1	The effects of ambient fine particulate matter exposure and physical activity on
2	heart failure: a risk-benefit analysis of a prospective cohort study
3	
4	Hongtao Zou ¹ , Miao Cai ¹ , Zhengmin (Min) Qian ² , Zilong Zhang ¹ , Michael G.
5	Vaughn ³ , Xiaojie Wang ¹ , Haitao Li ⁴ , Hualiang Lin ^{1,*}
6	
7	¹ Department of Epidemiology, School of Public Health, Sun Yat-sen University,
8	Guangzhou 510080, China
9	² Department of Epidemiology and Biostatistics, College for Public Health & Social
10	Justice, Saint Louis University, Saint Louis, MO 63104, USA
11	³ School of Social Work, College for Public Health & Social Justice, Saint Louis
12	University, Saint Louis, MO 63103, USA
13	⁴ Department of Social Medicine and Health Service Management, Health Science
14	Center, Shenzhen University, Shenzhen 518055, China
15	
16	* Corresponding author:
17	Hualiang Lin, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan
18	Road 2, Guangzhou 510080, China.
19	Tel: 86-20-87332455
20	E-mail: <u>linhualiang@mail.sysu.edu.cn</u>
21	
22	

23 Abstract

24	Background: Evidence supporting the adverse effects of air pollution and the
25	benefits of physical activity (PA) on heart failure (HF) has continued to grow.
26	However, their joint effects remain largely unknown.
27	Methods: Our investigation included a total of 321,672 participants free of HF at
28	baseline from the UK Biobank. Participants were followed up till March 2021.
29	Information on participants' PA levels and additional covariates was collected by
30	questionnaire. The annual fine particulate matter (PM _{2.5}) concentration was estimated
31	using a Land Use Regression (LUR) model. Cox proportional hazards models were
32	used to assess the associations of PA and $PM_{2.5}$ exposure with incident HF, as well as
33	their interaction on both additive and multiplicative scales.
34	Results: During a median follow-up of 12.0 years, 8,212 cases of HF were uncovered.
35	Compared with participants with low PA, the hazard ratios (HRs) were 0.69 (95% CI:
36	0.65, 0.73) and 0.61 (95% CI: 0.58, 0.65) for those with moderate and high PA,
37	respectively. $PM_{2.5}$ was associated with an elevated risk of incident HF with an HR of
38	1.11 (95% CI: 1.08, 1.14) per interquartile range (IQR) increment. The synergistic
39	additive interaction between low PA and high $PM_{2.5}$ exposure on HF was observed.
40	Compared with participants with high PA and low $PM_{2.5}$ exposure, those with low PA
41	and high PM _{2.5} exposure had the highest risk of HF [HR (95% CI): 1.90 (1.76, 2.06)].
42	Conclusions: Our findings indicate that PA might still be an appropriate strategy to
43	prevent HF for those living in areas with relatively high air pollution. Individuals with
44	low PA may pay more attention to air pollution.

- 45
- 46 **Keywords:** Fine particulate matter; Physical activity; Heart failure; Prospective
- 47 cohort study

48 **1. Introduction**

Heart failure (HF), characterized as a clinical syndrome caused by the impairment of 49 cardiac structure or function, has become a critical health concern with high 50 prevalence and mortality rate (Ambrosy et al., 2014; Bragazzi et al., 2021; Ziaeian 51 and Fonarow, 2016). In 2017, there were 64.3 million HF cases worldwide, which 52 attributed to 9.9 million years lived with disability (YLDs) (James et al., 2018). 53 54 Additionally, HF imposes substantial economic burden with an estimated \$108 billion globally per annum (Cook et al., 2014). Given the heavy disease burden, it's essential 55 56 to formulate appropriate and effective public health policies for the prevention of HF. Physical activity (PA) has been widely recognized as one significant lifestyle-57 related protective factor of HF (Aune et al., 2021). Previous studies have indicated 58 59 that the risk of the HF would reduce progressively as PA levels increase (deFilippi et al., 2012; Kraigher-Krainer et al., 2013; Pandey et al., 2015; Patel et al., 2013; Young 60 et al., 2014). In contrast, ambient air pollution, a serious threat to health worldwide, 61 62 has been associated with the risk of HF, especially particulate matter with 63 aerodynamic diameter $\leq 2.5 \,\mu m \, (PM_{2.5})$ (Bai et al., 2019a; de Aguiar Pontes Pamplona et al., 2020; Huschmann et al., 2020; Liu et al., 2018). With an increased respiratory 64 rate and ventilation volume during PA, it is possible that the elevated inhalation of air 65 pollutants might reduce the beneficial effects of PA. Prior studies have reported that 66 increased levels of air pollution could reduce and potentially override the benefits of 67 68 PA on cardiovascular and respiratory health (Laeremans et al., 2018; McCreanor et al., 2007; Sinharay et al., 2018). However, the relationship between air pollution and PA 69

