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Abstract—Building Information Models (BIM), provide a
static view on building structures on design and construction
time. During construction time, the safety structures and their
positioning among conditions are vital for the safety of the
employees on site. The models usually lack the temporospatial
information regarding non-static safety structures as
maintaining of such information manually is laborious. Thus,
automated and continuous safety structure monitoring  is cost-
efficient and vital keeping the model up-to-date while improving
construction site safety and risk information sharing among the
construction  related personnel during the project. This paper
researches of providing up-to-date and supplementary  safety
structure information to building models by means of various
deep learning-based machine vision solutions. The machine
vision tasks consist of deep learning safety related object
detection in images, point-clouds, and further instance
segmentation to enable safety structure fitness determination by
more traditional machine vision means

Keywords—deep learning, computer vision, safety structure,
building information model

I. INTRODUCTION

The rate of work accidents in the construction domain is
high [1]. Consequently, there is a need for continuous
monitoring of construction sites to avoid safety hazards.
Safety risk for an individual worker depends on many risk
factors including occupation type (e.g. a roofer vs a concrete
worker), activity type (e.g. variation in used tools), temporal
and spatial factors (e.g. work duration or concurrent
activities), and used safety management controls (e.g. safety
planning, training, and use of protection systems) [2]. Health
and safety inspections at construction sites are used for
preventing accidents from occurring. Computer vision can be
used for automating part of the health and safety inspections.
Computer vision has been used most often to monitor people,
personal protective equipment, and machinery [3]. In this
work, the focus has been on mitigating the risk of falling. The
U.S. Occupational Safety and Health Administration classifies
[4] conventional fall protection systems into guardrail
systems, safety nets, and personal fall arrest systems. In this
work, we decided to support health and safety inspections by
ensuring that the required safety elements, mainly safety nets
and fences, are in place. Additionally, the goal was to monitor
that the construction site remains tidy which influences both
fall and fire risks. The technical target of these experiments
was to apply deep learning assisted computer vision tasks to
adequately determine the existence of the related safety
structures or hazardous situations and to create an aggregated
service for reporting.

New buildings are more and more constructed utilizing
Building Information Models (BIM) [5]. Updating BIM
model to conform to what is actually built, when changes are
being made during construction is thus needed. Technologies
for this are already available. The progress at the construction
site can be recorded and the potential deviations can be used
for updating the as-planned BIM to as-is BIM [27].

Unlike the construction itself, safety structures are not
static. In order to achieve an as-planned BIM including safety
structures, it would require creating a model, where safety
structures would be added based on the time when they are
needed. This would require extra work but what is more, in
order to be able to automatically compare the as-planned and
as-built model, the model of the safety structure should
conform to the actual structure used. Furthermore, the
installation of the structures should be the same.

The approach presented in this work proposes to overcome
these challenges by combining computer vision-based
analysis with attaching location of safety structures to as-
planned BIM model. The approach allows for variation in type
and installment of safety structures as it is based on finding
out possible missing of required safety structures. This
knowledge is then used for alerting Health and Safety (H&S)
manager for requirement of potential actions.

The automated detection of safety factors here is based on
computer visual detection of the conditions and situations
which may contribute to the formation of a risk. The digital
visual material, photographs or video, collected from the work
site by automated means may be analyzed to detect the
potential risks and related factors with a suitable deep
learning-based computer vision solutions. Automated
detection workflow, as illustrated in Fig. 1, includes steps of

Fig. 1. Intended workflow with dataflow and main functional components
in detecting safety issues on construction site. Data capture completed
with flying drone precedes the AI image analysis that reports the
detected issues to a BIM Management. The safety manager decides on
the consecutive actions to mitigate and further repeated monitor and
analysis cycles.



digital imagery capture, analysis either on board real-time or
as post-processing after completed capture mission and finally
gathering results to update associated BIM models through
reporting. The reports and updated model indicate the need for
the required manual corrective actions and validation of their
effectiveness further.

