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2. Introduction

In Valuation Theory, an important notion is the concept of key polynomial.
This object showed to be important in some programs that intend to proof local
uniformization and resolution of singularities in positive characteristic. These are
significant problems in Algebraic Geometry (see [9]). In 1936, Mac Lane started in [6]
the study of key polynomials in order to understand all possible extensions of a valuation
from K to K[x]. Years latter, Vaquié introduced a generalization of Mac Lane’s key
polynomials in [12]. After that, Novacoski and Spivakovsky in [8] and Decaup, Mahboub
and Spivakovsky in [3] introduced a new version of key polynomial. This new definition
depends on the following object, that will be in the center of our discussion in this paper.

Let K[x] be the ring of polynomials on one indeterminate over the field K. Fix
a valuation ν on K[x] with value group Γν and let f ∈ K[x] be a non-zero polynomial.
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For every i ∈ N, we consider ∂if the formal Hasse-derivative of order i of f . This is
the uniquely determined polynomial such that, for all a ∈ K, we have that ∂if(a) is the
coefficient of the degree i monomial of the Taylor expansion of f around a. If f ̸∈ supp(ν)
and deg(f) > 0, then we define

ϵ(f) := max
1≤i≤deg(f)

{
ν(f)− ν(∂if)

i

∣∣∣∣ ν(∂if) ∈ Γν

}
∈ Γν ⊗Z Q.

A key polynomial is a monic polynomial Q that satisfies the following property: if f ∈
K[x] is such that deg(f) < deg(Q), then ϵ(f) < ϵ(Q).

The definition of ϵ(f) is not natural at first. However, it allows us to prove all of
the initial results about key polynomials and truncations in an explicit way (see [8]).

In [7], Novacoski introduced the notion of δ(f), an object that is easier to
visualize than ϵ(f). Take µ an extension of ν to K[x], where K is a fixed
algebraic closure of K. Given a non-zero polynomial f , if deg(f) > 0, then we define

δ(f) := max{µ(x− c) | c ∈ K and f(c) = 0}.

This object can be used, for example, to see the relations between key polynomials,
minimal pairs and truncations (see [7] or [10]).

Novacoski proved in [7] that ϵ(f) is equal to δ(f). His proof is purely algebraic.
In [1], Bengus-Lasnier gives another proof of this equality, using Newton polygons. This
new proof gives a geometric approach to Valuation Theory.

In this paper, we reproduce the proof of this equality given in [1], which is based
on a result of [5]. We present some details that were omitted in [1]. Also, we
illustrate a step-by-step construction of the Newton Polygon associated to a
specific finite set.

In Section 3, we define the Newton Polygon of a set X , together with the notions
of line, slope, convex hull, among others. We also give a step-by-step construction for the
Newton Polygon of a finite set of the form

X = {(i, γi) ∈ N× ΦQ | 0 ≤ i ≤ m, m ∈ N, }.

where ΦQ is the divisible hull of a totally ordered abelian group Φ.
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In Section 4, we begin by defining a valuation on a commutative ring with unit.
Take a valuation ν on a field K and a polynomial g(x) = a0 + . . . + anx

n, with
a0 ̸= 0. We study the Newton Polygon associated to the finite set of the form

X = {(i, ν(ai)) ∈ N× Γν | 0 ≤ i ≤ n and ai ̸= 0}.

Using an adaptation of a lemma from [5] (our Theorem 4.2), we prove Corollary 4.3 that
relates the geometric aspects of the Newton Polygon to the roots of g. Then, we prove
Corollary 4.5 that deals with the Newton polygon associated to the set

X = {(i, ν(∂if)) ∈ N× Γν | 1 ≤ i ≤ n and ν(∂if) ̸= ∞},

where f is a polynomial of degree n.

Finally, in Section 5, we prove the main result of this paper, that is, the equality
ϵ(f) = δ(f) (Theorem 5.1). We also conclude that δ(f) does not depend on the choice
of the extension µ nor on the algebraic closure K.

3. Newton polygons

The presentation of Newton polygons that we chose for this paper relates to the
one in [1], which is based on Vaquié’s presentation in [11]. In the following, we define
the main concepts that are necessary to construct a Newton polygon.

