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Abstract 

Summing up all Feynman diagrams describing an elementary particle can provide a measure of the 

energy and, with it, the mass of that particle. Moreover, a single mass quantum can be used to 

convert the Feynman sum into the particle mass. In the following, a mass formula for the calculation 

of the baryon and meson masses is introduced and explained. This formula involves calculating the 

number of possible Feynman diagrams and multiplying it by an elementary mass quantum. The mass 

formula results from a generalization of the connection between the electromagnetic coupling 

constant alpha (Sommerfelds constant) and the Rydberg constant. This mass formula adds an energy 

parametrization to the Standard Model, an important component that has been missing to date. 

Afterward, this mass formula is interpreted, leading to an interpretation of the elementary particles 

that is similar to the way in which molecules are interpreted. In this interpretation, gluons take the 

place of electrons in the case of elementary particles. 

Résumé 

La synthèse de tous les diagrammes de Feynman décrivant une particule élémentaire peut fournir 

une mesure de l'énergie et, avec elle, de la masse de cette particule. De plus, un seul quantum de 

masse peut être utilisé pour convertir la somme de Feynman en masse de particules. Dans ce qui suit, 

une formule de masse pour le calcul des masses du baryon et du méson est introduite et expliquée. 

Cette formule consiste à calculer le nombre de diagrammes de Feynman possibles et à le multiplier 

par un quantum de masse élémentaire. La formule de masse résulte d'une généralisation de la 

connexion entre la constante de couplage électromagnétique alpha (constante de Sommerfelds) et la  

constante de Rydberg. Cette formule de masse ajoute une paramétrisation énergétique au modèle 

standard, une composante importante qui a été manquante à ce jour. Cette  formule de masse est 

ensuite interprétée, conduisant à une interprétation des particules élémentaires similaire à la 

manière dont les molécules sont interprétées. Dans cette interprétation, les gluons prennent la place 

des électrons dans le cas des particules élémentaires. 
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The Standard Model of Particle Physics 

 

The Standard Model is a theory that emerged in the 1970s to describe all known elementary 

particle interactions. This model incorporates quantum chromodynamics (QCD), quantum 

electrodynamics (QED), and the quantum well (QW) theory of electroweak processes and offers the 

most valid information to date for all known microscopic-world phenomena1,2,3. The outstanding 

success of the Standard Model is that it offers a complete understanding of electroweak 

interactions4,5,6. By describing the electromagnetic, strong, and weak nuclear forces and how certain 

fundamental particles mediate them, the Standard Model offers an adequate understanding of how 

matter particles interact with one another on a microscopic scale. 

 

The Standard Model has a long history. In 1949, Richard P. Feynman, an American physicist, 

introduced a pictorial representation of particle interactions, now called Feynman diagrams7. As a 

result, Feynman was able to build a powerful mathematical theory called QED that describes the 

interactions between photons and other particles2,7. Today, Feynman diagrams are used to provide 

insight into the predictive power of the current Standard Model of particle physics7,8. 

 

Murray Gell-Mann also played a significant role in introducing concepts that led to the 

development of the Standard Model. He proposed that protons and neutrons are divisible and 

comprise smaller particles called quarks9. In 1956, Gell-Mann confirmed the findings of Kazuhiko 

Nishijima regarding the strange behaviors of cosmic rays and their products, such as sigma baryons, 

mesons, and lambda baryons9,10. Nishijima and Gell-Mann independently proposed that these 

strange behaviors could be understood if they had a quantum number known as “strangeness.” This 

explanation led to the emergence of the Gell-Mann-Nishijima formula, which came to form an 

integral part of particle physics10,11. 
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Given Q=electric charge, 𝐼3=3rd component of isospin, 𝐵=baryon number, 𝑆=strangeness 

number, 𝐶=charm number, 𝐵′=bottomness number, and 𝑇=topness number, the Gell-Mann-

Nishijima formula becomes: 

 

  Q = 𝐼3 +
1

2
(𝐵 + 𝑆 + 𝐶 + 𝐵′ + 𝑇) = 𝐼3 + 

𝑌

2
                         (1)   

Equation11,12 

 

Today, physicists describe the Standard Model mathematically using the notation of group 

theory. Given that 𝑆𝑈(3)=gauge group of strong interactions and 𝑆𝑈(2) × 𝑈(1)=gauge group of 

electroweak interactions, the group theory notation becomes: 

 

𝑆𝑈(3) × 𝑆𝑈(2) × 𝑈(1)                               (2) 

Equation13 

 

Here, 𝑆𝑈(3), 𝑆𝑈(2), and 𝑈(1) represent the sets of all 3 × 3, 2 × 2, and 1 × 1 unitary 

matrices, respectively, all with unit determinants. 