The AI Image Analysis service component as in Fig. 1,
combines a set of deep learning-based computer vision
functionalities as illustrated in Fig. 2. These are object
detection for detecting the existence of safety barriers, safety
nets and untidy places. Furthermore, similar detection may be
concluded for the point clouds for determination of more exact
location in three-dimensional space. The safety net integrity
check succeeds object detection task analyzing the detected
bounding boxes containing safety nets first by segmenting the
safety net for the integrity analysis by more traditional
computer vision means. The results of the individual
detections are then reported respectively to supplement the
building models at the BIM management. Determination of
the missing safety structures can be done separately on the
BIM management level.

Before reaching such capability, a selected deep learning
neural networks model needs to be trained as in any other data
based machine learning solutions using a suitable training data
set. For the deep learning purposes, the training data needs to
be gathered, stored, quality controlled and annotated with
suitable labels. In general, this requires substantial amounts of
training data in the form of digital imagery containing such
features as required to be detected. Also, the quality of the
captured imagery is important in two senses. Firstly,
semantically they should contain what is desired to be detected
and secondly technical quality should be reasonable regarding
resolutions etc. The resolution usually may have an impact on
the final detection precision but for training and detection they
are always practically scaled down to a fixed size as dictated
by the detection algorithm.

However, the final detection functionalities should be
robust and able to detect even in less than perfect conditions
some, even manmade, imperfections are beneficial in the
training data. Some of the more complete and mature
algorithm implementations may utilize artificial augmentation
of images with various methods [6]. The raw digital material
as such is not enough to reach the adequate levels of detection
precision in the final model within reasonable computing
time. Thus, the training data needs to be refined manually with
an annotation process that should mark those risk objects on
the images as identified for the application. Especially in this
case annotation classes will include safety barriers and safety

nets as risk countermeasures; and piles of garbage as an
indicator for untidy location.

Furthermore, to improve the spatial detection and position
determination of the required safety structures, object
detection or segmentation could be executed on the laser
scanned point clouds. The experimentation consisted of pre-
processing and labelling of the point cloud data to create a 3D
training data set and training one 3D point cloud object
detection model type for the inference testing purposes.

Mostly similar boundaries, conditions and processing
phases apply also when applying the object detection in 3D
point clouds as those of the 2D images. However, the
differences and complexities are mostly introduced along the
additional spatial dimension on the source data. This is evident
in the higher complexity of the deep learning models and data
collection and preparation for the learning purposes.

Here, as a training data source we will rely on the 3D point
clouds and images captured by the flying drone and rovering
robot. The photogrammetrically fusioned LIDAR scans and
photographs from the project's sample building to form a full
3D illustration. One sample capture of the complete building
being constructed contained alone over 23 million data points.
These huge data sets were split to smaller and digestible
chunks due to the limit of available effort for labeling and
computing capacities just enough for trialing feasibility.

The net defect detection approach in this study is a hybrid
combination of deep learning based segmentation to detach
the network from the image background complemented with
a segmented network integrity analysis with traditional
computer vision operation. For the object segmentation deep
learning solution, we utilized the same dataset as in object
detection but with pixel level annotation. Creation of the pixel
level annotation was an even more labor-intensive task and
was completed to some extent only to briefly study feasibility
of complete net condition detection workflow. In this study
we combine this safety net object segmentation with the
morphological closing based defect analysis, which was
presented also in [7]. This method applies morphological
closure operation on the segmented net in order to find kernel
size and if it exceeds the threshold which leaves no
background regions unless there is a tear in the actual net.

As the current tendency is towards the even deeper and
more complex machine learning model architectures, we
cannot ignore the performance costs of such solutions. It may
be desirable if the created model would maintain high level of
precision in detection but also allow detection processing on
the handheld devices with a live video streaming material also
as many handheld devices possess substantial amounts of
graphic displaying but also AI targeted GPU processing
power.

