TPP/PVP/C60)

1) K562

2)rat with Walker
256 carcinoma
inoculated
subcutaneously

436 nm, 1000
mJ/sm2, 20-200
mW/sm2, 0.05
μmole/L

685 nm, 50
J/sm2, t=15 min, 10
mg/kg
intraperitoneally

Apoptosis without the participation of
caspase-3

Oxidative stress leads to the destruction
of cancer cells

2

26

Naphthalene-diimide-C60 Photosensitizers with
light-harvesting antenna

82

C60- cycloveratrilen with glucose or
lactose residues

Photoreactive supramoleculs 86
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Colloid solutions of C60 and C70, water-soluble fullerenes functionalized by amino acids, folic
or malonic acids, some copolymers, inclusion compounds, conjugates, dyads and triads,
some fullerols etc. are used for this purpose. The mechanism of action may be various.
Incubation of tumor cells with fullerenes with subsequent irradiation by light causes
apoptosis in different types of cancer through 4-6 hours after irradiation [34]. Most of
fullerene derivatives induce oxidative stress, which, depending on the cellular uptake of a
particular compound, as well as on the type of cells, leads to a selective or non-selective
damage of cells or tumor tissue by apoptosis or necrosis mechanisms. Typically, these
events are accompanied by the development of mitochondrial dysfunction as well as by the
decline of activity of antioxidant enzymes and the growth of MDA level. Antioxidant functions
of fullerenes in the conditions of a strong oxidative stress may acquire greater significance
and to contradict the anti-tumor activity of the compound. Mono-adducts of С60 (in
comparison with bis- or tris-adducts) demonstrated the greatest activity in relation to cancer
cells due to their high cell uptake and enhanced localization in mitochondria.

2.1 Phototoxicity of fullerene adducts to HeLa cells

The aminoacid-C60 derivatives (Fig. 3): phenylalanine-С60, L-arginine-С60 (Fig. 3.3) and folic
acid-С60 (Fig. 3.4) - in concentration of 5 μg/mL did not cause cytotoxicity in the dark during
long time and possessed selectivity for cancer HeLa cells [33]. The decrease of
mitochondrial membrane potential, of cell viability and of SOD, CAT, Gpx activity and the
increase of MDA level were observed after irradiation by visible light.  Finally, the apoptosis
proceeded through enhancement of caspase-3 activity.

4

Fig. 3. Aminoacid-C60: Ala-C60(1), Cystine-C60, Arg-C60(3). Folic-C60 (4)

Сationic adduct C60 (Fig. 4) incorporated into the liposome, was demonstrating a high
efficiency of cell destruction in the PDT [37].
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Fig. 4. Complex C60-liposome having different surface charges due to compounds 1-4
[76]

By using BMPF (Table 1.II) it was shown [38] that ROS together with calcium ions are
involved in the process of sensibilization of apoptosis and necrosis. The presence of
extracellular calcium promotes activity of fullerene derivatives, but its removal does not
interrupt their ability of membrane damaging. That is indicating to the existence of both
calcium-dependent and calcium-independent manners in the process.  Simultaneously,
BMPF enhances lipid peroxidation in dependence on dose and duration of irradiation [31].

Photodynamic activity of С70-γ-cyclodextrine (C70/γ-CD) inclusion compound was sufficiently
greater than those for С60 in relation to HeLa cells [39]. Similar picture was observed at
comparison of photodynamic activity (λ>400 nm) of С60 and С70 incorporated into lipid
membrane [40]. Authors consider that this is linked with a simple difference in their ability to
generate singlet oxygen, due to asymmetry of С70 [9]. Similar highly photoreactive properties
were showed by C70 included in surface-cross-linked liposomes (cerasomes). The
photosensitizer was obtained by inclusion C70/CD into a lipid membrane using the reaction of
exchange [41] and C70 is capable of acting without the release from the cerasomes of
membranes. Dynamics of spontaneous penetration of pristine C60 and N-substituted
fullero[C60]pyrrolidines into phospholipid membranes and its distribution there have been
described [42]. The nature of fullerenes as well as a method of their introduction into
liposomes plays a significant role [43]. Fullerene-containing liposomes with the highest
potential for photo cleavage of DNA were obtained in photo triggered the exchange reaction,
but not in case of heat or microwave irradiation.