70	to HF has not yet been disclosed. Previous studies typically focused on the individual
71	association of PA or air pollution with HF and have neglected their combined effect
72	(Aune et al., 2021; Shah et al., 2013). The identification of the risk-benefit
73	relationship between air pollution and PA would be relevant and valuable for HF
74	prevention.
75	We therefore conducted this study in a large prospective cohort with the aim to
76	assess the joint association of PA and long-term exposure to $PM_{2.5}$ with incident HF.
77	The potential interaction effects of PA and $PM_{2.5}$ on HF were further investigated.
78	
79	2. Methods
80	2.1 Study design and participants
81	Participants were drawn from the UK Biobank, a large population-based prospective
82	study. The details of this cohort and study procedures have been reported previously
83	(Sudlow et al., 2015). In brief, over half a million residents across the UK aged 37-73
84	years were enrolled across 2006 and 2010. Participants provided extensive health-
85	related information via touchscreen questionnaires and physical measurements. The
86	UK Biobank study was approved by the North West Multicenter Research Ethics
87	Committee. Each participant provided written informed consent.
88	Among the 502,461 participants with available data, we excluded 2,741 individuals
89	with HF at baseline based on self-reported information and medical record review.
90	Participants with any missing data for covariates, PA, or $PM_{2.5}$ exposure were also
91	excluded, the remaining 321,672 participants were included in the current analysis

92 (Figure 1).

93

94 2.2 Ambient PM_{2.5} exposure assessment

95	The annual average concentration of $PM_{2.5}$ was estimated using a Land Use
96	Regression (LUR) model developed by the European Study of Cohorts for Air
97	Pollution Effects (ESCAPE) project (Eeftens et al., 2012). The LUR model was based
98	on ESCAPE monitoring done between 26 January 2010 - 18 January 2011, and $PM_{2.5}$
99	estimates were representative for the year 2010. Based on predictor variables (e.g.
100	traffic intensity, population and land use) generated from the Geographic Information
101	System (GIS), the LUR model was used to evaluate the spatial variation of annual
102	average concentrations at geo-coded residential addresses of participants given at the
103	baseline visit. Leave-one-out cross-validation displayed a good model performance
104	for $PM_{2.5}$ (cross-validation R^2 =77%) in the southeast England area (London/Oxford).
105	Details on the development and validation of the ESCAPE LUR models have been
106	described elsewhere (Eeftens et al., 2012). The ESCAPE estimates of $PM_{2.5}$ are valid
107	up to 400 km from the monitoring area in Greater London. Thus, all addresses that are
108	more than 400 km away from Greater London have missing data for the $PM_{2.5}$
109	measures (number of records: 33,935). The available $PM_{2.5}$ data in 2010 was used as a
110	proxy of long-term $PM_{2.5}$ exposure, as the fluctuation of temporal trend of $PM_{2.5}$
111	concentrations remained generally stable during study period (Sheridan et al., 2022).
112	Participants were further classified into two groups based on median cut-off of the
113	$PM_{2.5}$ concentration distribution: low exposure (<9.9µg/m ³) and high exposure

114 ($\geq 9.9 \mu g/m^3$).

115

116 **2.3 Physical activity (PA) measurement**

117 PA was measured using the self-reported short-form International Physical Activity

118 Questionnaire (IPAQ) (Craig et al., 2003). Participants were asked about the

119 frequency and duration of their engagement in three types of activity (walking,

120 moderate and vigorous activities). The total PA was calculated in total Metabolic

121 Equivalent Task (MET) minutes per week following the rules of IPAQ

122 (https://biobank.ndph.ox.ac.uk/showcase/ukb/docs/ipaq_analysis.pdf). Based on IPAQ

123 guidelines, we categorized PA into three groups: high PA (vigorous activity on at least

124 3 days/week achieving a minimum total PA of at least 1500 MET-minutes/week $OR \ge$

125 7 days/week of any combination of walking, moderate or vigorous activities achieving

a minimum total PA of at least 3000 MET-minutes/week), moderate PA (\geq 3

127 days/week of vigorous activity of at least 20 minutes per day $OR \ge 5$ days/week of

moderate activity and/or walking of at least 30 minutes per day $OR \ge 5$ days of any

129 combination of walking, moderate or vigorous activities achieving a minimum total

- 130 physical activity of at least 600 MET-minutes/week), and low PA (no activity is
- 131 reported OR some activity is reported but not enough to meet the criteria of moderate

132 or high).

133

134 **2.4 Follow-up and outcomes**

135 Participants were followed until the date of incident HF, death, loss to follow-up, or

136	31 March 2021, whichever came first. HF cases were identified through self-reported
137	information and linkages to a range of health-related records, including primary care,
138	hospital inpatient, and death registry records in the UK Biobank. Details of these
139	records are accessible on the UK Biobank website (https://www.ukbiobank.ac.uk). We
140	defined incident HF based on the International Classification of Diseases, 10th
141	revision (ICD-10: I50). The date of the first occurrence of the records for HF during
142	the follow-up was used as the date of incident HF in our study.