To increase the visibility and accessibility of the results of
the automated detection of safety factors and risks, it is
important to integrate the solution with an existing software
tool commonly utilized in the construction domain. To
address this goal, an integration between the detection system
and the Bimsync platform [8] was established. Bimsync is a
collaborative BIM tool that supports the most advanced
standards such as IFC, bSDD and BCF. Bimsync enables
sharing, visualization, and collaboration on BIM models,
issues, documents, and drawings directly in the browser
without the need to install additional plugins. The Bimsync
integration enables submitting the detection results of safety

Fig. 2. Functionalities of the AI Image Analysis service component include
point cloud and image object detection producing bounding box
information for reporting detections and for further safety net integrity
analysis purposes. The integrity analysis uses morphological closing
after the segmented safety net bounding box.



factors and risks directly to Bimsync where they can be
collaboratively examined by different stakeholders of a
construction project.

The main contribution of this paper is to aid
automatization of H&S inspections at construction sites with

 detection of safety elements from 2D and 3D
imagery

 safety net integrity analysis,

 and integration of automatic analysis with BIM
management.

The rest of this paper is organized so, that in the following
section we cover related work, in section III we highlight the
used image, point cloud and segmentation datasets and the
deep learning models for each of the AI Image Analysis
service’s functionalities. Section IV discusses and analyses
the achieved training results for each deep learning
functionality. Furthermore, the section V studies the next step
integration to the rest of the workflow services and VI
concludes this paper.

II. RELATED WORK

In the object detection application domain various models
based on the convolutional networks have proved to be
suitable and precise enough. Solutions like Faster R-CNN [9],
ResNet-101 [10] and various versions of Yolo [11] have
evidentially been highly performing even with video feeds
while maintaining adequate detection precision.

Some ready-labelled 3D point cloud data sets exist e.g.
several for autonomous driving but also for the construction
industry. Some benchmarking data sets for detection of the
constructed building structures itself exist like IFC datasets
[12]. Such typically lack the object classes required here,
namely the safety nets and barriers. To create a more robust
and reliable detection model, a fully or at least partially
automated process would be desirable in data set labelling.
Such could be achievable with the aid of the 2D image object
detection solution sketched in the earlier section. Another
option would be the utilization of detection model
architectures like MVX-NET [13] capable of utilizing multi-
modal input data consisting of the point clouds and location
images. However, their benefits are questioned e.g. in [1],
which also sees augmentation procedures as better options.

Two main types, namely image-based and various forms
of point-cloud-based detection, methods exist [14]. Some of
the 3D point cloud object detection solutions use 2D projected
bitmap images from the point cloud views as detection basis.
Other solutions utilize the points and their features or other
volumetric presentations, e.g. voxels, instead extracting the
detectable features from the point clouds. The 2D bitmap
projection usually leads to a lower accuracy but consumes less
computing resources, which are the opposite case for the
feature extracting methods.

These approaches include initial Single Shot Detection
(SSD) style anchor box creation and other input data
preprocessing techniques intended for a fast inference for the
real time processing needs. Typical distinction between the
various point cloud object detection approaches is the utilized
voxelization method, i.e. a discretization process of producing
a reduced size representation of the original point cloud data.
This intermediate reduced representation should still capture

enough features to allow precise enough object detection on
the succeeding layers of the neural network model.

One applicable object detection model architectures is
PointPillars [15]. It is a deep learning architecture for object
detection in the LIDAR produced point cloud streams. It
employs a somewhat similar approach as YOLO for the 2D
image based operations. The intermediate representation of
the PointPillars architecture is based on representing a group
of points as pillar shaped voxels. These voxels or pillars are
discretizing the arbitrary points to a fixed set of pillars on the
original X-Y plane. The pillars capture and combine an
enclosed number points and their related features as vectors
which are further reduced in dimensions by the initial pillar
feature neural network. The pillar feature network in a sense
produces a reduced dimension pseudo image of the pillars or
voxels representing the whole point cloud. This intermediate
form is presented to the succeeding 2D convolutional network
based object detection network.