Fullerene-C70, modified by malonic acid, caused a much more active cell death by necrosis
than the C60 derivative. This process accompanied by blebbing that is rare in PDT [9].

Co-polymers of C60-N-vinylpyrrolidon showed the best phototoxicity in relation to HeLa and
murine osteogenic sarcoma cells (Tabl.) in PDT [44]. Cationic micelles of block-copolymers
of poly (N-vinylcaprolactam)-С60 demonstrated themselves as a potential antivirus drug [45]
and, simultaneously, as strong photosensitizers under UV-irradiation [46].
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2.2 Phototoxicity of Fullerene Adducts to Leukemic Cells

Action of С60 colloid solution and irradiation (in UV- and visible ranges) produced cytotoxic
effects on leukemic Jurkat cell line (but not on thymocytes) [47]. The process was
accompanied by elevated activation of caspase-3. C60-pyrofeoforbids with different amount
of substitutes showed varying phototoxicity in relation to Jurkat cells [35]. Effects were
determined by difference in their physical and chemical properties and, as consequence, by
different intracellular uptake.

2.3 Photoinduced DNA-cleavage

Photoinduced cleavage of super-helix DNA in pBR322 (a plasmid used E. coli cloning
vectors) predominantly at guanine bases [31] was observed after incubation with carboxy-
fullerenes-С60 and irradiation by visible light (but no in the darkness). CD/C60 is also effective
photosensitizers of DNA cleavage in PDT [48]. Effectiveness are increased in order of α-<,
β-<, γ-CD/C60. The difference is due to varying aggregation behavior of the inclusion
complexes in aqueous solution, and correlates with the size of the cavity of host molecules -
cyclodextrin (174 <262 <474 A3, respectively). Moreover, photodynamic activity of γ-CD/C70
complex was much higher than in the case of C60 [39].

Dynamics of spontaneous penetration of pristine C60 and N-substituted
fullero[C60]pyrrolidines into phospholipid membranes and its distribution there have been
described [42]. The nature of fullerenes as well as a method of introducing them into
liposomes is playing a significant role in DNA damaging [43]. Fullerene-containing liposomes
with the highest potential for photo cleavage of DNA were obtained in photo-triggered
exchange reaction, but not by heat or microwave irradiation. The liposomes were much
higher photoreactive due to the lack of self-quenching of photoexcited fullerenes. That is
resulted in the introduction of only isolated fullerenes because of controlling their self-
aggregation.

2.4 Effect of Fullerene Adducts against Different Tumors In vivo

The dominant necrotic effects over apoptosis were observed under treatment by N-methyl-
pyrrolidine-C60 placed in Cremophor-EL-micelles with simultaneous irradiation with white
light through the abdominal wall in case of intraperitoneal carcinomatosis [49].

Multimeric (cross-linked) PEG-C60 - nanoparticles [50] are used in
photothermal/photodynamic therapy of mice with inoculated KB-tumor. At the laser
irradiation (λ = 670 nm, 10 min) the temperature on the surface of tumor was increased to
44ºC and caused high level of singlet oxygen leading to tumor regression.

Conjugates of fullerene with glycol chitosan (30 nm) were photoreactive in relation to cells of
KB-tumor human cervical carcinoma.  The selective accumulation of photosensitizer in the
tumor and high generation of singlet oxygen were observed [51].

A system of 5,10,15,20-tetrakis (4-phenyl) porphyrin-polyvinylpyrrolidon-C60 (TPP/PVP/C60)
was tested on rats with subcutaneously inoculated Walker 256 carcinoma. Under the
irradiation with red light (λ = 685 nm) after intraperitoneal injection of 10 mg of preparation
per kg of body weight the oxidative stress, lipid peroxidation and changes in antioxidant
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systems were observed in the tumor tissue that resulted in the destruction of cancer cells
[19].