Let Φ be a totally ordered abelian group. We set ΦQ := Φ ⊗Z Q, which is the
divisible hull of Φ (see [4]). All elements in ΦQ can be reduced to a simple tensor ϕ⊗ q,
with ϕ ∈ Φ and q ∈ Q. Moreover, there is an injective map Φ ↪→ ΦQ, mapping ϕ to ϕ⊗1.
We denote ϕ ⊗ q by ϕq = qϕ and, for a, b ∈ Q, we denote a

b
ϕ by aϕ

b
. In ΦQ, we have a

natural order induced from Φ (given by a1ϕ1

b1
≤ a2ϕ2

b2
⇔ a1b2ϕ1 ≤ a2b1ϕ2 in Φ).

Definition 3.1. Take q ∈ Q and α, β ∈ ΦQ. A line L ⊆ Q× ΦQ is a subset of the form

L = Lq,α,β := {(x, ϕ) ∈ Q× ΦQ | qϕ+ αx+ β = 0}.

When q ̸= 0, we call s(L) := −α
q

the slope of L.

Given distinct points P1 = (x1, ϕ1) and P2 = (x2, ϕ2) in Q×ΦQ, there exists a line
L = Lq,α,β containing this points (take q = x2 − x1, α = ϕ1 − ϕ2 and β = x1ϕ2 − x2ϕ1).
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In this situation, we denote L by LP1P2 . Moreover, one can prove that

s(LP1P2) = −α

q
=

ϕ2 − ϕ1

x2 − x1

=
ϕ1 − ϕ2

x1 − x2

.

Let mx := min{x1, x2}, Mx := max{x1, x2}, mϕ := min{ϕ1, ϕ2} and Mϕ :=

max{ϕ1, ϕ2}. The segment defined by P1 and P2 is the subset

P1P2 := {(x′, ϕ′) ∈ LP1P2 | mx ≤ x′ ≤ Mx and mϕ ≤ ϕ′ ≤ Mϕ}.

For each line L = Lq,α,β , we define the half-spaces

HL
≥ := {(x, ϕ) ∈ Q× ΦQ | qϕ+ αx+ β ≥ 0}

and
HL

≤ := {(x, ϕ) ∈ Q× ΦQ | qϕ+ αx+ β ≤ 0}.

Definition 3.2. Given a subset A ⊆ Q × ΦQ, the convex hull of A is the intersection of
all half-spaces containing A, that is,

Conv(A) :=
⋂

H is a half-space
A⊆H

H.

A face of A is a subset F = Conv(A) ∩ L, where L ⊂ Q× ΦQ is a line such that
F contains at least two points and

Conv(A) ⊂ HL
≥ or Conv(A) ⊂ HL

≤.

Definition 3.3. For X ⊆ Q× ΦQ, the Newton polygon associated to X is given by

PN(X) := Conv({(x, ϕ+ δ) | (x, ϕ) ∈ X, δ ∈ ΦQ and δ ≥ 0}).

In this paper, we focus on Newton polygons given by a particular kind of set.
Namely, we consider the case where X is a finite subset of Q× ΦQ of the form

X = {(i, γi) ∈ N× ΦQ | 0 ≤ i ≤ m,m ∈ N}.

An example of a subset X is illustrated in Figure 1. Let us call Pi = (i, γi), 0 ≤ i ≤
m. Take PN(X) the Newton polygon associated to X . In the following, we present a
geometric interpretation of PN(X).
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Q

ΦQ

(0, 1)

(1, 2)

(2, 4)

(3, 2)

(4, 3)

(5, 4)

(6, 6)

Figure 1. An example of subset X, for Φ = Z.

• We begin by taking the pair P0 = (0, γ0) and defining i1 = 0. Consider

Si1 = {LP0Pi
| 1 ≤ i ≤ m}.

Let Pi2 be such that LP0Pi2
has the least slope among the lines in S0, where i2 is

the greatest index among the ones for which the least slope is achieved. Take the
segment Pi1Pi2 . We can see this first step in Figure 2.