  

The Standard Model has also been described mathematically using the Standard Model 

Lagrangian, as follows: 

 

ℒ = −
1

4
Fµ𝑣𝐹µʋ+𝑖ψ̄�̸�ψ + h. c. +ψ𝑖𝑦𝑖𝑗ψ𝑗ϕ +h. c.+ |𝐷µϕ|

2
−𝑉 (ϕ)                          (3) 

Equation14,15 

 

Here, ℒ stands for the Lagrangian density; −
1

4
Fµ𝑣𝐹µʋ is the scalar product of the field 

strength tensor 𝐹µʋ, which contains the mathematical encoding of all interaction particles apart from 
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the Higgs boson; µ and ʋ are Lorentz indices representing the spacetime components; 𝑖ψ̄�̸�ψ is a 

term describing the interactions within matter particles; ψ and ψ̄ are fields describing antiquarks and 

antileptons respectively; �̸� is a covariant derivative that features all particles except the Higgs; 

h. c. denotes the Hermitian conjugate of term 2; ψ𝑖𝑦𝑖𝑗ψ𝑗ϕ is a term describing how matter particles 

couple to the Brout-Englert-Higgs (BEH) field ϕ; 𝑦𝑖𝑗 is the Yukawa matrix representing the coupling 

parameters to the BEH field; |𝐷µϕ|2 is a term describing how the interaction particles couple to the 

BEH field; and −𝑉(ϕ) is a term describing the potential of the BEH field14,15. 

 

The current Standard Model is based on earlier discoveries about quarks and gluons and the 

color interaction. These ideas may be best introduced by using the concept of a quark-gluon plasma 

(QGP) as theoretical motivation16. 

This theory asserts that nuclear matter exists at extremely high temperatures and densities 

due to composite states called hadrons losing their identity and dissolving into a 'soup' of their 

constituents, namely, quarks and gluons16. 

Hadrons are classified into baryons and mesons. Every baryon comprises three quarks, 

whereas every meson consists of a quark and an antiquark17. Unlike atoms and molecules, which may 

be ionized to determine their constituents, quarks and gluons are confined inside hadrons and never 

exist freely18. Torassa [2018] compares this situation with the attempt to decompose a magnet into 

two parts. An attempt to isolate its poles, north and south, by surrounding the two magnetic poles 

with a superconducting medium confines the magnetic field into a ‘thin tube’19,20,21. Similarly, a 

hadronic string comprising quarks and antiquarks at its endpoints has a one-dimensional field 

confined by vacuum.22 

 

According to Xiong et al. [2019], quarks are held together by a fundamental force called the 

strong force23. Similar to the electromagnetic interaction, which is based on electric charge, the 

strong interaction is purely based on color charge. This interaction may be described by applying the 
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local gauge theory of QCD22. According to QCD, the symmetry in quarks is color, a conserved 

quantity, meaning that color cannot be created or destroyed23. In QCD, there exist imaginary field 

lines between quarks, which comprise numerous gluons22. Since all gluons constituting the imaginary 

field lines have a color charge, they attract each other. Unlike in the case of electrons, however, for 

which the force between them decreases with increasing distance, the color force binding quarks 

increases with increasing distance24. In other words, the color force behaves the same way as 

stretching a rubber band. The more a rubber band is stretched, the more force is needed to extend it 

further. Additionally, the color force appears to exert little force at short distances23. This property 

suggests that the quarks behave as free particles within the confining boundaries of the color force. 

Quarks only experience a solid confining force as they start to become too far apart. 

 

Two or more quarks in close proximity to each other rapidly exchange gluons and, hence, 

create a strong field of color force that binds the quarks together22. There are three color charges 

(red, green, and blue) and three corresponding anticolor charges (antired, antigreen, and antiblue) 22. 

 Experiments show that as quarks exchange gluons, they also constantly exchange their color 

charge22,23. Although it is expected that there should be nine possible gluons with different color-

anticolor combinations, one of these combinations is symmetrically eliminated such that gluons can 

carry only eight possible color-anticolor combinations. Since color-charged particles do not exist 

freely, the color-charged quarks are confined in hadrons with other quarks24, and the resulting 

composites are color neutral. This discussion highlights the importance of the Standard Model in 

explaining why quarks combine only into baryons and mesons and not into four-quark objects. 

 

 Although the Standard Model was initially based on theoretical concepts such as the Big 

Bang theory, numerous experiments have been developed to offer strong evidence that this model is 

the correct model for particle physics. These experiments include the Positron-Elektron-Tandem-

Ring-Anlage (PETRA), Large Electron-Positron Collider (LEP), and Large Hadron Collider (LHC) 

experiments21,25. Together, these experiments have led to the discovery of quarks and gluons and the 
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color interaction, revealing how the protons are huddled together in the nucleus and how the 

electrons occupy an atom's energy levels. A recent discovery for which these experiments paved the 

way was the experimental discovery of the Higgs boson in 201225. This discovery is expected to help 

unify all fundamental forces except gravity25. The observation of the Higgs mechanism confirms the 

existence of quarks and gluons and the color interaction and how their interactions keep matter 

particles bonded together. 

 

Overall, the Standard Model provides the most valid explanation to date for all known 

microscopic-world phenomena. The model uses the Big Bang theory to describe matter particles and 

the forces binding them together. The Standard Model has led to the discovery of new models such 

as the Higgs boson and QGP, which have opened new directions for physics. Through these new 

models, physicists have discovered the existence of quarks and gluons and the color interaction, 

which explain how the protons are huddled together in the nucleus and how the electrons occupy an 

atom's energy levels. Future studies should focus on investigating the Higgs boson to establish 

whether it conforms to the paradigms of the Standard Model and whether new physics exists that 

complements the Higgs boson. However, an energetic parametrization of the Standard Model is still 

missing at present, meaning that it is still unclear and unknown how the elementary particles obtain 

the energies and masses they possess. On the other hand, it is clear that the masses of the 

elementary particles derive to a large extent from their intraparticle interactions. Therefore, the 

masses of the elementary particles and, in turn, their energy must largely result from their quark-

quark and gluon-gluon interactions. 