2.5 A Role of Substitutes

An investigation of phototoxicity of three fullerene hexa-cis-adducts in combination with
different amount of introduced photosensitizers: bis (31,32-didehydrophytochlorine) fullerene
[5:1]-hexa-adduct (FHP1), fullerene [5:1]-hexa-adduct with six 31,32- didehydrophytochlorine
groups (FHP6) and fullerene[6:0]-hexa-adduct with 12-31,32- didehydrophytochlorine units
(FHP12) was performed and FHP6 was recognized as the most prospective one [52]. The
degree of intracellular uptake, which depended on the size and asymmetry of the fullerene
complex through a changing of quantum yield of the singlet oxygen, had the greatest
meaning.

2.6 A Role of Aggregation

Dendro [С60] fullerene [53] inhibited growth of cells in the darkness and was slightly
phototoxic under UV-irradiation due to independent formation of aggregates. A method of
preparation of fullerene nanoparticles played a great role in its phototoxic activity.

2.7 Photoactivity of Inclusion Compounds

It is considered that PEG-fullerenes С60 possess good potential to be used in PDT with very
small side effects for normal cells [54]. PEG-fullerene-С60 demonstrated phototoxicity
(λ=400-600 nm, 140 J/cm2) in relation to human fibrosarcoma cells HT1080, significantly
decreasing their viability. Normal fibroblasts in the same conditions kept viability of 85-93%.
PEG-conjugated fullerenes, containing Gd3+ ion, were used for photodynamic therapy in
combination with magnetic resonance tomography (theranostics) [55]. Samples of PEG with
different terminal structures and molecular weights were conjugated with C60 by covalent
binding. All studied conjugates demonstrated in vitro equal ability to generate the superoxide
anion and anti-tumor activity in PDT. However, C60-PEG conjugates in vivo possess a tumor
suppression activity, the longest half-life in blood circulation and the highest accumulation in
the tumor if they have the methyl-terminal PEG only [56].

Water-soluble derivative (γ-CD)2/C60 is used in two ways: as drug transporter through eye
barriers and photosensitizer in PDT for treatment of tumors [57]. Starting with 2 μmol L-1

(γ-CD)2/C60 was highly toxic to the HLE B-3 cells under UVA irradiation. In the meantime,
aggregated nanoparticles did not provide such an effect even at 30 μmol/L, and the effect
was not observed under irradiation by a visible light. Obviously the singlet oxygen is an
important intermediate product of phototoxicity of monomer (γ-CD)2/C60 and sO production
decreases with an aggregation of the particles.

2.8 Fullerols as Photosensitizers

Fullerol (C60(OH)19(ONA)1718H2O) also exhibited a high phototoxicity in water solutions in
relation to different cancer cells and cellular compounds [58,59] that was explained by
authors [279] as a result of possible accumulation of ROS products. Fullerol C60(OH)24 is a
powerful photosensitizer [60] at the expense of superoxide radicals and singlet oxygen
generation through effective resonance transfer of energy [61]. С60(ОН)24 is used in PDT in
ophthalmology, because it is able to penetrate eye barriers, and some correlation between
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intracellular distribution of C60(OH)24 and progression in damage of human lens and retina in
vivo is observed [62]. Fullerols demonstrated phototoxicity against human retina pigment
epithelial cells causing the appearance of early apoptosis [63].

2.9 Conjugates and Supramoleculs with Fullerene Adducts in PDT

Fullerene-carbohydrate hybrids (Fig. 5) can produce the selective degradation of HIV-1
protease [64]. However, these compounds did not demonstrate cytotoxicity against normal
fibroblasts [65], besides; these hybrids are able to inhibit a lipid peroxidation in blood plasma
[66].

Fig. 5. Carbohydrate substituted [C60] fullerenes [62,64]

Recently, the conjugates of C60 and lipophilic meso-aryl-porphyrins with long chain
substituents were obtained for using in PDT [67].