Q

ΦQ

(0, 1)

(1, 2)

(2, 4)

(3, 2)

(4, 3)

(5, 4)

(6, 6)

Figure 2. First step of the construction of the Newton polygon of X.

• For the second step, consider

Si2 = {LPi2
Pi

| i2 + 1 ≤ i ≤ m}.

Let Pi3 be such that LPi2
Pi3

has the least slope among the lines in Si2 , where i3 is
the greatest index among the ones for which the least slope is achieved. Take the
segment Pi2Pi3 . We can see this second step in Figure 3.
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Q

ΦQ

(0, 1)

(1, 2)

(2, 4)

(3, 2)

(4, 3)

(5, 4)

(6, 6)

Figure 3. Second step of the construction of the Newton polygon of X.

• We repeat the above steps until we reach Pm. Let i1, i2, i3, . . . , ik+1 be the
highlighted indexes of the process, where i1 = 0 and ik+1 = m. Note that this
process gives us i1 < i2 < . . . < ik+1 and γi1 < γi2 < . . . < γik+1

.

• Take the segments PilPil+1
, with 1 ≤ l ≤ k, and the subsets

{(i, γi + δ) | δ ≥ 0} for i = 0 and i = m. We define P ⊂ Q× ΦQ by

P :=

(
k⋂

l=1

H
LPil

Pil+1

≥

)
∩Hγ0 ∩Hγm ,

where Hγ0 = {(x, ϕ) | x ≥ 0} and Hγm = {(x, ϕ) | x ≤ m}. We illustrate the
region P in Figure 4.

Q

ΦQ

Pi1

Pi2

Pi3

Pi4

Figure 4. Region P .

We will prove that P = PN(X). Let

Y = {(x, ϕ+ δ) | (x, ϕ) ∈ X, δ ∈ ΦQ e δ ≥ 0},

so PN(X) = Conv(Y ). We initially see that Y ⊂ P . Indeed, take (x, ϕ) ∈ Y . We have

6



LAJM v.2.n.2 (2023) ISSN 2965-0798

two options: either for some i, 0 ≤ i ≤ m, we have (x, ϕ) = (i, γi) or (x, ϕ) = (i, γi + δ)

for some δ > 0.

Let us suppose the first case, where (x, ϕ) = (i, γi). Consider the indexes
i1, . . . , ik+1 from the above construction. To simplify the notation, we name LPil

Pil+1
=

Ll,l+1. Let us show that (i, γi) ∈ H
Ll,l+1

≥ for all l, 1 ≤ l ≤ k. If i = il for some l, then it
is immediate that (i, γi) ∈ H

Ll,l+1

≥ for that l. Suppose i ̸= il for all l. By the property that
defines il and il+1, the slope of the line through Pil and (i, γi) is greater than or equal to
the slope of the line through Pil and Pil+1

. That is,

γi − γil
i− il

≥
γil+1

− γil
il+1 − il

.

Above, we can assume without lost of generality that i > il, since the case i < il lead us
to the same inequality. Manipulation of this inequalities lead us to

(il+1 − il)(γi − γil) ≥ (i− il)(γil+1
− γil)

if and only if
(il+1 − il)(γi − γil) ≥ i(γil+1

− γil)− il(γil+1
− γil)

if and only if
(il+1 − il)(γi − γil) + il(γil+1

− γil) ≥ i(γil+1
− γil)

if and only if

−(il+1 − il)(γi − γil)− il(γil+1
− γil) ≤ i(γil − γil+1

).

Then, since α = γl − γl+1, q = il+1 − il and β = ilγil+1
− γilil+1, we have

(il+1 − il)γi + i(γl − γl+1) + β ≥ (il+1 − il)γi − (il+1 − il)(γi − γil)− il(γil+1
− γil) + β

= γil(il+1 − il)− il(γil+1
− γil) + β

= γilil+1 − ilγil+1
+ β = 0.

That is, (i, γi) ∈ H
Ll,l+1

≥ .