The fully comprehensive safety net integrity analysis is a
challenging task for the data oriented machine learning due to
lack of suitable image training datasets. Thus, fully deep
learning alternatives were not considered here. However, a
solution combining deep learning-based segmentation with a
more traditional computer vision analysis provides an
adequate solution. A selection of segmentation
implementations, Segmentation models [16], provided an
adequate and diverse platform for trialing safety net
segmentation options for further processing. Supporting a
variety of model architectures like Unet, Linknet, FPN and
PSPNet with a similarly wide selection of 25 different
backbones including VGG19, ResNet and such.

For the actual tear or other damage detection several
computer vision techniques have been introduced. Some are
for the fishing industry domain like [17] that is based on
traditional computer vision algorithms and [18] based on
neural networks. On other application fields like metal
industry [19] applies deep learning based object segmentation
task for surface defect detection. The supervised deep learning
methods require vast amounts of data illustrating the defects,
which is not available for this study. However, [7] applied
simple morphological closing operation and thresholding for
number of the vanishing background patches in order to detect
tears in the nets after several filtration and segmentation
procedures from the video frames.

Comparing planned BIM with as-built BIM can be used
for detecting potential problems and ensuring that
documentation of the construction remains accurate.
Unfortunately, safety measures are not yet usually planned in
BIM models [20]. As safety objects are temporary objects as
well as vary in shape and size, modeling them accurately may
not be possible. Consequently, comparing as-built BIM model
with planned model may not be directly usable for detecting
missing safety measures. However, the locations of required
safety objects are needed in automatic safety inspections to
point out what needs to be monitored.

III. DATA AND DEEP LEARNING MODELS

The AI Image Analysis component,  in Fig. 2, combines
three separate computer vision tasks. Each of the deep
learning tasks require their own model architectures and
respective training datasets which are briefly introduced here.



The associated research project partners captured and
provided sets of digital images, video clips and point clouds
for research purposes here. These captured sceneries of the
building construction sites in various locations and stages of
completition. The collected and labelled image dataset finally
consisted of over 3,500 individual images split to training and
validation sets of 2,700 and 800 images, respectively. The
available point cloud set consisted of over 28 million points
that was split to smaller training and validation blocks.

The current trend in the visual object detection and image
classification is towards even deeper  neural networks. These
outlay a challenge on the available data quantities and quality
but also on the available computing resources. To maintain a
reasonable computing resource consumption levels and time
frame in the training process finetuning pre-existing models
and transfer learning procedures was favored. The finetuning
and transfer learning utilizes an existing model to diversify or
redirect it to detect new classes of objects in the new domain.

A. Image Training Data
The manual labelling was partially aided iteratively with

detection results produced early by the detection algorithms
trained with a small, already annotated dataset. This
incremental and smaller set of images provided enough
accuracy to detect at least partially objects of interest in the
rest of the images in the complete dataset. The final labelling
results were then manually corrected and improved. In 3,500
dataset images, we were able to label over 5,500 individual
labels. The labelling tool used for the YOLO formatted
annotation and labelling purposes to classify and mark
bounding boxes was the freely available labelImg tool [21].

B. Point Cloud Training Data
Typically raw LIDAR point clouds are sparse and without

stitching preprocessing to a denser representation. The data set
available for our purposes, however, was a result of

photogrammetry combining stitched point clouds and
photographs of the locations. The sample starting point is the
23 million point cloud of the building used for the project's
case study. The preprocessing of this included cropping to
individual floors and then cropping of those to fixed size
blocks. Thus, the point cloud was cropped vertically to five
individual floors of the building. These cropped floors have
visible internal safety nets and arbitrary safety barriers among
the structures removing the floors and ceilings from the views.
Furthermore, each of the floors were then cropped to a fixed
size block of 5 x 5 x 5 units as measured in the CloudCompare
tool [22]. See Fig. 5 of one of the floors with one highlighted
sample crop and resulting point cloud block for labeling
before adding to the training dataset. This slicing produced
blocks of c.a. 250,000 points maximum for manual labeling
tasks. The point number limitation was estimated with regards
to the computer resources and respective time limitations
available for this experimentation. Out of a single available
large point cloud we were able to source 125 suitable blocks.
All empty and those with meaningless number points were left
out.