Among fullerene nanomaterials a porphyrin-fullerenes play an important role due to high
bioavailability and relative non-toxicity [68]. Therefore, photosensitizers in the form of dyads
and triads, which include porphyrin and fullerene derivatives, are produced. Dyad C60-
porphyrin (C60-P) was used in PDT against human cells Hep-2 cancer of the larynx, causing
apoptosis in the caspase-dependence manner [69]. These dyads, being included (C = 1
μmol L-1) into liposomal vesicles, have caused under light irradiation the death of 80% of the
cells [70].

Apoptosis without participation of caspase-3 was observed when the human lymphoblast cell
line (K562) was treated by TPP/PVP/C60 [2]. The usage of TPP is linked with its ability to
generate singlet oxygen with high quantum yield (0.63) [71]. Three types of interactions were
registered (Fig. 3) in this dyad: electrostatic, hydrogen bonds in TPP-PVP and the donor-
acceptor bonds between fullerene and other components [27]. Here the high ability of these
compounds to the formation of photo-induced state with divided (isolated) charges was first
noted. Cell survival was dependent on the level of illumination and high phototoxic effect
persisted even in an atmosphere of argon. Depending on the microenvironment of the
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sensitizer site localization, the tissue is damaged either through the mechanism of 1O2 -
mediated photoreaction process or through ROS attack at a low concentration of oxygen.
Apoptosis by caspase-3-dependent pathway (58% of apoptotic cells) has been replaced by
predominant necrotic phenomena in anaerobic conditions.

2.10 Complex Drugs Containing Fullerene Derivatives

By using deca cationic C84O2-malonate quaternary ammonium iodide/triiodide salts, it has
been shown [72] that the generation of hydroxyl radicals can be enhanced by application of
short excitation wavelength in the presence of a combination of electron donors of amine
and low concentrations of ascorbic acid (AA). AA acts as an effective reducer of tertiary
amine cation radicals formed during photoinduced intramolecular electron transfer from the
hexa-bis (aminoethyl) amidated malonic donor fragment to the fullerene cage. AA electron
reduction can regenerate neutral deca-tertiary aminoethyl fragments and, therefore, continue
photo-induced oxidation-reduction cycles that ultimately leads to an increase of hydroxyl
radicals generation. C84O2-fullerene derivatives exhibit the properties of effective
photosensitizers.

The photoelectric effect can be further amplified by using the light-harvesting liposomal
system with introduced light-harvesting antenna molecule [32]. To improve the
photodynamic activity of liposomal photosensitizer against cancer cells, the construct as
"paddle" with the light-harvesting molecules 1,10 - dioctadecyl - 3,3,30,30-tetra-methyl-
indodicarbocyanine (DiD) and C60 in bilayer lipid membranes was developed [73]. The light
energy (λ = 610-740 nm) is absorbed by the antenna and transmitted to the C60 molecules
for the ROS generation as shown in Fig. 6.

Fig. 6. Light-harvesting liposomal photosensitizer, which is a lipid membrane
containing C60 and antenna molecule (1,10-dioctadecyl-3,3,30,30-

tetramethylindodicarbocyanine - DiD). Copied from [81]
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Two naphthalene-diimide-C60 (NDI-C60) dyads in which alkyl amino substituents
acted as light-harvesting antennas, and C60 served as a spin converter for intercombination
transition from the singlet excited to the triplet excited state were proposed for PDT [74].

The idea of association of fullerene and porphyrin structures is considered to create new
photosensitizers with enhanced generation of singlet oxygen and more simple entry into
tumors. Some polyads have been synthesized [75], but they have not been tested in
medicine yet [76].

Calculations carried out by DFT-method, have shown [77] that some of the metal-containing
fullerenes (especially, bis-fullerenes) have even more powerful potential as photosensitizers.

Two sugar-functionalized (glucose- and lactose) water-soluble cyclotriveratrylene derivatives
that are capable to form photoreactive supramolecular compounds with C60 are described
[78].