143

144 2.5 Covariates

We developed a directed acyclic graph (DAG) to identify potential covariates that 145 need to be adjusted in our multivariate analyses (Greenland et al., 1999). Based on the 146 147 priori knowledge and existing literature, (Djoussé and Gaziano, 2008; Rautiainen et al., 2015; Uijl et al., 2019), we included a set of covariates in the DAG that should be 148 considered in the analyses. Potential adjustment was considered for the variables: age, 149 150 sex, ethnicity, education attainment, household income, smoking status, alcohol consumption, body mass index (BMI), fruit and vegetable intake. A minimally 151 152 sufficient adjustment set was identified to account for confounding effects in the exposure-outcome relationship and included in our final model (Figure S1), including 153 age (continuous), sex (female or male), ethnicity (White, Black, Asian, mixed or 154 other), education attainment (higher degree, any school degree, vocational 155 qualifications or other), household income (less than 18,000£, 18,000 to 30,999£, 156 31,000 to 51999£, 52,000 to 100,000£ or greater than 100,000£) and smoking status 157

158 (never, previous or current smoker).

159

160 **2.6 Statistical analysis**

161	We utilized Cox proportional hazards regression models to examine the impacts of
162	$PM_{2.5}$ exposure and PA on HF. The hazard ratios (HRs) and 95% confidence interval
163	(CI) were used to present the associations. The time scale was the follow-up time and
164	the proportional hazards assumptions were tested using Schoenfeld residuals. Three
165	multivariable-adjusted models were performed in our analyses. Model 1 was adjusted
166	for age, sex, ethnicity. Model 2 was adjusted for covariates of Model 1 and education
167	attainment, household income and smoking status. Model 3 was further adjusted for
168	$PM_{2.5}$ (for the association with PA) and PA (for the association with $PM_{2.5}$). We also
169	conducted subgroup analyses stratified by the levels of $PM_{2.5}$ and PA separately to
170	estimate the associations of HF with PA or $PM_{2.5}$ in each stratum.
171	We then assessed the interactive effects of $PM_{2.5}$ exposure and PA on both additive
172	and multiplicative scales (Knol and VanderWeele, 2012). To test the additive
173	interaction, we created a new variable with six groups representing six combinations
174	of $PM_{2.5}$ exposure (low and high) and PA (low, moderate, and high). Individuals with
175	low $PM_{2.5}$ and high PA were treated as the reference group (Knol et al., 2011). The
176	relative excess risk due to interaction (RERI) was calculated to estimate the
177	interaction: no additive interaction (RERI = 0), negative additive interaction (RERI $<$
178	0), and positive additive interaction (RERI $>$ 0) (Li and Chambless, 2007). In the
179	current analysis, a significant positive value of RERI indicated that $PM_{2.5}$ exposure

180	could modify the impacts of PA on HF. We further examined the multiplicative
181	interaction by using the likelihood ratio test comparing models with and without an
182	interaction term between $PM_{2.5}$ exposure (low and high) and PA levels (low, moderate
183	and high). The P -value for interaction <0.05 indicates the existence of multiplicative
184	interaction (Sun et al., 2020).
185	To examine the robustness of our results, several sensitivity analyses were
186	conducted: (1) additionally adjusting for the residential average 24-hour sound level
187	of noise pollution (dB) in the model; (2) excluding incident cases of HF within the
188	first two years of follow-up; (3) excluding participants who had pre-existing coronary
189	heart disease or atrial fibrillation at baseline.; (4) restricting the analysis to individuals
190	who had a fixed home address throughout the follow-up; (5) restricting incident HF
191	cases to the source of hospital inpatient data.
192	All analyses were performed using R (version 4.1.2) and all statistical tests were
193	two sides. A <i>P</i> -value of <0.05 was considered statistically significant.
194	
195	3. Results
196	3.1 Descriptive analysis
197	A total of 8,212 cases of incident HF were identified during a median of 12.0 years
198	of follow-up. Table 1 displays baseline characteristics of the participants. The mean
199	age for those included in the study was 56.0 years, 51.0% were females, and 54.6%
200	were never smokers. Compared with those without incident HF, the incident cases
201	were older, mainly males and more likely to be current smokers. Additionally,

participants with incident HF had a lower PA and higher PM_{2.5} exposure than those
without incident HF. Compared with the included participants, individuals excluded in
the current study. had similar distributions in major baseline characteristics, such as
age (mean: 57.5 years [excluded participants] vs 56.0 years [included participants]),
PA (low: 18.8% vs 19.0%), and PM_{2.5} concentration (median: 10.0 µg/m³ vs 9.9
µg/m³).

208

209 3.2 Separate association of PA or PM_{2.5} with incident HF

210 The association of PA or $PM_{2.5}$ exposure with the risk of HF is shown in Table 2.

Higher PA was associated with a lower risk of incident HF. Compared with low PA,

the HRs after fully adjusting for the covariates, including PM_{2.5}, were 0.69 (95% CI:

213 0.65, 0.73) and 0.61 (95% CI: 0.58, 0.65) for moderate PA and high PA, respectively.

In contrast, elevated $PM_{2.5}$ exposure was associated with a higher risk of incident HF.

The HR per IQR increment in $PM_{2.5}$ was 1.11 (95% CI: 1.08, 1.14). Compared with

216 participants exposed to low $PM_{2.5}$, the HR for those with high $PM_{2.5}$ exposure after

fully adjusting for covariates, including PA, was 1.16 (95% CI: 1.11, 1.21).