Now suppose the second case, where (x, ϕ) = (i, γi + δ) with δ > 0. Then,

(il+1− il)(γi+ δ)+ i(γl − γl+1)+β = (il+1− il)δ+(il+1− il)γi+ i(γl − γl+1)+β ≥ 0,

since (il+1− il)δ ≥ 0 and (il+1− il)γi+ i(γl−γl+1)+β ≥ 0. Hence, (i, γi+δ) ∈ H
Ll,l+1

≥ .

Moreover, for every i, (i, γi) and (i, γi + δ) belong to Hγ0 and Hγm . Thus, we see
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that Y ⊂ H
Ll,l+1

≥ for any l and Y ⊂ Hγ0 ∩Hγm . Therefore,

Y ⊂ P =

(
k⋂

l=1

H
Ll,l+1

≥

)
∩Hγ0 ∩Hγm .

Now we check PN(X) = P .

• PN(X) ⊆ P : by the definition of PN(X), we have PN(X) ⊂ H for every half-
space H that contains Y . Hence, we consider the half-spaces HLl,l+1

≥ for every l,
1 ≤ l ≤ k, and the half-spaces Hγ0 and Hγm . By what we did above, Y ⊂ H

Ll,l+1

≥

for every l, 1 ≤ l ≤ k, and Y ⊂ Hγ0 ∩ Hγm . Therefore, PN(X) ⊂ H
Ll,l+1

≥ for
every l and PN(X) ⊂ Hγ0 ∩Hγm . Thus, PN(X) ⊆ P .

• P ⊆ PN(X): Take H = HL
≥ a half-space determined by a line L = Lα,q,β such

that Y ⊂ H . We show that P ⊂ H . Take (x, ϕ) ∈ P . If (x, ϕ) ∈ Y , then
(x, ϕ) ∈ H .

Suppose that (x, ϕ) belongs to some segment PilPil+1
. Then,

mx ≤ x ≤ Mx and mϕ ≤ ϕ ≤ Mϕ, with mx = min{il, il+1} = il, Mx =

max{il, il+1} = il+1, mϕ = min{γil , γil+1
} = γil e Mϕ = max{γil , γil+1

} = γil+1
.

Then, since (mx,mϕ) = (il, γil) ∈ Y ⊂ H ,

qϕ+ αx+ β ≥ qmϕ + αmx + β ≥ 0,

hence (x, ϕ) ∈ H .

Suppose that (x, ϕ) ∈ P do not satisfies the preceding cases. Considering the
indexes i1, i2, . . . , ik+1, since they are distinct, i1 = 0 and ik+1 = m, we have that
they form a partition of the interval [0,m]. Hence, there exists l, 1 ≤ l ≤ k, such
that il ≤ x ≤ il+1. Take in the segment PilPil+1

a point (x, ϕ′), mϕ ≤ ϕ′ ≤ Mϕ.
Since (x, ϕ) do not belong to any segment, we have ϕ > ϕ′. Hence,

qϕ+ αx+ β > qϕ′ + αx+ β ≥ 0,

since (x, ϕ′) belongs to a segment, thus by the preceding case it belongs to H .
Hence, P ⊂ H . Since H is an arbitrary half-space that contains Y , we conclude
that P ⊆ PN(X).

The points Pil , with 1 ≤ l ≤ k + 1, are called the vertices of the polygon. The
segments PilPil+1

are the faces of PN(X). The slope of a face PilPil+1
is the slope of the

8
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line LPil
Pil+1

. We will denote this slope by

δl =
αl

ql
=

γil+1
− γil

il+1 − il
, where 1 ≤ l ≤ k.

We call ql = il+1 − il the length of the slope δl.

4. Valuations and Newton polygons

In this section, we explore the Newton polygon of a finite set that will be defined
by a fixed polynomial and a given valuation.

Given a totally ordered abelian group Γ, we extent it to the structure
Γ∞ := Γ ∪ {∞}. The extension of addition and order from Γ to Γ∞ is done in the
natural way.

Definition 4.1. Take a commutative ring R with unity. A valuation on R is a mapping
ν : R −→ Γ∞, where Γ is a totally ordered abelian group, with the following properties.

(V1) ν(ab) = ν(a) + ν(b) for all a, b ∈ R.

