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Abstract: Background: Near-infrared spectroscopy (NIRS) relative concentration signals contain ‘noise’
from physiological processes such as respiration and heart rate. Simultaneous assessment of NIRS
and respiratory rate (RR) using a single sensor would facilitate a perfectly time-synced assessment of
(cerebral) physiology. Our aim was to extract respiratory rate from cerebral NIRS intensity signals
in neonates admitted to a neonatal intensive care unit (NICU). Methods: A novel algorithm, NRR
(NIRS RR), is developed for extracting RR from NIRS signals recorded from critically ill neonates. In
total, 19 measurements were recorded from ten neonates admitted to the NICU with a gestational
age and birth weight of 38 ± 5 weeks and 3092 ± 990 g, respectively. We synchronously recorded
NIRS and reference RR signals sampled at 100 Hz and 0.5 Hz, respectively. The performance of the
NRR algorithm is assessed in terms of the agreement and linear correlation between the reference
and extracted RRs, and it is compared statistically with that of two existing methods. Results: The
NRR algorithm showed a mean error of 1.1 breaths per minute (BPM), a root mean square error of
3.8 BPM, and Bland–Altman limits of agreement of 6.7 BPM averaged over all measurements. In
addition, a linear correlation of 84.5% (p < 0.01) was achieved between the reference and extracted
RRs. The statistical analyses confirmed the significant (p < 0.05) outperformance of the NRR algorithm
with respect to the existing methods. Conclusions: We showed the possibility of extracting RR from
neonatal NIRS in an intensive care environment, which showed high correspondence with the
reference RR recorded. Adding the NRR algorithm to a NIRS system provides the opportunity to
record synchronously different physiological sources of information about cerebral perfusion and
respiration by a single monitoring system. This allows for a concurrent integrated analysis of the
impact of breathing (including apnea) on cerebral hemodynamics.

Keywords: near-infrared spectroscopy; neonates; respiratory rate; cerebral oxygenation; signal
quality assessment

1. Introduction

Monitoring changes in the respiratory rate (RR) of term and preterm infants admitted
to the neonatal intensive care unit (NICU) plays a vital role in the timely detection of
abnormal respiratory events such as tachypnea and apnea [1–5]. According to the literature,
almost half of the neonates in the NICU were admitted due to respiratory morbidity [6]. Res-
piratory events and associated desaturation events affect cerebral physiology and contain
relevant information about cerebral hemodynamics [7–10]. Hence, continuous monitoring
of RR changes in hospitalized neonates and the impact on cerebral hemodynamics is of
importance in clinical practice [11–13].

For monitoring cerebral hemodynamics, near-infrared spectroscopy (NIRS) can be em-
ployed, which is a non-invasive optical neuroimaging modality for measuring oxygenated
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(O2Hb) and deoxygenated (HHb) hemoglobin concentrations associated with neural ac-
tivities in the cerebral cortex [14]. NIRS is becoming part of routine clinical practice in
an increasing number of NICUs worldwide [15,16]. Aside from cerebral tissue oxygen
saturation measured with NIRS, the raw NIRS signals (i.e., O2Hb and HHb) are contami-
nated by physiological noise arising from, e.g., heart rate, blood pressure, Mayer waves,
and respiration [17]. While—in most studies—either the raw NIRS signals are not used
or the physiological noise is filtered out, some studies have investigated the possibility of
extracting extra physiological parameters [18–21].

Respiration is a major source of physiological noise in NIRS that is vividly observable
in the spectra of both O2Hb and HHb signals [22]. The emergence of respiration in NIRS
measurements is due to (i) the alternation of blood flow within the whole body during the
course of inspiration and expiration and (ii) the effect of respiratory fluctuations on cerebral
blood volume and flow [23,24]. Some studies have proposed algorithms for separating
respiratory components from NIRS measurements, e.g., in [24] by proposing a band-pass
filtering (BPF) method. The possibility of RR extraction from NIRS measurements has
only been investigated in our previous study [21]. The presented baseline wandering (BW)
method, however, was only validated on adult subjects in resting-state measurements which
were free from motion artifacts. The presented method was not ideally designed for clinical
purposes, i.e., to be implemented in NICU. There are several challenges that exist in data
acquisition from hospitalized neonates such as low data quality and patient movements.

Extracting RR from neonatal cerebral NIRS, on the one side, facilitates the concurrent
and integrated analysis of breathing and cerebral oxygenation in the NICU. For instance,
it could provide a perfectly time-synced analysis of the effect of respiration, including
apnea and desaturation events, on cerebral hemodynamics. Deriving RR from neonatal
NIRS, on the other side, could potentially reduce the need for adhesive electrodes in the
future, which could reduce discomfort, stress, and epidermal stripping, and would promote
parent–neonate interaction [25–30]. Therefore, the aim of the current study is to develop
a novel algorithm, NRR (NIRS RR), for deriving RR from neonatal NIRS measurements
recorded in NICUs. With respect to the reference RR recorded with a clinical patient
monitor system, we assess the performance of the NRR algorithm in terms of agreement
and linear correlation between the reference and extracted RRs. We also compare the NRR
algorithm’s performance against the performance of two state-of-the-art methods, i.e., BPF
and BW.