The annotation process to label the objects of interest in
such point clouds is a similar process as with the images in 2D
case described earlier. The additional dimension, however,
will make the amount of data higher and working with the
labelling tools more challenging. In this case, the
photogrammetric nature and high density of the point clouds
aided the recognizing the labelable objects for the human eyes.
This is not necessarily the case with the regular sparse raw
LIDAR scans. On the other hand, the density of the point
cloud data and thus vast data size burdens the processing of
them for object detection purposes. The solution used here
was to slice and crop data to more processable pieces. The
sliced point cloud data set was annotated with the point cloud

Fig. 5. Floor sliced point cloud of the one of the sample buildings floors of and one 5 x 5 x 5 crops for labeling purposes.

Fig. 4. LabelCloud tool for annotating point clouds with one cropped block
in where a safety net and safety barrier are labeled.

Fig. 3. Part of the sample image with labelled pixels highlighted in
red that are part of the safety net. Pixel classification dataset is
for training instance segmentation in later phase.



capable labelling tool, labelCloud [23] as visible in Fig. 4 with
a sample point cloud crop to be added to training dataset.

C. Instance Segmentation Training Data
A selected images from the object detection set consisted

of eight high resolution images. On these a task of pixel level
labeling was concluded with QuPath [24] segmentation tool
mainly aimed for medical and biological science uses. After a
brief cycle of trial and elimination, it was selected as it had
some supporting automated tools for the manual labeling task
of which color-based thresholding and simple neural network
classification were most important. The segmentation label
masks among the underlying images were further split into
320 x 320 pixel images to form a training data set. The final
training data set included 590 small images and masks split
into 392 training, 131 validation and 67 testing samples
respectively. See Fig. 3 for a sample split with marked net
structure pixels.

D. Image Object Detection Models - YOLO
The object detection task employed one open-source

implementation of YOLO version 5 [25] convolutional
detection architecture and network. Training of the applicable
large YOLOv5 model was made in transfer learning style
freezing convolutional layer weights up to layer 10 to reduce
the complete training time while reaching adequate levels of
accuracy. The ready model is already capable of detecting and
locating generic objects in the images present in the COCO
dataset, which unfortunately lacks the safety related objects
needed here. The transfer learning process will shift the
COCO detection capabilities to detect objects relevant in our
own construction safety structure and risk dataset. The transfer
learning process was completed in 400 epochs with a large
pretrained model with 46,642,120 parameters in total with
batch size of 10 and AdamW optimizer’s initial learning rate
of 0.0032. The hyperparameters were based on the YOLO
developers’ optimization runs with VOC data set. This YOLO
implementation supports various data augmentations like
color, translation, scaling, shearing, flip and mosaic which
were utilized as defined by default parameter settings.

E. Point Cloud Object Detection Models - PointPillars
The selected point cloud object detection model was

PointPillars available in Open3D-ML library [26] that
supports the use of KITTI formatted point clouds as training
data. KITTI format required a separate data feeder
implementation in order to accommodate our dataset for
training.

During the training process a notion was made how the
applied model architecture detected the objects from the birds-
eye-view (BEV) vantage point. To accelerate training and
improve the detection results in this case, in our data set point
cloud chunks were flipped 90 degrees about the horizontal X-
axis. This increased substantially upper projection surface
area of the detectable objects that tend to be thin but wide. The
training used learning rate of 0.00008 with weight decay of
0.01 among other standard implementation parameters as
provided with batch size of six for 80 epochs in total.