(V2) ν(a+ b) ≥ min{ν(a), ν(b)} for all a, b ∈ R.

(V3) ν(1) = 0 and ν(0) = ∞.

Let ν : R −→ Γ∞ be a valuation. The set supp(ν) = {a ∈ R | ν(a) = ∞}
is called the support of ν. The value group of ν is the subgroup of Γ generated by
{ν(a) | a ∈ R \ supp(ν)} and is denoted by Γν .

Let K be a field and ν be a valuation on K. We fix an algebraic closure K of K.
Take µ a valuation that extends ν to K. We consider Γν and Γµ to be the values groups of
ν and µ, respectively. We know that Γν ⊆ Γµ. Consider ΦQ = Γµ ⊗Z Q. We see that this
group contains Γν ,Γµ and Γν ⊗Z Q. Consider g(x) ∈ K[x] with non-vanishing roots and
such that g(0) = 1. Then we can write

g(x) =
n∑

i=0

aix
i =

n∏
i=1

(
1− x

ci

)
∈ K[x] (1)

such that a0 = 1 and c1, . . . , cn ∈ K are the roots of g, listed with possible
repetitions. We have ci ̸= 0 for all i, where 1 ≤ i ≤ n. Take λi = µ(1/ci). We
reorganize the indexes i of the roots c1, . . . , cn such that λ1 ≤ λ2 ≤ . . . ≤ λn.

9
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Let

X = {(i, ν(ai)) | 0 ≤ i ≤ n and ν(ai) ̸= ∞} ⊂ Q× ΦQ.

Consider the Newton polygon PN(X), together with the slopes δl and lengths ql,
where 1 ≤ l ≤ k, as defined in Section 3. For a set S, we denote by |S| the cardi-
nality of S. The next theorem is an adaptation of a lemma proved in [5] (Lemma 4, p. 90).

Theorem 4.2. The values λi = µ(1/ci) are slopes for PN(X). Moreover, for each slope
δl of PN(X), where 1 ≤ l ≤ k + 1, we have

|{i | λi = δl}| = ql

and
δ1 < δ2 < . . . < δk.

Proof. Suppose λ1 = λ2 = . . . = λr1 < λr1+1. We will show initially that
the first segment in PN(X), Pi1Pi2 , is the segment P0Pr1 , with P0 = (0, 0) and
Pr1 = (r1, r1λ1).

For each j, 1 ≤ j ≤ n, We deduce from Equation (1) that

aj = (−1)j

 ∑
1≤i1<i2<...<ij≤n

(
j∏

t=1

1

cit

) .

Calculating the value of aj , we see that

ν(aj) = µ(aj) = jµ(−1) + µ

 ∑
1≤i1<i2<...<ij≤n

(
j∏

t=1

1

cit

)
≥ min

1≤i1<i2<...<ij≤n

{
µ

(
j∏

t=1

1

cit

)}
.

However,

µ

(
j∏

t=1

1

cit

)
=

j∑
t=1

µ

(
1

cit

)
=

j∑
t=1

λit ≥ jλ1.

for any choice of 1 ≤ i1 < i2 < . . . < ij ≤ n. Hence, ν(aj) ≥ jλ1. Therefore,

ν(aj)− ν(a0)

j − 0
=

ν(aj)

j
≥ jλ1

j
= λ1 for every j, 1 ≤ j ≤ n.

10
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That is, the slope of any line in the set Si1 = {LP0Pj
| 1 ≤ j ≤ n} is greater or equal to

λ1, i.e., δ1 ≥ λ1.

Now we look at ar1 . In the expression

ar1 = (−1)r1

 ∑
1≤i1<i2<...<ir1≤n

(
r1∏
t=1

1

cit

) , (2)

we have

µ

(
1

c1 · · · cr1

)
=

r1∑
j=1

µ

(
1

cj

)
=

r1∑
j=1

λ1 = r1λ1.