To enhance the photoactivity of drugs, fullerene derivatives are covalently linked with well-
known photosensitizers, for example, with zinc phthalocyanines. Compounds of C60-
pyrrolidine tris-acid ethyl ester (PyC60) are obtained with a series of photosensitizers-zinc
phthalocyanines (ZnPc) among them unsubstituted ZnPc, zinc - 1,4,8,11,15,18,22,25 – octa
butoxy-29H, 31H - phthalocyanine and zinc - 2,3,9,10,16,17,23,24 - octakis - (octyloxy) -
29H, 31H-phthalocyanine [79]. Also there are similar compounds for C70 [80]. Theoretical
calculations of the photoexcitation mechanism showed that interaction between ZnPc and
PyC60 is regulated by electrostatic mechanism, but not dispersive forces associated with π-π
interaction.

Photodynamic activity of fullerenes can be used not only in the treatment of cancer, but also
for the sensitization of antimicrobial action [81]. The inactivation rate of MS2 bacteriophage
and the rate of generation of singlet oxygen increased in the following order of four
suspensions of fullerene photosensitizers [82]: aqu-nC60 <C60 (OH)6 ≈ C60(OH)24 <C60 (NH2)6.
In all cases the inactivation mechanism has involved a destruction of capsid by C60(NH2)6, an
infringement of the secondary structure and oxidation of the capsid proteins.

Some modern aspects of fullerene application in PDT, in particular, therapeutic perspectives
of their using, are considered in the review [83]. It is necessary to account that fullerenes
may be more effective in PDT of hypoxia tumors (where the oxygen level is low), because
they are able to change a mechanism of cell damage.

Thus, photo-sensitizing effect of fullerene derivatives may be performed at the expense of
1О2 (С60) and ROS enhancing (С60(ОН)18). It is necessary to take into account the result of
differential interaction with various structures, for example, binding to molecules of the lipid
membrane, increasing of ОН-generation etc. The effect may be additionally enhanced by
using of light gathering antenna molecule and conjugates involving components reinforcing
each other effect. The greatest phototoxicity is characteristic for mono-substituted С60
adducts that have no ability to self-aggregation, especially in the presence of calcium ions.
The process is a dose- and concentration-dependent and the method of preparation of
fullerene nanoparticles is of a great importance.
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3. PHOTOPROTECTIVE ROLE OF FULLERENES

Some works are devoted to dual role of fullerene as pro-oxidant as well as antioxidant in UV-
induced damages of different tissues, i.e. synergic or cumulative effects in РDT [84]. This
problem is very important in production of cosmetic anti-sunburn means and also in some
skin diseases. It is known that under UV-irradiation a set of events, leading to pro-apoptotic
alterations (generation of ROS, cell rounding, bubbling of its surface etc.) and anoikis, is
observed at the cellular level [85]. In mice, sebaceous glands fulfill a role of a main site for
ROS generation in UVB-irradiation [86]. Use of С60 did not lead to emergence of toxicity, but
index of ROS and index of apoptosis were decreased. More significant decrease was
detected at simultaneous use of ascorbic acid and fullerene that, possibly, is provided by
binding of fullerene with AA and decreasing of the Fenton reaction yield due to intercalation
of AA to the heme pocket.  Thus, use of a sum of fullerene+АА in combination with UV-
irradiation is an effective remedy against oxidative damage of a skin.

С60, incorporated into phospholipid membrane (74.5 nm), in the case of its injection before or
after UVA irradiation, restores viability of cells by decreasing of 30% the level of ROS [87].
Liposome-fullerene under full absence of own toxicity significantly inhibited damage caused
by chronic UVA irradiation of skin (Table 1.I) [88]. Water-soluble nanoparticles containing
fullerene-С60 incorporated into liposomes (75.6 nm) showed dose-dependent protective
effect HaCaT cells against ОН-radicals, emerging under UVA- and UVB- irradiation.
Prevention of cell degeneration was observed and any protective effect exists in the
presence of С60 only [89].

Carboxyl-fullerene-C60 sufficiently reduced a blocking of proliferation of human keratinocytes
induced by UVB-irradiation [90] and simultaneously decreasing an amount of cells with
depolarized mitochondria. The mechanism of action had included interference of the
preparation to the process of ROS generation by depolarized mitochondria, however, without
participation of Bcl-2.