Some initial trials in this setup showed that AdamW
optimizer with weight decay mechanism leads to better
results. The availability of stable implementation of AdamW,
now, is limited to PyTorch platform only. Open3D-ML
developers report  about stability problems of the AdamW on

the Tensorflow and therefore our tests were run on PyTorch
only.

F. Instance Segmentation - Segmentation Models
Segmentation models [16] as safety net segmentation

solution with the segmentation training data demonstrated a
feasible solution to find a meaningful combination of the
segmentation model architecture and its backbone for this
trial. However, it was noticed that our small trial-sized
segmentation training set was barely enough, and no final
conclusions regarding the achievable precision should be
drawn. The provided backbones weights were pretrained on
2012 ILSVRC ImageNet dataset and used as such. The
training was completed with learning rate of 0.0001, batch size
of 10 for 200 epochs with combinations of UNet, PSP, Link
and FPN model architectures and VGG, ResNet, SEResNet,
ResNeXt, SENet, DenseNet, Inception-ResNet-v2,
MobileNetV2, and EfficientNetB7 backbone combinations
for comparison.

IV. RESULTS

For comparative reasons the YOLO object detection
network training was concluded with the image sizes of 960 x
960 and the default 640 x 640. The training process was
continuously monitored and evaluated with the performance
metrics as explained in the preceding section. The training
continued for 200 epochs, or timesteps during which all the
data is consumed once, around which the validation losses
started converging. The validation losses for the 960 x 960 and
640 x 640 image sizes are presented in Fig. 6. The losses for
the smaller image size starts to diverge after convergence
around 100 epochs. Continuing training for the larger image
size may improve resulting accuracy slightly but only after a
much longer training period.

Evolution of the two threshold mean average precision
(mAP) metrics during training illustrated on Fig. 7. The
mAP@05 and mAP@05-095 use additional threshold criteria
for all detected object classes as Intersection over Union (IoU)
ratio of <0.5 and 0.5-0.95, respectively. Apparently, the model
reaches higher accuracy of ~0.75 and ~0.525 mAP @0.5 and
@0.5-0.95 respectively with higher resolution of 960 x 960
images. Of the specific detection classes, with the safety net
the model reaches 0.954 and 0.696 mAP depending on the
image resolution, which is deemed adequate at this point of
time. The mAP @0.5 results on the higher resolution for other
detection classes, barriers and untidy places 0.810 and 0.520
respectively, were somewhat lower due to the high variance in
appearance in training data.

The Open3D-ML reports the levels of 52.8 to 61.6 mean
average precision, mAP@70, on BEV and 3D views
respectively for the commonly available KITTI data sets [27]
in detecting cars, pedestrians and cyclists. With KITTI dataset
some minor variation is reported between the same
PointPillars implementation on Tensorflow and PyTorch

Fig. 7.    Evolution of mean average precision metrics (mAP) with IoU
thresholds of <0.5 and 0.5-0.95 for 960 x 960 and 640 x 640 sized images.

Fig. 6. Development of box, class and object losses during two training
runs of 200 epochs on 640 x 640 and 960 x 960 pixel images.



platforms, PyTorch producing slightly lower results. In our
limited data set the model was able reach mAP levels 80-90
for safety nets and 15-20 for barriers on BEV with PointPillars
on PyTorch. The results were indicated at unrestricted IoU
level. From the practical experience of labelling the point
clouds and now shown in the result, it is obvious that the
barriers were less common items on the point cloud data set
than the safety nets and thus detected with lower precisision.

The modest amount of instance segmentation training data
still allowed us to reach adequate results for trialing it as part
of the integrity analysis concept. The training according to the
losses and especially the achieved F1-score in validation
converged after 60 training epochs as illustrated in Fig. 8. To
keep figure readable only the best results for each model
architecture with the corresponding backbone is included. The
used batch size was 10 with 320 x 320 pixel image tiles. The
best results were achieved in our limited dataset by FPN and
UNET model architectures with DenseNet and SENet
backbones respectively. The middle tile in Fig. 9 represents
instance segmentation result for the first image section on the
left in the same figure.