More than that, this is the only summand present in Equation (2) that has the value r1λ1,
since any other product that is a summand in Equation (2) uses at least one of the indexes
r1 + 1, . . . , n. Therefore, when we take the value of this product, we achieve a sum in
which appears at least one of the λr1+1, . . . , λn, which are all bigger than λ1. For instance,

µ

(
1

c1 · · · cr1−1cr1+1

)
=

r1−1∑
j=1

µ

(
1

cj

)
+ µ

(
1

cr1+1

)
=

r1−1∑
j=1

λ1 + λr1+1 > r1λ1.

Hence, any other product, which is a summand in (2), has value strictly greater than r1λ1,
i.e.,

µ

 ∑
1≤i1<i2<...<ir1≤n

∃it>r1

(
r1∏
t=1

1

cit

) > r1λ1 = µ

(
1

c1 · · · cr1

)
.

Therefore, since

ar1 = (−1)r1

 1

c1 · · · cr1
+

∑
1≤i1<i2<...<ir1≤n

∃it>r1

(
r1∏
t=1

1

cit

) ,

we have
ν(ar1) = µ(ar1) = µ

(
1

c1 · · · cr1

)
= r1λ1.

By looking at the slope of LP0Pr1
we obtain

ν(ar1)

r1
=

r1λ1

r1
= λ1.

Now we take j > r1. In the expression of aj each product consist of j factors 1
cjt

.
Hence, since j > r1, each product has at least one factor among 1

cr1+1
, . . . 1

cn
. Thus, all

11
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products in the sum that defines aj have value strictly greater than jλ1. Hence, the slope
of LP0Pj

is
ν(aj)

j
>

jλ1

j
= λ1.

We saw that all the slopes of the lines in Si1 are greater or equal to λ1, that LP0Pr1

has slope equal to λ1 and r1 is the biggest index with such slope, since for i > r1 we have
slope strictly greater than λ1. Hence, the segment P0Pr1 is the first face of PN(X), with
slope δ1 = λ1 and q1 = r1. It also follows that

|{j | λj = δ1}| = |{1, 2, . . . , r1}| = r1 = q1.

Now suppose λr1 < λr1+1 = λr1+2 = . . . = λr1+r2 < λr1+r2+1. We repeat
the same reasoning above to prove that Pi2Pi3 = Pr1Pr1+r2 , with Pr1 = (r1, r1λ1) and
Pr1+r2 = (r1 + r2, r1λ1 + r2λr1+1).

Take j > r1. We have

µ

(
j∏

t=1

1

cit

)
=

j∑
t=1

µ

(
1

cit

)

=

j∑
t=1

λit ≥ r1λ1 + (j − r1)λr1+1,

for any choice of 1 ≤ j1 < j2 < . . . < jpj ≤ n. Hence,

ν(aj)− ν(ar1)

j − r1
=

ν(aj)− r1λ1

j − r1
≥ r1λ1 + (j − r1)λr1+1 − r1λ1

j − r1
= λr1+1.

That is, δ2 ≥ λr1+1. For r1 + r2, we have

µ

(
1

c1 · · · cr1+r2

)
=

r1+r2∑
j=1

µ

(
1

cj

)
=

r1∑
j=1

λ1 +

r1+r2∑
j=r1+1

λr1+1 = r1λ1 + r2λr1+1

and this is the only summand in the expression of ar1+r2 with such value. Moreover,
the other summands have value strictly greater than r1λ1 + r2λr1+1. Then, ν(ar1+r2) =

r1λ1 + r2λr1+1 and hence

ν(ar1+r2)− ν(ar1)

r1 + r2 − r1
=

r1λ1 + r2λr1+1 − r1λ1

r2
= λr1+1.

For j > r1 + r2, by the same reasoning above, it follows that ν(aj) > r1λ1 +

r2λr1+1, implying that the slope of LPr1Pj
is strictly greater than λr1+1.

12
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Therefore, the second face of PN(X) is Pr1Pr1+r2 , with slope δ2 = λr1+1 and
q2 = r2. More than that,

|{j | λj = δ2}| = |{r1 + 1, r1 + 2, . . . , r1 + r2}| = r2 = q2.

In general, for some m ∈ N we must have

λ1 = λ2 = . . . = λr1 < λr1+1 = λr1+2 = . . . = λr1+r2

< λr1+r2+1 = λr1+r2+2 = . . . = λr1+r2+r3

...