 

Assignment here: To find an energy parametrization completing the Standard Model 

In the following, it is assumed that there exists a smallest energy (or mass) quantum that 

corresponds to the Rydberg energy (or the Rydberg mass). 
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This mass quantum (the Rydberg energy) is here thought to be the minimum energy equivalent and 

the minimal amount of energy needed for the realization of each single Feynman diagram. Thus, if 

each Feynman diagram needs one Rydberg to be realized, then the number of possible Feynman 

diagrams defines the energy and/or mass needed to realize the existence of a given particle. 

Half of the square of the coupling constant of any interaction then corresponds to the ratio between 

the Rydberg energy and rest energy (i.e., mass) of the elementary particle belonging to this specific 

interaction (see formula 4).  

       
2 2

2

2 2
Ryd e eE m c E

 
          

1
2 RydE

E
                   (4) 

Equation 4:  This equation gives the relationship between Rydbergs energy (ERyd), the mass of the 

electron (me); the light-speed constant (c); and the fine structure constant (FSC). This universal 

relationship is of fundamental nature. Background is the well-known relationship between 

Sommerfelds and Rydberg’s constants. 

 

This behavior can explain the energy dependency of the different coupling constants for the strong, 

electromagnetic and weak interactions (see figure 1). 

Energy-Dependency of Coupling Constants  
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Figure 1: This figure gives the energy dependency of the coupling constants (identical to the fine 

structure constant, FSC in the electromagnetic case em). 

 

Any coupling constant can now be expressed in the form of a power term of the circle number . This 

is first done for the electromagnetic coupling constant in equations of formula 5 and 6.  

 

                 

4

3

1
1

1 3
2

137 (3 )
EM

 




                (5) 

Equation 5: This formula gives the relation between the fine structure constant and the circle 

number pi. It is possible to describe the FSC by using a term of pi. This relation is of fundamental 

nature. 

 

                 
2

4

1 27
137.028744

1
2 1

3

EM







 



             (6) 

Equation 6: This equation gives the relation between the inverse of the fine structure constant and 

its description using a pi-term. Again this relation is of fundamental nature.  

 

Later, this is generalized in the form of equation formula 7.  

Increasing-factor for the electron:   

4

1 2 4

2

8

2 1
2 3 (3 )

1
1

3

e e

Ryd Ryd EM

m E

m E








 
 
   
 

 
 

                 (7) 
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Equation 7: This formula gives the increasing-factor for the electron. The mass of the electron can be 

described as a multiple of Rydberg’s energy. Furthermore, the increasing-factor is given in a 

generalized form valid for each particle. Each particles mass can be described as a multiple of 

Rydberg’s energy. In this sense the Rydberg energy is the smallest quantum of mass. 

There are two motivations for using the circle number  here: 

1.)  The number 2  plays a central role in Fermi's golden rule in quantum dynamics. 

2.)  Cauchy distributions play a very important role in quantum dynamics. 

The area under a Cauchy distribution corresponds exactly to . With three Cauchy distributions for 

the three important color-anticolor interactions, red-antired, green-antigreen, and blue-antiblue, this 

situation corresponds to exactly the number 3. 

The mass formula 

The mass formula that I have developed contains several different terms or interactions, each of 

which influences the mass of a particle. The mass formula is given in formulas/equations 8 and 9. 

Increasing-factor for a particle:   
2

8

2 1
2 3 (3 )

1
1

3

d

p p a b c

Ryd Ryd

m E

m E






 
 
      
 

 
 

                 (8) 

 

Equation 8: This formula gives a generalized mass formula. This generalized mass formula is 

composed of several factors. One factor for each interaction-form present in a given particle. In turn 

the different factors form the partition function. The product of the partition function and the 

Rydberg energy leads us to the mass and/or energy content of the particle. 
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Mass- formula: The rest- mass and/or rest- energy of a given particle is given by 

        

8

1
2 3 (3 )

1
1

3

d

a b c

RydE



 
 
    
 

 
 

      (9) 

  

        qq               qqq           3 gluon vertices               4-gluon vertices  

           quark-quark          gluon-self-coupling            2-gluon interactions  

 

I interpret the terms of equation 9  as follows: 

The formula (eq 9) seems to be the result of a weighted summing-up of all possible Feynman 

diagrams that describe the particle in question. The different parts of the formula describe the 

different interacting constellations, and their product describes the number of all possible interacting 

constellations. The energy and, with it, the mass of a particle is given by the total number of all 

possible Feynman diagrams for that particle. 

 

Regarding the different potencies (a,b,c,d) in the formula eq(9) 

a- Number of two-quark interactions (or color-anticolor interactions) qq 
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Two to the power of a describes the number of two-quark interactions realized in the elementary 

particle, considering, in particular, the number of color-anticolor (or, more specifically, in most cases 

quark-antiquark) interactions.  

 

b- Number of three-quark interactions (or color interactions) qqq 

Analogously, three to the power of b describes the number of color interactions, in particular the 

number of three-quark (three-color) interactions realized in the particle of interest. 

 

c- Number of gluon three-vertex interactions G3 

Three  to the power of c describes the number of quantum-mechanical gluon self-interactions. The 

number of these gluon self-interactions is given by the number of three-vertex gluon interactions. 

In particular, this term describes the number of three-vertex interactions corresponding to gluon-

antigluon particle formation. As gluon-antigluon particle formation is necessary for this form of 

interaction, the corresponding energy (3) is quite high. 