Tris-malonyl-C60 (C3) is able to protect, selectively, cells against intracellular and/or
membrane changes in UV-irradiation [91]. It suggested that protection of epithelial cells
А431 is linked with ability of namely this compound to maintain a network of cytoskeleton
components and the integrity of coordination linkage, but only in the case, when fullerene
derivative presents during irradiation.  It is not excluded that the ability of a preparation to
capture the superoxide radical before its conversion into OH- radical is a substantial
component of the antioxidant action. C3 actually have been localized in the cell membrane.

Skin keratinocytes (HaCaT) were used for approbating of different fullerols: С60(ОН)44 8Н2О
(SHH-F), С60(ОН)6-12 (LH-F) and С60(ОН)32-34 7Н2О (HH-F) [92] in conditions of UVA and
UVB-irradiation. Acceptor activity in relation to ROS was higher for HH-F and SHH-F, than
for LH-F that determined a degree of their cytoprotective effect, which was greater in the
case of SHH-F. Protective effect of SHH-F in relation to UVB- induced damages was higher
than those in relation to UVA. Thus, SHH-F is a highly effective cytoprotector under UV-
irradiation.

PVP/C60 [93] repressed the changes caused by UVA in HaCaT cells in the form of
translocations of the transcription factor NF-κB into cytoplasm to the nucleus of
keratinocytes. Protective effect and a blockage of abnormal signaling pathways were
observed.
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4. IONIZING RADIATION AND FULLERENES

It is known that impact of radiation in great degree is determined by generation of large
amounts of ROS. Cytotoxicity or, on the contrary, antioxidant effects of fullerenes may play a
substantial role in these conditions, increasing or compensating impact of ionizing radiation
on the organism. Moreover, properties of the fullerenes may also be changed under action of
ionizing radiation. For example, nanoС60 in certain conditions inhibits tumor cells growth,
expressing properties of a sensitizer under radiotherapy, enhancing apoptosis [94].
However, γ-irradiation is able to influence on cytotoxicity of n-С60 (THF) [95]. Irradiated
fullerenes not only did not cause oxidative stress and induce ERK-dependent death of
different mammalian cells, but, on the contrary, they are protecting cells against oxidative
stress, induced by THF-nC60 or hydrogen peroxide. Thus, γ-irradiation is able to alter
physical and chemical properties of n-C60, leading to full loss of its cytotoxicity and
transforming it into a cytoprotective agent. In this case, it is not possible to exclude a
possibility of functionalization of fullerene surface by products of water radiolysis that, in
addition to a possible role of the residual THF in cytotoxicity, may cause the loss of
cytotoxicity and acquisition of new properties by the fullerene.

Radioprotective (anti-radical) activity of hydrated fullerene C60HyFn and its labile nanosize
clusters at concentrations of 10-11-10-6 mole/L was observed under X-ray irradiation of DNA
(1-7 Gy in vitro) [96]. C60HyFn at concentrations of 10-7-10-6 mole/L protects nucleic acids
against radical-induced damage. An optimal radioprotective concentration of С60HyFn was
equal to 1 mg/kg in vivo (mice, intraperitoneally, 1 hour before or 15 min. after irradiation) at
the lethal dose of 7 Gy. Lysine-С60 was used for preliminary treatment of human
lymphoblastic cells AHH-1 before γ-irradiation (>400 mg/L) and did not show visible toxicity.
This sufficiently increased the cell survival after irradiation by decreasing the apoptosis level
in a dose-dependent manner [97].

Dendrite adduct of [С60] fullerene, containing 18 carboxyl groups (С60DF) [98], is able to
protect human lymphocytes and intestine cells from consequences of impact of high doses
of γ-irradiation. The process includes decrease of ROS level, inhibition of radiation-induced
apoptosis and cells necrosis, DNA damages, oxidative stress. However, the process is not
selective, because no difference between modest protective effect of the dendro-fullerene on
normal fibroblasts (dose modifying factor=1.1 [99]) and on tumor cells was observed in vivo.
LD50/30 for mice, received 300 mg/kg of the dendro-fullerene before irradiation, was equal to
10.09 Gy in comparison with 8.29 Gy for control group. No protective effect was described
for a dose of the drug of 200 mg/kg. Linked with antioxidant effects of C60DF protective effect
also was observed under irradiation of zebrafish embryos in a dose of 20 Gy and 40 Gy
[100].