< λr1+r2+...+rm−1+1 = . . . = λr1+r2+...+rm = λn.

If s = r1 + r2 + . . .+ rt, then

λs < λs+1 = . . . = λs+rt+1 < λs+rt+1+1

and the above construction tells us that the segment from

Ps = (s, r1λ1 + r2λr1+1 + . . .+ rtλs−rt+1)

to
Ps+rt+1 = (s+ rt+1, r1λ1 + r2λr1+1 + . . .+ rtλs−rt+1 + rt+1λs+1)

will be a face of the Newton polygon, with slope δl = λs+1 and length ql = rt+1 for a
certain l, satisfying

|{j | λj = δl}| = rt+1 = ql.

Since at some moment s + rt+1 = n, we will pass through all the faces of PN(X) and
obtain the result.

The next corollary deals with the case where a0 is not necessarily equal to 1. Take
g(x) ∈ K[x] with non-vanishing roots. We write

g(x) =
n∑

i=0

aix
i ∈ K[x]

such that a0 ̸= 0. Consider the Newton polygon associated to

X = {(i, ν(ai)) | 0 ≤ i ≤ n and ν(ai) ̸= ∞}.

13
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Recall that k is the number of vertices in PN(X).

Corollary 4.3. For each l, where 1 ≤ l ≤ k, there exists a root c of g such that µ(c) = −δl

and its multiplicity is at most ql. Moreover, each root c of g is associated to a slope δl

such that µ(c) = −δl.

Proof. Since a0 ̸= 0, if we divide g by a0, then we do not change its roots. We will apply
Theorem 4.2 for g′ = 1

a0
g. Thus, although the vertices of the Newton polygons associated

to g and g′ are different, they have the same slopes and lengths. Let c1, . . . , cn be the roots
of g. We define

λi = µ

(
1

ci

)
for each i, where 1 ≤ i ≤ n. Thus, for all l, where 1 ≤ l ≤ k, there exist ql indexes i such
that λi = δl. That is, there exists at least one root c = cj , where 1 ≤ j ≤ n, such that

µ

(
1

c

)
= δl,

which implies µ(c) = −δl. Moreover, there exist at most ql roots ci equal to c. Now, take
c = cj any root of g, where 1 ≤ j ≤ n. Then, by Theorem 4.2, λj = λr1+r2+...+rl for some
l, where 1 ≤ l ≤ k. Hence, by the same proposition, λj = δl. Also, µ(c) = −δl.

Remark 4.4. As a consequence of the above results, we have that Γµ ⊗Z Q ∼= Γν ⊗Z Q.
Indeed, for any c ∈ K, take g(x) ∈ K[x] its minimal polynomial over K. Since g(x) is
irreducible, we must have g(0) ̸= 0. The above corollary implies that µ(c) is a slope of
the Newton polygon. That is, µ(c) ∈ Γν ⊗Z Q. Hence,

Γµ ⊆ Γν ⊗Z Q ⊆ Γµ ⊗Z Q

and then
Γµ ⊗Z Q ⊆ Γν ⊗Z Q ⊆ Γµ ⊗Z Q.

Thus, Γµ ⊗Z Q ∼= Γν ⊗Z Q. More than that, Γµ is a divisible group. Indeed, given
γ = µ(c) and d ∈ N, since K is algebraically closed, there exists b ∈ K such that c = bd,
hence µ(c) = dµ(b). Therefore, Γµ

∼= Γµ ⊗Z Q ∼= Γν ⊗Z Q.

Let K(x) be the field of rational functions on one indeterminate over the field K.
Assume that K is an algebraically closed field. Let µ be a valuation on K(x) and fix
f ∈ K[x] a non zero polynomial with degree n. For every i ∈ N, we consider ∂if the
formal Hasse-derivative of order i of f . That is, ∂1f, . . . , ∂nf are the uniquely determined

14
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polynomials for which the Taylor expansion

f(x)− f(a) =
n∑

i=1

∂if(a)(x− a)i

is satisfied for every a ∈ K. Let

X = {(i, µ(∂if)) | 0 ≤ i ≤ n and µ(∂if) ̸= ∞}.