After the segmentation of the safety nets, the net mesh
integrity analysis was completed with the simplified
methodology as presented in [7] applying only morphological
closing until some set conditions were met. Fig. 9 illustrates
the sequential results of such with a captured image section
and the results of the process starting with the net
segmentation and finally the net integrity issue detection
highlighting the suspected area after edge detection.

The conditions and thresholds adopted and used here were
like the original work. The closing operation was repeated
with the increasing kernel size until the number of persisting
background areas plateaued below some non-zero level. This
suggests the existence of tears or irregularities on the
segmented image of the net. That non-zero level was set to 3

and after which according to the original methodology the
kernel size is increased by 50%. After that increment and
closing operation the persisting background areas, if any, are
determined as irregularities i.e., tears on the net mesh
structure. The 50% kernel size increment determines the
minimum area of irregularity to 150% of the current kernel
size. In our work, the rectangular kernel side length was
gradually increased from 1 to maximum of 60 if no indication
of irregularities earlier. Fig. 10 represents the development of
number of persisting background area batches after
morphological closing with a certain kernel size for two
separate 320 x 320 pixel image tiles. One of such had tear on
the net and one was intact as indicated in Fig. 10. The kernel
size here refers to a side length of square kernel in pixels. The
curve for the image tile with a tear starts to converge below
the predefined level of 3 with a kernel side length of 20 and
larger and 27 and larger respectively for the intact sample.
However, background batches persists even after 50%
increment in kernel size up to 30 and even beyond with a torn
image sample suggesting integrity issue on the sample. The
intact sample preserves zero background batches after closing
operation with kernel size 36 and larger.

A. Analysis of Training Results
A common problem shared with each type of data set

utilized in this study was the lack of suitable ready full data
sets. The unique requirement in our study was inclusion of the
safety structures and risks limiting our work to merely a
feasibility study than a fully featured production ready system.

It is apparent that the overall precision increases with the
increased image size. The large high-definition images with
proper lighting make the detectable details naturally clearer
and thus easier to detect. However, even when using transfer
learning approach, the consumption of the computing
resources is high and resulting overall run time is long. The
640 x 640 transfer learning session of 200 epochs lasted for
over 24 hours with moderately high-performance GPU
acceleration capability offered by Nvidia Quadro RTX 5000
and 16 GB of dedicated RAM. A similar training session with
960 x 960 images lasted for over 86 hours. These times
applied only after finding a working and reasonable training
setting. Larger image sizes could be used to fully exploit the
HD or 4K resolutions for even higher accuracy. But that would
come at the cost of the severely extended training time at least
with the available computing resources and not considered
here.

Interpreting the precision and loss curves suggests that
continued training may improve the overall accuracy a little
bit further. But it may also prove to be unjustified use of
computing resources regarding the levels of achievable
improvements. So far, the best available model was the large
YOLO model type consuming images of 960 x 960. It was

Fig. 11. The number of persisting background batches in two safety net
segmented subtiles, one with obvious integrity fault (tear) and one
intact (see Fig. 9), after morphological closing with increasing kernel
side length.

Fig. 8. Segmentation validation F1 score achieved during training with
FPN, LINK and UNET model architectures and their best performing
backbone solutions. Other weaker combinations omitted for the clarity.

Fig. 9.



able to reach reasonable accuracy levels without regressing to
overfitting.

Still, the results may vary significantly in practice as most
of the available training data was quite homogeneous in image
quality, lightning conditions, and certain detectable objects’
symmetry in shape and scenery composition. The training
dataset’s homogeneity has a negative impact on the model’s
general accuracy in the real-world usage with more varying
image qualities and contents, i.e. covariate shift can be
expected.