Observed protective effect of polyhydroxylated derivatives of fullerene attracts great
attention, however, the mechanism of action is not clarified up to now, excluding its
antioxidant action. It is known [101,102] that effects of fullerene derivatives are
predominantly linked with mitochondria. It is supposed that nanosize particles may be
captured by reticule-endothelial cells [103]. Namely, the specific localization of fullerene
derivatives, may serve as decisive factor of their effector activity. The using of С60(ОН)24
[104] in a dose of 40 mg/kg for 2 weeks before irradiation of the mice with a lethal dose of γ-
irradiation (60Со) has led to a decrease in  mortality due to increase of immunity, reduction of
oxidative damages and improvement of mitochondria functioning (by restoring of
mitochondrial membrane potential) in comparison with control group of animals.
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Fullerols demonstrated radioprotective effect during X-ray irradiation of animals (8 Gy) [105]
exhibiting protective effect in relation to heart and liver against chronic toxicity induced by
doxorubicin [106].

С60/PVP and γ-CD/С60, as antioxidants, are able to stabilize radioprotective properties of β-
carotene by preventing its oxidation [107]. This fact increases the interest to inclusion
complexes as compensating drugs during cancer treatment by using radiotherapy.

The combined effect of sulfa-containing radioprotectors and C60-derivatives resulted in
reduction of side effects of the original drug (for example, amifostine) [108].

Fullerenes, serving as drugs, additionally can be transporters of radiomarkers and
radioagents and as such intended to be used in radiotherapy and radiodiagnostics. For
example, complex C60(OH)20 with 99mTc(CO)3 [109] rapidly reaches all tissues of the body
except the brain and is retained there for 3 h without losing activity. Clearance is 24 h.

Complex 212Pb@C60-malic acid [110] was stable under the beta decay of 212Pb to 212Bi and
caused a weakening of 212Pb myelotoxicity. 177LuхLu(3-х)N@C80, conjugated with IL-13 [111],
was interesting for radioimmunotherapy (RIT).

To prove the efficiency of C60(OH)x for RTD, 125I-C60(OH)x was used, which demonstrated
more rapid and steady accumulation in cancer tumors in mice [112] compared to normal
tissues.

The combined use of fullerene derivatives and radiotherapy is still insufficiently explored, but
in future it could be a far more efficient procedure than even the PDT.

The synergistic effects in radiotherapy described earlier [113] becomes all more urgent now
due to the development of nanomedicine.

5. CONCLUSION

Recent trends in the use of fullerene derivatives in medicine are related to development of
nanoplatforms that contain drugs of different composition and are capable to carry out
selective delivery of them to specific organs. The main medicinal targets are cancer cells of
different types.  It is believed that in this aspect the fullerenes are of great interest because
of their opportunity to participate in the composition of such nanoplatforms in several roles:
cytotoxic agent as well as, conversely, an antioxidant (these roles may change depending on
accumulation in different organs and tissues) ones; as transporter of drugs; as photo- or
radiosensitizer (or protector).

However, the complexity of the problem is that until now there is no predictive model of
action of fullerene derivatives under concrete conditions for a specific cell type. Moreover,
the set of possible mechanisms of the effect of fullerenes on the signaling pathways of
apoptosis varied (Fig. 2) and depends on many factors that are difficult to administrate. All
this hinders the active using of fullerene nanoparticles in medical practice. However, the
individual success of some fullerene derivatives in a particular application, such as action
against HIV, the selectivity to certain lines of cancer cells without damaging normal tissue,
the possibility of using in theranostics [114] suggest good perspectives of fullerenes in the
field of nanomedicine.
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Apparently, porphyrin fullerenes of different composition that act well in transportation (drug
delivery), PDT and targeting are highly successful.
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