Furthermore, results of stratified analyses showed that there was a reduced risk of

- developing HF in every $PM_{2.5}$ stratum associated with PA, whereas exposure to high
- levels of PM_{2.5} increased the risk of developing HF in each PA stratum (Table 3).

221

222 3.3 Joint association of PA and PM_{2.5} with incident HF

Table 4 displays the results on the combined effects of PA and PM_{2.5} exposure on HF.

224	Participants with high PM _{2.5} exposure and low PA had the highest risk of developing
225	HF. Conversely, the reference subgroup consisted of those with low $PM_{2.5}$ exposure
226	and high PA had the lowest risk of incident HF. The HR for those with low PA and
227	high PM _{2.5} exposure was 1.90 (95% CI: 1.76, 2.06). A significant positive RERI was
228	observed, indicating the existence of positive additive interactions. Specifically, for
229	low PA with high PM _{2.5} exposure, the RERI was 0.24 (95% CI: 0.07, 0.40), which
230	suggested there would be 0.24 relative excess risk because of the synergistic additive
231	interaction.
232	
233	3.4 Sensitivity analyses
234	In the sensitivity analyses, the results were robust after accounting for the residential
235	noise exposure (Table S1). After excluding incident cases of HF within the first two
236	years of follow-up, the effect estimates did not materially change (Table S2).
237	Excluding participants who had pre-existing coronary heart disease or atrial
238	fibrillation at baseline did not significantly change our results (Table S3). Restriction
239	of the analysis to individuals who had a fixed home address throughout the follow-up
240	period yielded similar results (Table S4). Moreover, the observed associations of PA
241	and $PM_{2.5}$ exposure with HF did not change significantly after we restricted incident
242	HF cases to the source of hospital admission data (Table S5).
243	
244	4. Discussion

245 In this large prospective study, we found that PA was related to a reduced risk of

246	incident HF, whereas long-term exposure to $\ensuremath{\text{PM}_{2.5}}$ was associated with a higher risk of
247	incident HF. The beneficial effects of PA on HF were robust in participants with
248	different levels of $PM_{2.5}$ exposure. The positive association of long-term exposure to
249	PM _{2.5} and HF was also observed in participants with various levels of PA.
250	Additionally, there was a synergistic additive interaction between low PA and high
251	$PM_{2.5}$ exposure on HF, suggesting individuals with low PA may pay more attention to
252	air pollution.
253	The inverse association between PA and HF, observed in our study, was consistent
254	with previous research (Andersen et al., 2014; Bell et al., 2013; Wang et al., 2010).
255	Substantial evidence has indicated that PA is an important protective factor against HF
256	(Aune et al., 2021; Pandey et al., 2015). Several potential mechanisms have been
257	proposed for the direct benefits of PA on development of HF, including the
258	enhancement of myocardial oxygen supply, increase of capillary density, and
259	reduction of interstitial fibrosis, which can effectively prevent the impairment of
260	cardiac function (Emter et al., 2011; Miyachi et al., 2009). Furthermore, PA could
261	decrease the risk of HF by lowering the chance of developing cardiovascular diseases
262	such as hypertension and coronary heart disease, which are related to the development
263	of HF (Aune et al., 2015; Hollingworth et al., 2015; Sofi et al., 2008).
264	The deleterious effect of $PM_{2.5}$ on HF has been well-established (Bai et al., 2019b;
265	Carey et al., 2016; Stockfelt et al., 2017). Similarly, we observed that $PM_{2.5}$ was
266	associated with an increased risk of HF. Emerging evidence indicates that $PM_{2.5}$
267	exposure can contribute to oxidative stress, autonomic imbalance, and systemic

268	inflammation, which then diminishes cardiac output and increases blood pressure (Bai
269	et al., 2019a; Rajagopalan et al., 2018). Overstimulation of these pathways might
270	further cause endothelial dysfunction, left ventricular hypertrophy, and myocardial
271	fibrosis (Brook et al., 2010; Wold et al., 2012), thus, increasing the risk of HF. Of note,
272	our results indicate that $PM_{2.5}$ exposure, even at a relatively low level (a median of 9.9
273	$\mu g/m^3$ in the present study), might still increase the risk of incident HF, suggesting the
274	need to formulate more rigorous environmental health policies to reduce air pollution
275	for HF prevention.
276	To the best of our knowledge, this is the first prospective study to explore the joint
277	association of $PM_{2.5}$ exposure and PA with incident HF. We observed the beneficial
278	effects of PA on HF remained regardless of levels of PM _{2.5} exposure, highlighting the
279	important role of PA in the prevention of HF. Our finding is similar with previous
280	studies which suggested that the benefits of PA counterbalanced the deleterious effects
281	of air pollution for health outcomes such as blood pressure(Avila-Palencia et al.,
282	2019), respiratory diseases (Fisher et al., 2016), myocardial infarction (Kubesch et al.,
283	2018), and mortality (Andersen et al., 2015). However, some studies also reported that
284	air pollution could counteract the benefits of PA (Endes et al., 2017; Guo et al., 2020).
285	For example, a longitudinal cohort study that included 278,065 Taiwan residents
286	found that the increased intake of $PM_{2.5}$ due to PA may attenuate the benefits of
287	habitual PA on lung function (Guo et al., 2020). A randomized crossover study among
288	135 participants aged 60 years and older showed that acute exposure to traffic
289	pollution diminished the beneficial cardiopulmonary effects of walking (Sinharay et