 

If we identify the energy associated with such interactions with the number of Feynman diagrams 

and propose a relation between the number of Feynman diagrams and the system energy of a 

certain particle, then we can also go a step further and additionally identify the arrow length with the 

base value of a certain partial binding energy (here, the base value is 3). For example, a three-gluon 

vertex can be written in the form of a Dyson-Schwinger equation (DSE). From this DSE of the 3-gluon 

vertex, three so-called swordfish equations result. The arrows in the Feynman diagrams of these 

swordfish equations form circles. If we now look at two opposite points lying on a circle, the distance 

between these points is equal to . For three DSE swordfish equations, the distance is then equal to 
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3. Hence, this could be a graphical explanation for the base energy of 3 emerging here for the 

three-gluon vertex. However, all other terms of the DSE should then sum up to zero for the three-

gluon vertex. 

d- Number of gluon four-vertex interactions G4 

Analogously, one minus one divided by 3 describes the probability of the counter-events to a three-

vertex event. The 8th root of this quantity then corresponds to the conditional probability of a two-

gluon 4-vertex event. The reciprocal of this corresponds to the corresponding sum of states (i.e., to 

the corresponding Cauchy distribution again). This interpretation of the mass formula is also 

illustrated in the equations of figure 2 and equations 10 -13. 

Figure 2 Three Cauchy-distributions  3π partition function / state-sum of micro-conditions   

 

 rr                    +                     gg                            +                     bb 

 

=3  (3 gluon vertex, gluon-self-interaction)    

    
1

3
              Probability for a rr, gg, bb- event (3-vertex- event)        (10) 

 
1

1
3

            Complement probability for not a rr, gg, bb- event         (11) 
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8
1

1
3

      Probability for conditional event / conditional probability for 4 gluon vertex       (12) 

8

1

1
1

3





      Partition function / State sum for the 4 gluon-vertex- event ,         (13) 

                                    this event is favored by a quark asymmetry 

  = 4-gluon vertex, 2nd way of gluon-self-interaction    

Equations 10, 11, 12, 13: These formulas 10-13 visualize the factor 3pi with three Cauchy 

distributions. One distribution for each color interaction rr,gg, and/or bb. Furthermore the 

probablitiy of the 3-gluon vertex and the probability for the 4-gluon vertex are calculated. 

 

This term represents the number and energy of 4-gluon-vertex (G4) events in the particle of interest, 

which correspond to gluon-gluon interactions. Because no additional particles or gluons need to be 

formed for a 4-gluon-vertex event, this energy is relatively small. 

Based on these considerations, an elementary particle can be interpreted in a completely analogous 

way to a molecule in chemistry, with the electrons corresponding to the gluons. 

The gluons hold a particle together, analogous to the electrons that hold a molecule together. 

Moreover, similar to electrons, gluons can exist in different gluon orbitals, and the orbitals 

themselves can hybridize with one another. Therefore, the symmetry of a particle depends on how 

many and which gluon states there are and how the gluons can be distributed and hybridized with 

one another in that particle. 

Through analysis, different exponent series (a, b, c, d) can be found for the different elementary 

particles. These different exponent series (a, b, c, d) are given in table 1. In the following, these 

exponent series or n-tuples are interpreted in relation to their respective particles. 
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Table 1    Exponent- series of the mass- formula calculated for the different particles in MeV 

a b c d mass [MeV] particle composition 

leptons       

-1 2 4 4 0.5109 electron TTT 

-3 2 7 3 105.44 muon TTT* 

1 2 7 7 1784.49 tauon TTT** 

quarks 

      1 2 4 8 2.16 up  u, TTV, TVT, VTT 

2 2 4 8 4.67 down d, TVV, VTV, VVT 

2 3 6 15 1270 charm c 

3 2 5 17 92 

  

strange s 

1 2 9 13 172421 top t 

2 3 6 100 4184 bottom b 

vector bosons 

     0 0 10 5 80700.0 W 

 0 0 10 14 91554.0 Z 

 0 0 10 36 124634.0 H 

 mesons 

      -1 1 7 0 134.8 pi 0 (uu-dd)/2 

-1 0 8 11 494.128 K+ us 

-1 -2 9 15 

547.299  

  

  eta 0 uu+dd-2ss 

0 0 8 9 960.9 eta dash uu+dd+ss 
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1 0 8 7 1868.71 D+ cd 

1 0 8 11 1976.5 Ds+ cs 

-1 0 9 20 5283.0 B meson ub 

-1 0 9 22 5433.0 strange meson sb 

-1 0 9 33 6339.0 charm meson cb 

vector mesons 

     3 0 7 5 771.0 rho 0 (uu-dd)/2 

0 0 8 4 895.8720 K*0 ds 

3 0 7 6 782.0 omega (uu+dd)/2 

0 0 8 13 1016 phi ss 

1 0 8 12 2004.0 D*0 cu 

1 0 8 43 3095.6 J/psi cc 

baryons 

      0 -2 9 4 938.15 proton uud 

-3 2 8 11 1111.0 lambda uds 

-3 2 8 16 1192.5 sigma 0  uds 

-3 2 8 18 1226.4 delta ddd 

-3 2 8 23 1315.5 xi 0 uss 

-1 -1 9 3 1387.6 sigma-* dds 

-3 2 8 29 1430.95 N(1440) udd 

-1 -1 9 10 1530.7 xi 0 reson uss 

1 0 8 1 1670.0 Omega - sss 

-3 2 8 63 2304.0 lambda-c udc 

-3 2 8 68 2472.0 c-sigma ddc 

   

129 5815.0 cascade B usb 

-3 2 8 130 5897.0 bottom sigma ddb 
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-3 2 8 72 2614.9 

charmed xi 

prime usc 

-3 2 8 96 3661.0 

double charmed 

xi ucc 

 

Table 1: Table 1 gives the exponent series ((a,b,c,d)-tupels) for the different particles and the total 

energies of the particles (masses of the particles) calculated from these data.  