The point clouds and the applicable object detection
solutions are sensitive to the vantage point in relation to the
observable objects. Here in our data set it was noted and
corrected by flipping the training data set point clouds 90
degrees to provide a full facial view from the bird-eye-view.
Object detection in point clouds would offer a full spatial
detection of the objects of interest. The exact locations and
positions would be useful in the result reporting phase and
information overlay building. The first and major challenge is
the consumption of the resources in capturing and building
similarly dense point cloud presentations. The normal sparse
LIDAR point clouds may not capture e.g., the thin safety nets
on desired recognizable level.

The safety net integrity analysis functionality consisting of
instance segmentation and morphological closing operation
was performed for the bounding boxes containing a detected
safety net. Clearly, the accuracy achieved shows that the
segmentation task would greatly benefit from larger amounts
and diversity of the training data. As a trial, the current low

amounts proved to be enough for show casing the
functionality. The preceding morphological closing process
was chosen here for the net integrity analysis due to lack of
real image data with genuine net faults. Utilizing deep
learning segmentation allows omitting several filtering and
other complex computer vision tasks while providing good
input data for the closing operation to detect integrity
problems. A study like [28] approaches this problem with
generative networks to generate a defect free sample to find
any residual defects. It may not work with the safety nets e.g.
due to high variance of the possible safety net droops, folds
and see-through layering.

V. BIMSYNC INTEGRATION

The established integration between the object detection
system and the Bimsync tool aims at improving the visibility,
accessibility and dissemination of the detection results. This
means that whenever safety risk factors are detected from
images, the results are subsequently submitted to the Bimsync
platform and reported as new BCF issues. The integration is
implemented utilizing the Bimsync REST API v2, which
supports, e.g., the exchange of BCF issues between software
applications via a RESTful web interface. In addition, a
dedicated Python application was developed to transform the
output of the object detection module into the format
supported by the Bimsync REST API v2.

As mentioned above, the results of the object detection are
inserted to Bimsync as new BCF issues. The developed
integration approach is represented in Fig. 11. As can be seen,
the results of the object detection module are first serialized to
JSON strings and then submitted to the BimsyncProxy
module. The BimsyncProxy then transforms the data into a
format understood and supported by the Bimsync. As a result,
a new BCF issue is created in Bimsync that contains  relevant
data elements extracted from the object detection results.

Fig. 12 shows, how the results of the object detection
report at AI Image Analysis service appear in the Bimsync
graphical user interface. As can be seen, the original file name
of the analyzed image is used as a baseline when generating
unique IDs for new BCF issues. In addition, the description
section of the issue contains the results of the object detection
in a human-readable format. The correlation to the actual
physical location presented in the BIM model and the reported
detections bases on the geographical location stored in the
digital material’s metadata, e.g. EXIF, storing also the camera
orientation. Determination of detections’ location is not
covered in this paper though.

VI. CONCLUSION

In this paper, we have demonstrated how to support H&S
inspections at construction sites with computer vision based
analysis of risk factors including object detection from 2D/3D
images and integrating the process with BIM-based
construction site management. Currently, it is relatively easy
to construct machine vision based deep learning systems and
services for various uses technically. Many ready solutions for
different data types are available but the challenge is in the
data and its annotation as the publicly available data sets may
not address the problem pursued. Iterative annotation effort
may prove to be suitable by using early stage models to help
in detection, or finding labeling tools supporting some basic
level detections. The resource scarcity in computing power
may be mitigated many times by applying fine-tuning or
transfer-learning approaches.

Fig. 13. Results of the object detection module in Bimsync graphical user
interface.

Fig. 12. Integration of the object detection engine and the Bimsync tool.



The future work includes application of the photo-based
object detection optionally to detect and thus help labelling at
least initially the plane projections of the objects in the point
clouds. Similarly, the safety net condition analysis with
morphological closing may be applied to suitable projections
of the 3D safety net bounding boxes.
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