290	al., 2018). There were augmented harmful effects of air pollution because outdoor PA
291	might induce the amplified inhalation and deposition of air pollutants attributable to
292	high frequency breathing (Giles and Koehle, 2014). Since a number of factors (e.g.,
293	study design, study population, health outcome and PA measurement) varied, it is
294	difficult to directly compare our results with the previous studies. Further studies are
295	warranted to disentangle risk-benefit relationship between air pollution and PA.
296	Furthermore, we found a synergistic additive interaction between low PA and high
297	$PM_{2.5}$ exposure on HF. Previous studies indicated that the joint effects of two factors
298	appear to follow an additive pattern under certain simple biologic models (Li and
299	Chambless, 2007). The relative excess risk due to interaction (RERI) is often
300	considered the standard measure for interaction on the additive scale, which better
301	reflects biologic interaction compared with interaction on a multiplicative scale (de
302	Mutsert et al., 2011). Additionally, measuring interaction on the additive scale can be
303	used to assess whether there is synergism between the two risk factors (i.e., whether
304	the combined excess risk is greater than the sum of their individual excess risks) and
305	is more appropriate for assessing the public health importance of interactions (Knol
306	and VanderWeele, 2012). In this study, the significant RERI indicated low PA and
307	high PM _{2.5} exposure synergistically increased the risk of HF, suggesting that the
308	interactive effect of low PA and high $PM_{2.5}$ exposure was greater than the sum of the
309	individual effects of the two factors. Given these results, it could be speculated that air
310	pollution could modify the impact of PA on HF, which indicated that people with low
311	PA might pay more attention to the air pollution. Further studies are needed to confirm

312 our findings.

313	Although the underlying mechanisms for the joint effects of PA and PM _{2.5} exposure
314	on the incident HF remain unclear, several hypotheses have been proposed. A prior
315	study indicated that the additional inhaled air pollutants due to PA only account for a
316	small fraction of the total inhaled air pollutants (Rojas-Rueda et al., 2011). This might
317	partly explain the general protective effects of PA on HF regardless of levels of $PM_{2.5}$
318	exposure. Additionally, the long-term benefits of PA might reverse the acute adverse
319	health effects associated with the additional intake of air pollutants during PA
320	(Andersen et al., 2015). Previous studies also showed that PA was negatively related
321	to markers of systemic inflammation and could block the oxidative stress response
322	caused by air pollution exposure (Hou et al., 2020; Zhang et al., 2018). Thus, people
323	with low level of PA might be more susceptible to impairment of cardiac function
324	given high level of $PM_{2.5}$ exposure. It is also possible that individuals with low PA are
325	prone to overweight and obesity with changes in respiratory physiology, which may
326	enhance susceptibility to air pollution (Li et al., 2021; Xing et al., 2020).
327	Our study possessed several strengths such as a large sample size, uniform data
328	collection protocols, and long-time follow up. Moreover, we assessed the combined
329	effects of long-term $PM_{2.5}$ exposure and PA with incident HF for the first time, which
330	provided new insight on HF. However, we acknowledge that our study also has some
331	limitations. First, PM _{2.5} exposure was estimated based on participants' residential
332	address at baseline without considering possible changes in $PM_{2.5}$ exposure
333	throughout the follow-up period since only the baseline assessment was available in

334	the UK Biobank. Fortunately, $PM_{2.5}$ levels in the UK have appeared relatively stable
335	(https://www.gov.uk/government/statistics/emissions-of-air-pollutants) and it is
336	reasonable to estimate that $PM_{2.5}$ pollution could remain largely unchanged. Further
337	cohort studies with prolonged measurement of air pollution are needed to investigate
338	the association of air pollution changes with HF. Second, PA was assessed by
339	questionnaire and was only reported at baseline, which might introduce some bias and
340	influence the effect estimates of PA. Furthermore, we did not distinguish whether
341	participants performed PA indoors and outdoors because the relevant information was
342	unavailable. Further studies with detailed information on place and environment of PA
343	are warranted to explore the joint associations of outdoor PA and ambient $PM_{2.5}$
344	exposure with HF. Third, the definition of HF was based on self-reported information
345	and medical records, which may result in potential misclassification. Future studies
346	using more comprehensive methods, including the integration of clinical, laboratory
347	and imaging data are needed to provide a more accurate assessment of HF. Fourth,
348	although we considered major potential confounding factors in our analysis, some
349	residual or unmeasured factors might still exist. For example, we cannot take into
350	account the non-residential sources of exposure (e.g., workplace exposure) and
351	individual activity pattern, which might produce confounding bias. Fifth, our study
352	was observational, which limited our ability to confirm the presumed causality of
353	results. In addition, since the majority of participants were of European ancestry, it
354	should be cautious when generalizing our results to other populations. Finally, our
355	study was conducted in an area with relatively low air pollution. Further studies

356	should consider areas experiencing higher air pollution to corroborate our findings.
357	

358 **5.** Conclusions

- 359 In conclusion, higher PA and lower $PM_{2.5}$ were associated with a decreased risk of
- 360 incident HF. The benefits of PA on HF were stable regardless of the levels of $PM_{2.5}$
- 361 exposure, indicating that high PA might still be appropriate for those residing in
- relatively polluted areas to prevent HF. Additionally, people with low PA might pay
- 363 more attention to air pollution.