 

Regarding the meaning of the algebraic pre-signs of the exponents a and b 

When looking at table 1, it is evident that the exponents a and b can have both positive and negative 

algebraic signs. Thus, the question arises as to what meaning the algebraic signs of these exponents 

have. Both 2-quark and 3-quark color interactions can exist either in an attractive, stabilizing, energy-

releasing form or in a nonattractive, nonstabilizing, energy-consuming form. It is therefore obvious 

that the negative sign should describe the energy-releasing form and that the positive sign should 

describe the nonbinding, energy-consuming form. As corresponding examples, the proton and the 

lambda particle can be considered here. The proton possesses two binding 3-color 3-quark 

interactions and no destabilizing 2-color 2-quark interactions at all. On the other hand, stabilizing 

color-anticolor quark interactions occur in the lambda particle. Theoretically, three such 

constellations exist, with three possible color-anticolor interacting constellations. The question then 

arises of what is left for the third quark. The third quark can have two further possible color 

constellations for each of these three pre-existing color constellations. Because of this, b is then 

equal to two, and since the 3-color constellation in this case cannot be binding and energy-releasing 

in nature, this value of 2 is positive. 
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This leads us to the energy-defining quotient 

The result of these considerations is a quotient that defines the mass or energy of a particle. This 

quotient consists of the product or sum of the energy-consuming Feynman diagrams divided by the 

number of Feynman diagrams of the energy-releasing constellations. 

 

Interpretation of the energy-defining quotient 

The question arises of how this energy-defining potency series and quotient can be interpreted and 

why a product of powers emerges here rather than a simple plus-minus calculation. Usually, energies 

are calculated through a series of plus and minus calculations of the different partial energies. If 

energy is released, then this energy needs to be regarded as negative when considered in the 

calculation. Here, however, the situation is different. Mathematically, everything is, in a sense, 

elevated by one calculation step: where we usually have a plus, we instead have a multiplication, and 

where we usually have a minus, we instead have a division, or exponentiation by minus one. Why is it 

that way here? 

 

 There are two possible interpretations of the potency series  

1.) The potency series is a form of weighted combinatorial counting. The weighted number of all 

possible constellations is calculated. Hence, in graphical terms, the weight is equal to the number of 

arrows and/or arrow equivalents in the Feynman diagrams. A quark-antiquark interaction, for 

example, has an arrow equivalent of 2; a three-quark interaction has an arrow equivalent of 3; and a 

3-gluon vertex has an arrow equivalent of 3. The arrow equivalent is the basis of the potency, and 

the exponent gives the number of such interactions present in the particle. Together, the potency 

gives the number of possible constellations times the number of arrows per constellation, and thus, 

the number of arrows of the whole interaction form of that particular particle. If we look at the 3-
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quark interaction in the nucleon, for example, the interaction number is b = - 2. Accordingly, we have 

the constellation possibilities cc, cc, and cc, as two of these interactions are present in the particle. 

Three different constellations times three Feynman arrows per constellation, this means that we 

have nine possible arrows in total for this particular interaction in this particular particle, and so on. 

2.) The potency series can also be seen as the partition function of this particular interaction. If we 

look at the 3-gluon vertex, for example, the value of 3 can also be interpreted as the area under 

three Cauchy distributions (one for each color), being the state sum of this particular partition 

function. If we use the logarithms of the potency series, we can handle these logarithms of single 

potencies in almost the same way as conventional partial functions—more specifically, as partial 

energies, or perhaps it is better to say that they are treated like energy coefficients and/or like 

logarithms of partial partition functions, and we can add them instead of multiplying them. However, 

the logarithmic energy (ln(E)) is then obtained as the result, which is equal to the sum of these 

energy coefficients. In other words, the logarithmic energy (ln(E)) appears to be equal to the sum of 

these partition functions (for partial sums please see equation formula 14) . 

Logarithmic Interpretation as four partition functions 

                 

8

1
2 3 (3 )

1
1

3

d

a b c

RydE E



 
 
    
 

 
 

                   (14)  

,is equivalent to the formulation 

  
2 3 3 4vertex vertex RydE Z Z Z Z E             (15) 

  /8

0,2 0,3 0.3 0,4

a b c d

vertex vertex RydE Z Z Z Z E            (16) 

with the logarithmic energy ln(E) 
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1

ln( ) ln(2) ln(3) ln(3 ) ln 1 ln( )
8 3

Ryd

d
E a b c E



 
          

 
              (17) 

with the partition functions Z     

 2 3 3 4ln( ) ln( ) ln( ) ln( ) ln ln( )vertex vertex RydE Z Z Z Z E                    (18) 

with the basic partition functions Z0     

 0,2 0,3 0,3 0,4ln( ) ln( ) ln( ) ln( ) ln ln( )
8

vertex vertex Ryd

d
E a Z b Z c Z Z E                   (19)  