Consider PN(X) to be the Newton polygon associated to X , together with the slopes
δl and lengths ql, where 1 ≤ l ≤ k. The presentation of the next corollary is due F.-V.
Kuhlmann and Hanna Ćmiel. For more relations between roots of polynomials and
slopes of Newton polygons, we recommend the work [2] of the mentioned authors.

Corollary 4.5. For each l, where 1 ≤ l ≤ k, we have that f has a root c of multiplicity at
most ql and such that µ(x− c) = −δl. Moreover, each root c of f is associated to a slope
δl such that µ(x− c) = −δl.

Proof. Consider

g(z) :=
n∑

i=0

∂if(x)z
i =

n∑
i=0

aiz
i ∈ K(x)[z],

where z is an indeterminate over K(x). We initially see that c is a root of f(x) if and only
if c− x is a root of g(z). In fact, we have

n∑
i=0

∂ix
n(c− x)i =

n∑
i=0

(
n

i

)
xn−i(c− x)i = (x+ (c− x))n = cn.

Thus, by the linearity of the Hasse derivative, for any c ∈ K we have

f(c) =
n∑

i=0

∂if(x)(c− x)i = g(c− x).

Thus, we obtain f(c) = 0 if and only if g(c− x) = 0.

Since a0 = f ̸= 0, we can apply Corollary 4.3 to g(z) and the Newton polygon
associated to

X ′ = {(i, µ(ai)) | 0 ≤ i ≤ n and µ(∂if(x)) ̸= ∞} = X.

Then, for each l, where 1 ≤ l ≤ k, g has a root c − x with multiplicity at most ql and
such that µ(c − x) = µ(x − c) = −δl. That is, for each l, we have that f has a root c

15
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with multiplicity at most ql and such that µ(x− c) = −δl. By Corollary 4.3 and the same
reasoning with the roots of g, we conclude that each root c of f is associated to a slope δl

such that µ(x− c) = −δl.

5. Main result

Let K be a field and ν a valuation on K[x]. Fix an algebraic closure K of K.
Suppose that there exists a valuation µ extending ν to K(x). Let Γν and Γµ be the value
groups of ν and µ, respectively. We know that Γν ⊆ Γµ and Γµ

∼= Γν ⊗Z Q.

Let us remember the definitions of ϵ(f) and δ(f) presented in the Introduction.
For each f ∈ K[x] with ν(f) ∈ Γν and deg(f) = n > 0, we have

ϵ(f) = max
1≤b≤n

{
ν(f)− ν(∂bf)

b

∣∣∣∣ ν(∂bf) ∈ Γν

}
∈ Γν ⊗Z Q

and
δ(f) = max{µ(x− c) | c ∈ K and f(c) = 0} ∈ Γµ.

In the following, we prove our main result.

Theorem 5.1. We have ϵ(f) = δ(f). Moreover, δ(f) does not depend on the choice of
the extension µ nor on the algebraic closure K.

Proof. Consider the Newton polygon associated to

X = {(i, µ(∂if)) | 0 ≤ i ≤ n and µ(∂if) ̸= ∞}.

By Corollary 4.5, each root c of f is associated to a slope δl such that
µ(x − c) = −δl. Moreover, each slope is associated to a root. Hence, there exists a
root c′ such that µ(x − c′) = −δ1. By Theorem 4.2, we have −δ1 > −δl for all l, where
2 ≤ l ≤ k. Therefore,

δ(f) = max{µ(x− c) | c ∈ K and f(c) = 0} = −δ1.
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Now, by the definition of the slope of a face of PN(X), we have

δ1 = min
1≤i≤n

{
µ(∂if)− µ(f)

i

∣∣∣∣µ(∂bf) ∈ Γµ

}
= −max

1≤i≤n

{
ν(f)− ν(∂if)

i

∣∣∣∣ ν(∂bf) ∈ Γν

}
= −ϵ(f).

Hence, ϵ(f) = −δ1 = δ(f). We also see that δ(f) does not depend on the choice of the
extension µ nor on the algebraic closure K, since ϵ(f) depends only on ν.
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