364

365 **Contributors**

- 366 HZ and HL conceived and designed the study, interpreted the data, and drafted and
- 367 critically revised the manuscript. HZ and MC performed the statistical analysis. All
- 368 authors contributed to the interpretation of the results and critical revision of the
- 369 manuscript. All authors read and approved the final manuscript.

370

371 Funding

- 372 This work was supported by the Bill & Melinda Gates Foundation [Grant Number:
- 373 INV-016826].

374

375 Acknowledgments

- We are thankful to the participants in the study and the members of the survey teams,
- as well as to the project development and management teams. This research has been

378 conducted using the UK Biobank Resource under Application Number 69550.

379

380 **Competing interests**

381 The authors declare that they have no competing interests.

382 **References**

- Ambrosy AP, Fonarow GC, Butler J, Chioncel O, Greene SJ, Vaduganathan M, et al. The
 global health and economic burden of hospitalizations for heart failure: lessons
 learned from hospitalized heart failure registries. J Am Coll Cardiol 2014; 63: 11231133.
- Andersen K, Mariosa D, Adami HO, Held C, Ingelsson E, Lagerros YT, et al. Dose-response
 relationship of total and leisure time physical activity to risk of heart failure: a
 prospective cohort study. Circ Heart Fail 2014; 7: 701-8.
- Andersen ZJ, de Nazelle A, Mendez MA, Garcia-Aymerich J, Hertel O, Tjønneland A, et al. A
 study of the combined effects of physical activity and air pollution on mortality in
 elderly urban residents: the Danish Diet, Cancer, and Health Cohort. Environ Health
 Perspect 2015; 123: 557-63.
- Aune D, Norat T, Leitzmann M, Tonstad S, Vatten LJ. Physical activity and the risk of type 2
 diabetes: a systematic review and dose-response meta-analysis. Eur J Epidemiol 2015;
 30: 529-42.
- Aune D, Schlesinger S, Leitzmann MF, Tonstad S, Norat T, Riboli E, et al. Physical activity
 and the risk of heart failure: a systematic review and dose-response meta-analysis of
 prospective studies. Eur J Epidemiol 2021; 36: 367-381.
- Avila-Palencia I, Laeremans M, Hoffmann B, Anaya-Boig E, Carrasco-Turigas G, ColeHunter T, et al. Effects of physical activity and air pollution on blood pressure.
 Environ Res 2019; 173: 387-396.
- Bai L, Shin S, Burnett RT, Kwong JC, Hystad P, van Donkelaar A, et al. Exposure to ambient
 air pollution and the incidence of congestive heart failure and acute myocardial
 infarction: A population-based study of 5.1 million Canadian adults living in Ontario.
 Environ Int 2019a; 132: 105004.
- Bai L, Weichenthal S, Kwong JC, Burnett RT, Hatzopoulou M, Jerrett M, et al. Associations
 of Long-Term Exposure to Ultrafine Particles and Nitrogen Dioxide With Increased
 Incidence of Congestive Heart Failure and Acute Myocardial Infarction. Am J
 Epidemiol 2019b; 188: 151-159.
- Bell EJ, Lutsey PL, Windham BG, Folsom AR. Physical activity and cardiovascular disease in
 African Americans in Atherosclerosis Risk in Communities. Med Sci Sports Exerc
 2013; 45: 901-7.
- Bragazzi NL, Zhong W, Shu J, Abu Much A, Lotan D, Grupper A, et al. Burden of heart
 failure and underlying causes in 195 countries and territories from 1990 to 2017.
 European Journal of Preventive Cardiology 2021.
- Brook RD, Rajagopalan S, Pope CA, 3rd, Brook JR, Bhatnagar A, Diez-Roux AV, et al.
 Particulate matter air pollution and cardiovascular disease: An update to the scientific
 statement from the American Heart Association. Circulation 2010; 121: 2331-78.
- 420 Carey IM, Anderson HR, Atkinson RW, Beevers S, Cook DG, Dajnak D, et al. Traffic
 421 pollution and the incidence of cardiorespiratory outcomes in an adult cohort in
 422 London. Occup Environ Med 2016; 73: 849-856.
- 423 Cook C, Cole G, Asaria P, Jabbour R, Francis DP. The annual global economic burden of
 424 heart failure. Int J Cardiol 2014; 171: 368-76.
- 425 Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth BE, et al.