                

 partition function    qq,                    qqq,                      3- gluon         4-gluon      Rydberg-Energy 

 

or with probabilities  
1

i

i

Z
P

              (20) 

2 3 3 4

1 1 1 1
Ryd

vertex vertex

E E
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                (21) 

 

 2 3 3 4ln( ) ln( ) ln( ) ln( ) ln ln( )vertex vertex RydE P P P P E              (22) 

or with basic probabilities  
0,

0,

1
i

i

Z
P

             (23) 
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1 1 1 1
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E E
P P P P 

       
                   

       

       (24) 



22 
 

 0,2 0,3 0,3 0,4ln( ) ln( ) ln( ) ln( ) ln ln( )
8

vertex vertex Ryd

d
E a P b P c P P E                  (25) 

0,3

1

3
P


               (26) 

0,4 0,3

1
1 1

3
P P


                 (27) 

 

Equations 14-27: These equations 14 to 27 give the partition function for a particle. The partition- 

function can also be written in a logarithmic form. When we write the partition function in a 

logarithmic form, the logarithm of the energy results as the sum of the partial partition functions. 

The probability thereby is the inverse of a partition function. 

 

It is believed here that the above two different interpretations of the energy-defining quotients are 

equivalent to each other and can both be used interchangeably. However, in the end, we have a 

number of possible interactions and/or Feynman arrows and/or ways for the particle to exist, and 

this total number of Feynman arrow equivalents then needs to be multiplied by the universal mass 

quantum in order to be transformed into the energy needed. 

On the other hand, if one were to think about partition functions at a very fundamental level from an 

ontological point of view, it is questionable whether anything like such sum-able partial energies 

could exist at this level. 

In more detail, one might claim that at the very bottom level, the fundamental energy cannot be split 

into any such summable partial energy. Therefore, one would reason that the formula for the 

fundamental energy of a particle must not contain any additive relation, nor, indeed, any logarithmic 

relation, because this would equivalently correspond to an additive component. Therefore, the 

partition function at the very bottom should be related to multiplication only and, therefore, to the 
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potency series only,- and should be, in the simplest way, given by the potency series itself. 

Furthermore, the particle energy should then be, in the simplest case, proportional to the partition 

function of that particle, and the proportionality factor between the particle’s partition function and 

the particle’s energy could be given directly by the Rydberg energy, again. 

  

“Zero-point analyses” of the exponent series of table 1 in relation to their respective particles 

The charged and uncharged pions 

The first zero-point analysis concerns the pion as a back (symmetrical) zero point. It is described by 

the exponents 1, 1, 7, and 2 (charged pion) or 1, 1, 7, and 0 (uncharged pion; see figure 3 for 

comparison). The neutral pion is a superposition of two quarkonium states, namely, the uu- and dd 

quarkonia. This superposition is highly symmetrical and does not contain any asymmetry. To 

generate a 2-gluon (4-vertex) event, however, quark asymmetry is required. This is missing in the 

case of the neutral pion; therefore, no 2-gluon event can occur. Due to the high symmetry, there is a 

trailing back zero for a 2-gluon (4-vertex) event. 
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Figure 3  
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Figure 3: Figure 3 gives the exponent series (a,b,c,d)-tupels for each particle  

 

The proton and neutron 

In contrast, the proton and neutron, described by the exponents 0, 2, 9, and 4, have a leading zero. 

These particles contain no antimatter. For this reason, they cannot participate in any quark-antiquark 

or quark-driven color-anticolor interaction. Only the much stronger and more stable three-color 

interaction remains to hold the particle together. As a maximum of nine symmetrical 3-gluon self-

interactions and four asymmetrical four-vertex two-gluon interactions are present in the proton or 

neutron, the result is a very stable particle. 

The eta particles 

The eta particle exists in two variants, namely, the eta and eta-dash particles. The eta particle is an 

asymmetric superposition of uu, dd and minus 2 ss. As such, it has exponents of 1, 1, 9, and 15. In 

contrast, the eta-dash particle corresponds to a symmetrical superposition of uu, dd, and ss. 

The eta-dash particle has the exponents 0, 0, 8, and 9. Therefore, it cannot undergo any gluon-driven 

color-anticolor interactions nor any three-color interactions. The eta-dash particle is very similar to 

the nonexistent 9th gluon, which is a strongly analogous symmetrical superposition of rr, bb and gg. 

As such, the 9th gluon is genuinely colorless and cannot interact via the strong interaction or any 

color interaction. Likewise, the eta-dash particle, with the exponents 0, 0, 8, and 9, cannot 

participate in any quark-antiquark, three-quark, or quark-driven two-color or three-color 

interactions. Only symmetrical gluon-self interactions (3-vertex interactions) and antisymmetric 2-

gluon interactions (4-vertex interactions) remain in which the eta-dash particle can participate. For 

this reason, the eta-dash particle can be described as a real double zero with regard to quark-quark 

interactions. 
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The various Kaons 

The kaons have a zero in the second position, with exponents of 1, 0, 8, and 11 (K+, us) and 1, 0, 8, 

and 12 (K0, ds). The kaon can occur as a K+ particle, with the quark composition us, or as a K0 

particle, with the composition ds. The phenomenon of neutral particle oscillation describes the 

oscillation of a neutral kaon particle into the corresponding antiparticle, i.e., an antikaon. In any case, 

it seems as if the strange quark has a tendency to oscillate in its antiparticle. The strange quark, at 

least, seems to have the ability to participate in quark-driven color-anticolor interactions. The second 

zero in the kaon indicates that due to its s-quark, the kaon also has the ability to interact in the form 

of quark-antiquark interactions and/or in the form of quark-driven color-anticolor interactions. On 

the other hand, there are no possible three-quark or quark-generated three-color interactions 

(hence, the second number is zero). Furthermore, the kaons have eight gluon self-interactions and 

various (11 or 12) four-vertex 2-gluon interactions. 

The different particles and their corresponding exponent series can also be arranged in several 

diagrams with the form of the eightfold way. This has been done in figure 3. 

Quarkonium states 

The two quarkonium particles cc (psion) and bb (Y) have the exponent series (0, 1, 9, 11) (psion, cc) 

and (0, 0, 9, 12) (Y, bb). At first glance, the lack of quark-antiquark interactions in both particles is 

surprising. However, this is consistent with the Okubo-Zweig-Iizuka (OZI) rule. Strong decays are a 

suppressed branch for these particles. According to the OZI rule, no direct annihilation, i.e., reaction 

between the two quarks of the quarkonium, is possible. Rather, this direct reaction is suppressed. On 

the other hand, three-quark or three-color reactions are possible within the cc quarkonium. In the 

case of the bb (Y) particle, however, even this reaction is suppressed and/or impossible. 
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The omega-minus particle consists of three strange quarks (sss) and has the exponent series (1, 0, 8, 

1). Consequently, it cannot participate in a 3-quark particle reaction and has only a single 2-gluon 

reaction that is possible. However, this reaction corresponds to the extremely high degree of 

symmetry in this particle. 

 

Analyses of individual special and special mesons 

The omega-minus particle 

The omega-minus particle contains three strange quarks, with the configuration sss. Its exponent 

series is (1, 0, 8, 1). It does have one color-anticolor interaction. The matter s-quark has the ability to 

participate in color-anticolor interactions. Therefore, two s quarks are bound by a color-anticolor 

interaction, and one s quark is unbound. Because of this constellation, it cannot participate in any 3-

color 3-quark interaction. All 8 gluons participate in gluon-gluon self-interactions, and a single two-

gluon 4-vertex interaction results. This agrees quite well with the high symmetry, leading to equity 

and identity of all gluons in the omega-minus particle. 

An explanation for the 2-color interaction (quark-antiquark) can again be found in the tendency of 

the strange quark to oscillate and participate in quark-antiquark interactions, as seen, for example, in 

an oscillation of the form sss  scc. 

The lambda and sigma baryons 

The lambda and sigma baryons, with exponents 3, 2, 8, and 11 (lambda) and 3, 2, 8, and 16 (sigma), 

also seem to be special. These two particles seem to differ only in their numbers of 4-vertex gluon-

gluon interactions. Another particle in this series is the Xi-zero baryon, with the exponents 3, 2, 8, 

and 23. Similar to the lambda and sigma baryons, the Xi-zero particle differs from them only in its 

number of 4-vertex gluon-gluon interactions. 
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The pure quarkonium particles cc (psion, charmonium) and Y (bottonium) are also very special. With 

exponents of 0, 1, 9, and 11 (psion, cc) and 0, 0, 9, and 12 (Y, bb), they show no quark-antiquark 

interactions at all, although they possess quark-antiquark structures. This agrees well with the OZI 

rule (branch rule), which prohibits or strongly suppresses such a quark-antiquark interaction. 

Otherwise, these particles are likely to be extremely instable, such that they cannot be observed. 

 

W and Z bosons 

Other easy-to-understand particles are the W and Z bosons. These particles do not contain any 

quarks. Therefore, their a and b values are zero. 

 

Conclusion 

From the above analyses, one can conclude that the numbers (a, b, c, and d) can characterize an 

elementary particle in great detail. These numbers describe the interactions of the quarks and gluons 

as well as gluon self-interactions (3-vertex interactions) and gluon-gluon interactions (4-vertex 

interactions) in the particle of interest. Accordingly, the gluons can undergo self-interactions, 

interactions and hybridizations very similar to those of the electrons in a molecule. Therefore, the 

gluons in an elementary particle behave very much like the electrons in a chemical molecule.  
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   Up to two   three- quark (qqq) Interactions --> b=1,2  

              Up to three two-quark (qq) Interactions -> a=1,2,3 
 

Figure 4   This figure gives the number of possible combinations for color-anticolor 

interactions (qq). Up to three different combinations are possible due to the three possible 

colors. And this figure gives the number of possible combinations for color-interactions 

(qqq). Up to two different combination of color interactions (qqq) are possible.  

     Figure 4  
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Figure 5 

                                 Up to 28  Two-Gluon G
4

 Interactions (4-gluon vertices)-> d=1,2,3,…,28,…100   

 

BG--> BR + RG  Insertion of RR 

RB--> RG + GB  Insertion of GG 

GR--> GB + BR  Insertion of BB 

BG--> BR + RG  Insertion of RR 

RB--> RG + GB  Insertion of GG 

GR--> GB + BR  Insertion of BB 

 BR + RG--> BG+RR 

  RG + GB --> RB+GG  

   GB + BR --> GR+BB  

  BR + RG-->BG+RR 

 RG + GB--> RB+GG  

GB + BR--> GR+BB  

G
3

 

G
3

 

G
4

 

G3 and G4  self-couplings of Gluons 

½ (GG-RR) 

1/6 (RR+GG-2BB) 

Up to 9 G3 Gluon self-couplings -> c=1,..,9 

RR, 
GG, 
BB 
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Figure 5: Figure 5 explains the meaning of the (a,b,c,d)-tupel and the maximal possible interactions. 