- International physical activity questionnaire: 12-country reliability and validity. Med
 Sci Sports Exerc 2003; 35: 1381-95.
- de Aguiar Pontes Pamplona Y, Arbex MA, Braga ALF, Pereira LAA, Martins LC.
 Relationship between air pollution and hospitalizations for congestive heart failure in
 elderly people in the city of São Paulo. Environ Sci Pollut Res Int 2020; 27: 1820818220.
- de Mutsert R, de Jager DJ, Jager KJ, Zoccali C, Dekker FW. Interaction on an additive scale.
 Nephron Clin Pract 2011; 119: c154-7.
- deFilippi CR, de Lemos JA, Tkaczuk AT, Christenson RH, Carnethon MR, Siscovick DS, et al.
 Physical activity, change in biomarkers of myocardial stress and injury, and
 subsequent heart failure risk in older adults. J Am Coll Cardiol 2012; 60: 2539-47.
- Eeftens M, Beelen R, de Hoogh K, Bellander T, Cesaroni G, Cirach M, et al. Development of
 Land Use Regression models for PM(2.5), PM(2.5) absorbance, PM(10) and
 PM(coarse) in 20 European study areas; results of the ESCAPE project. Environ Sci
 Technol 2012; 46: 11195-205.
- Emter CA, Tharp DL, Ivey JR, Ganjam VK, Bowles DK. Low-intensity interval exercise
 training attenuates coronary vascular dysfunction and preserves Ca²⁺-sensitive K⁺
 current in miniature swine with LV hypertrophy. Am J Physiol Heart Circ Physiol
 2011; 301: H1687-94.
- Fisher JE, Loft S, Ulrik CS, Raaschou-Nielsen O, Hertel O, Tjønneland A, et al. Physical
 Activity, Air Pollution, and the Risk of Asthma and Chronic Obstructive Pulmonary
 Disease. Am J Respir Crit Care Med 2016; 194: 855-865.
- Giles LV, Koehle MS. The health effects of exercising in air pollution. Sports Med 2014; 44:
 223-49.
- Guo C, Bo Y, Chan TC, Zhang Z, Lin C, Tam T, et al. Does fine particulate matter (PM(2.5))
 affect the benefits of habitual physical activity on lung function in adults: a
 longitudinal cohort study. BMC Med 2020; 18: 134.
- Hollingworth M, Harper A, Hamer M. Dose-response associations between cycling activity
 and risk of hypertension in regular cyclists: The UK Cycling for Health Study. J Hum
 Hypertens 2015; 29: 219-23.
- Hou J, Duan Y, Liu X, Li R, Tu R, Pan M, et al. Associations of long-term exposure to air
 pollutants, physical activity and platelet traits of cardiovascular risk in a rural Chinese
 population. Sci Total Environ 2020; 738: 140182.
- Huschmann A, Rasche M, Schlattmann P, Witte OW, Schwab M, Schulze PC, et al. A casecrossover study on the effect of short-term exposure to moderate levels of air
 pollution on the risk of heart failure. ESC Heart Fail 2020; 7: 3851-8.
- James SL, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N, et al. Global, regional, and
 national incidence, prevalence, and years lived with disability for 354 diseases and
 injuries for 195 countries and territories, 1990-2017: a systematic analysis for the
 Global Burden of Disease Study 2017. Lancet 2018; 392: 1789-1858.
- Knol MJ, VanderWeele TJ. Recommendations for presenting analyses of effect modification
 and interaction. Int J Epidemiol 2012; 41: 514-20.
- Knol MJ, VanderWeele TJ, Groenwold RH, Klungel OH, Rovers MM, Grobbee DE.
 Estimating measures of interaction on an additive scale for preventive exposures. Eur