The tupel represents the number of interactions present in a given particle. It gives the number of 

possible three-quark interactions, which is defining the b-value of the n-tupel, the number of two-

quark interactions, which is defining the a-value of the n-tupel, the number of three-gluon vertices, 

which is defining the c-value of the n-tupel, and the number of four-gluon vertices, which is defining 

the d-value of the n-tupel. The (a,b,c,d)-tupel product represents the sum of all possible 

combinations of all interactions.  

 

Figures 4 and 5 show that a total of a = 3 two-quark interactions, b = 2 three-quark interactions, c = 9 

gluon self-interactions, and d = 28 two-gluon 4-vertex interactions can be formulated. This is 

consistent with the exponent series found for the different particles (see table 1). Another important 

thing that we learn here is that in quantum- gluonodynamics, we must multiply the different partial 

energy states (and/or constellation possibilities), while in other areas of physics, partial energies are 

summed-up to form the total energy. 

 

 

 

  

Figure 6 
 
Feynman diagrams 
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4-gluon vertex 

 

Figure 6: This figure gives the interactions present in a particle and how to calculate the partition 

function which in turn gives the number of all possible interactions present in a given particle. The 

figure visualizes the meaning of the potencies a,b,c, and d. 

 

This operation is justified by the Feynman diagrams (see figure 6). The total energy or mass of an 

elementary particle is thought to be related to the sum of all possible Feynman diagrams. The total 

sum of the Feynman diagrams of a certain particle is given by the formula mentioned here and is 

calculated through a multiplication of the different partial intraparticle interaction possibilities and, 

with them, the numbers of gluon interactions. 

Importantly, the base value for each of these interaction intensities seems to be related to the path 

length of the associated main arrow in the associated main Feynman diagram and/or to the number 

of arrows per diagram. 

Thus, it seems to be in such a way that the total energy or mass of a certain particle is related to the 

length of a hypothetical summarized total Feynman arrow length, which includes and summarizes 

all arrows in all possible Feynman diagrams. 

The work presented here is deeply quantum mechanical in nature. The summation of the Feynman 

diagrams corresponds to the combinatorial calculation of the number of all possible constellations 

for an elementary particle. In turn, this Feynman sum then defines the energy or mass of the 

elementary particle in question. 

This corresponds to Schrödinger's cat: it is not a single constellation that defines the mass but rather 

the sum of all theoretical possibilities. In this respect, all different possibilities are realized at the 

8

1

1
1

3

d

dq
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same time, although in any particular instance, we can draw down only one possibility with the help 

of the Feynman diagrams. 

Weak Interaction Parameters (a,b,c,d) in case of the Leptons and the Quarks  

However if we transfer this theory to the leptons as electrons and quarks we get for the beta decay, 

which is in most cases the decay of a neutron: 

Beta-decay 

quarks:   

d -0.3     u +0.67  +  W- 
   u +0.67 + e-  + v              (28) 

Rishons:    

VVT-0.3    ttv+0.67  + (TT)TVV(V)-    ttv+0.67+  TTT- +  VVV 

Interactions:  

(2;2;4;8)    (1;2;4;8)     + (0;0;10;5)    (1;2;4;8)  +  (-1;2;4;4)   +  (-1;-2;0;0) 

Through adding of TTV to d the a and b- interactions get somewhat lost. Only the c and d interaction 

are possible in the W-particle. Afterwards the W-particle forms two particles with a and b 

interactions again.    

 

 

 

 

 

 



34 
 

Myon-Decay  

  µ-  W      +   vµ   e- + ve  +vµ                 (29)   

Rishon:  

           TTT-  (TT)TVV(V)- +     vvv  TTT- + VVV + vvv  

Interactions: 

 (-3;2;7;3)     (0;0;10;5)  + (-1;-0;0;0)     (-1;2;4;4)     +     (-1;-2;0;0)  +     (-1;-0;0;0) 

  

 

Pion-Decay  

  

u,d)       W-          µ-  +   vµ            (30) 

Rishon:  

 TTV-0.67  + VVT-0.3   
 (TT)TVV(V)-    TTT- + VVV   

Interactions: 

(1;2;4;8)     + (2;2;4;8)         (0;0;10;5)     (-3;2;7;3)     +     (-1;0;0;0)   

 

It can be recognized that a much better and more exact description of the beta decay and other 

weak decays can be given by using the (a,b,c,d)- tuples in the way done above. These results leads us 

to the hypotheses that the (a,b,c,d)-tuples can not only be used in order to better describe the strong 

interaction (color interaction), but can also be used in order to better describe the weak interaction 

and all weak decays. Both interactions are similar and result from 4 interactions (a,b,c,d). 
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Both interactions (strong and weak) seem to be similar with regard to the (a,b,c,d)-tuples. But of 

cause the weak interaction is acting within a much smaller radius within single electrons and single 

quarks and can be better explained by using the Harari- model,- while the strong interaction is acting 

on a much larger radius between different quarks and is equivalent to the color interaction.   
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