470	J Epidemiol 2011; 26: 433-8.
471	Kraigher-Krainer E, Lyass A, Massaro JM, Lee DS, Ho JE, Levy D, et al. Association of
472	physical activity and heart failure with preserved vs. reduced ejection fraction in the
473	elderly: the Framingham Heart Study. Eur J Heart Fail 2013; 15: 742-6.
474	Kubesch NJ, Therming Jørgensen J, Hoffmann B, Loft S, Nieuwenhuijsen MJ, Raaschou-
475	Nielsen O, et al. Effects of Leisure-Time and Transport-Related Physical Activities on
476	the Risk of Incident and Recurrent Myocardial Infarction and Interaction With
477	Traffic-Related Air Pollution: A Cohort Study. J Am Heart Assoc 2018; 7.
478	Laeremans M, Dons E, Avila-Palencia I, Carrasco-Turigas G, Orjuela-Mendoza JP, Anaya-
479	Boig E, et al. Black Carbon Reduces the Beneficial Effect of Physical Activity on
480	Lung Function. Med Sci Sports Exerc 2018; 50: 1875-1881.
481	Li R, Chambless L. Test for additive interaction in proportional hazards models. Ann
482	Epidemiol 2007; 17: 227-36.
483	Li X, Wang M, Song Y, Ma H, Zhou T, Liang Z, et al. Obesity and the relation between joint
484	exposure to ambient air pollutants and incident type 2 diabetes: A cohort study in UK
485	Biobank. PLoS Med 2021; 18: e1003767.
486	Liu H, Tian Y, Song J, Cao Y, Xiang X, Huang C, et al. Effect of Ambient Air Pollution on
487	Hospitalization for Heart Failure in 26 of China's Largest Cities. Am J Cardiol 2018;
488	121: 628-633.
489	McCreanor J, Cullinan P, Nieuwenhuijsen MJ, Stewart-Evans J, Malliarou E, Jarup L, et al.
490	Respiratory effects of exposure to diesel traffic in persons with asthma. N Engl J Med
491	2007; 357: 2348-58.
492	Miyachi M, Yazawa H, Furukawa M, Tsuboi K, Ohtake M, Nishizawa T, et al. Exercise
493	training alters left ventricular geometry and attenuates heart failure in dahl salt-
494	sensitive hypertensive rats. Hypertension 2009; 53: 701-7.
495	Pandey A, Garg S, Khunger M, Darden D, Ayers C, Kumbhani DJ, et al. Dose-Response
496	Relationship Between Physical Activity and Risk of Heart Failure: A Meta-Analysis.
497	Circulation 2015; 132: 1786-94.
498	Patel K, Sui X, Zhang Y, Fonarow GC, Aban IB, Brown CJ, et al. Prevention of heart failure
499	in older adults may require higher levels of physical activity than needed for other
500	cardiovascular events. Int J Cardiol 2013; 168: 1905-9.
501	Rajagopaian S, Al-Kindi SG, Brook KD. Air Pollution and Cardiovascular Disease: JACC
50Z	State-of-the-Aft Review. J Alli Coll Cardiol 2018, 72: 2034-2070.
503 E04	Rojas-Rueda D, de Nazene A, Tanno M, Nieuwennurjsen MJ. The health fisks and benefits of
504	Bmi 2011: 242: 44521
505	Shah AS Langrish IP Nair H McAllister DA Hunter AL Denaldson K at al Global
500	shall AS, Langiish JF, Nall H, McAllister DA, Huller AL, Donaldson K, et al. Global
507	Lancet 2013: 382: 1030 48
500	Sheridan C. Klompmaker I. Cummins S. James P. Fecht D. Roscoe C. Associations of air
510	nollution with COVID-19 positivity hospitalisations and mortality. Observational
511	evidence from UK Biohank Environ Pollut 2022 308. 110686
512	Sinharay R Gong I Barratt B Ohman-Strickland P Fract S Kelly FI et al Respiratory and
512	cardiovascular responses to walking down a traffic-polluted road compared with
010	caratorascular responses to watching down a traine-pointeed road compared with

- walking in a traffic-free area in participants aged 60 years and older with chronic lung
 or heart disease and age-matched healthy controls: a randomised, crossover study.
 Lancet 2018; 391: 339-349.
- Sofi F, Capalbo A, Cesari F, Abbate R, Gensini GF. Physical activity during leisure time and
 primary prevention of coronary heart disease: an updated meta-analysis of cohort
 studies. Eur J Cardiovasc Prev Rehabil 2008; 15: 247-57.
- Stockfelt L, Andersson EM, Molnár P, Gidhagen L, Segersson D, Rosengren A, et al. Long term effects of total and source-specific particulate air pollution on incident
 cardiovascular disease in Gothenburg, Sweden. Environ Res 2017; 158: 61-71.
- Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK biobank: an open
 access resource for identifying the causes of a wide range of complex diseases of
 middle and old age. PLoS Med 2015; 12: e1001779.
- Sun S, Cao W, Qiu H, Ran J, Lin H, Shen C, et al. Benefits of physical activity not affected by
 air pollution: a prospective cohort study. Int J Epidemiol 2020; 49: 142-152.
- Wang Y, Tuomilehto J, Jousilahti P, Antikainen R, Mähönen M, Katzmarzyk PT, et al.
 Occupational, commuting, and leisure-time physical activity in relation to heart
 failure among finnish men and women. J Am Coll Cardiol 2010; 56: 1140-8.
- Wold LE, Ying Z, Hutchinson KR, Velten M, Gorr MW, Velten C, et al. Cardiovascular
 remodeling in response to long-term exposure to fine particulate matter air pollution.
 Circ Heart Fail 2012; 5: 452-61.
- Xing X, Hu L, Guo Y, Bloom MS, Li S, Chen G, et al. Interactions between ambient air
 pollution and obesity on lung function in children: The Seven Northeastern Chinese
 Cities (SNEC) Study. Sci Total Environ 2020; 699: 134397.
- Young DR, Reynolds K, Sidell M, Brar S, Ghai NR, Sternfeld B, et al. Effects of physical
 activity and sedentary time on the risk of heart failure. Circ Heart Fail 2014; 7: 21-7.
- Zhang Z, Hoek G, Chang LY, Chan TC, Guo C, Chuang YC, et al. Particulate matter air
 pollution, physical activity and systemic inflammation in Taiwanese adults. Int J Hyg
 Environ Health 2018; 221: 41-47.
- Ziaeian B, Fonarow GC. Epidemiology and aetiology of heart failure. Nat Rev Cardiol 2016;
 13: 368-78.

544