2. Materials and Methods
2.1. Participants

This study was approved by the local ethics committee of the University Medical
Center Utrecht (21-098/C). We included ten newborn infants (three females) with gesta-
tional age 38 ± 5 weeks and birth weight 3092 ± 990 g that were admitted to the NICU
of the Wilhelmina Children’s Hospital, Utrecht, The Netherlands. Among them, three
babies were preterm infants (GA < 37 weeks) and one baby was an extremely preterm
infant (GA < 28 weeks). They had an indication for clinical NIRS monitoring which was
determined by the caring physician or local neuromonitoring protocols. Parents gave
informed consent to participate in the study before data acquisition. A total of 19 mea-
surements were recorded from the included neonates without interrupting the clinical
routines. After assessing the signal quality as explained in Section 2.3.1, we excluded three
measurements due to very low signal quality, leaving 16 measurements from nine neonates
(gestational age = 39 ± 3 weeks; weight = 3368 ± 473 g; three females) with a total length
of approximately 20.5 h.
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2.2. Data Acquisition

NIRS signals were recorded at 100 Hz with a cerebral oximetry system (TOM, Artinis
Medical Systems B.V., Elst, The Netherlands). The infant-neonatal sensor of the system
consists of two transmitters with nominal wavelengths of 760 and 850 nm and a receiver
with a 21.5 mm distance from the transmitters, providing an approximate penetration depth
of 11 mm, i.e., half the transmitter–receiver distance [31]. The sensor was placed on the
neonate’s forehead under a clinical elastic bandage. Figure 1 illustrates the infant-neonatal
sensor placed on a baby manikin’s forehead covered by the bandage (Figure 1a) with a
schematic of the layout of the transmitters and the receiver, which provides two NIRS
channels. The reference RR was recorded with a patient monitor system, Philips IntelliVue
MP70 (Philips Medical Systems, Best, The Netherlands), sampled at 0.5 Hz.
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Figure 1. (a) A photograph of the infant-neonatal TOM sensor (Artinis Medical Systems B.V., The
Netherlands) placed on a baby manikin’s forehead, covered with a clinical self-adhesive elastic
bandage. (b) Schematic of the configuration of the two transmitters and one receiver embedded in
the TOM sensor, illustrated in red and blue, respectively.

2.3. Respiratory Rate Extraction Algorithm

The block diagram of the proposed RR extraction algorithm, NRR (NIRS RR), is il-
lustrated in Figure 2. The algorithm comprises two main stages: Stage A, illustrated in
Figure 2a; and Stage B, in Figure 2b. Stage A of the NRR algorithm consists of four steps:
Preprocessing, HR frequency bandwidth, interquartile range (IQR), and segmentation.
These steps are executed once at the beginning of the complete NIRS measurement. Stage
B of the NRR algorithm consists of three steps: Motion artifact assessment, HR compu-
tation, and RR computation. These are implemented on each 30-second segment of the
total hemoglobin concentration (tHb) and IQR signals, computing RR per segment. As
respiration influences both O2Hb and HHb signals [22], we have employed the tHb, i.e.,
the sum of the O2Hb and HHb signals, in order to have a better representation of RR
information. We implemented the analyses in this study in Python using numpy, scipy, and
matplotlib modules [32,33].



Sensors 2023, 23, 4487 4 of 18Sensors 2023, 23, x FOR PEER REVIEW 4 of 18 
 

 

 
Figure 2. The block diagram of the proposed NRR (NIRS RR) algorithm, comprising Stage A and 
Stage B. (a) Stage A consists of four steps: preprocessing (including OD to Hb and signal quality 
assessment), HR frequency bandwidth, interquartile range (IQR), and segmentation. (b) Stage B 
consists of three steps: motion artifact assessment (including thresholding and motion artifact as-
sessment), HR computation (including detrending, multiplication operator, and HR computation), 
and RR computation (including band-pass filtering, spectrum, adaptive RR frequency bandwidth, 
and finding frequency maximum). 

2.3.1. Preprocessing 
Using the modified Beer–Lambert law [34], the optical densities (ODs) of the two 

NIRS channels are first converted to concentration changes in oxygenated hemoglobin 
(O2Hb) and deoxygenated hemoglobin (HHb) (OD to Hb in Figure 2a). Then, the signal 
quality of the NIRS channels is assessed using the Signal Quality Index (SQI) algorithm 
[35] (signal quality assessment in Figure 2a). The SQI signal is computed in sliding win-
dows of 10 s, overlapping by 50%. Next, the average of the SQI signal across time is com-
puted for each channel, and the channel with the greater average SQI is selected. The 
whole measurement is excluded in the subsequent analyses if more than 75% of the sam-
ples of the SQI of the selected channel are less than an SQI level of 2, which represents low 
signal quality. Otherwise, the algorithm continues to the subsequent steps. 

2.3.2. HR Frequency Bandwidth 
First, the tHb signal is low-pass filtered by applying a moving average filter of 1 s 

and then subtracting it from the original tHb signal. Second, the spectrum of the filtered 
tHb signal is computed using the multitaper power spectral density estimation [36] based 
on Slepian sequences [37]. In this study, we used the Python method scipy.signal.win-
dows.dpss in order to compute the Slepian sequences by setting the parameters of stand-
ardized half bandwidth and the number of windows at 2.5 and 5, respectively. Next, a 
predefined HR frequency bandwidth between 1.25 Hz and 3.5 Hz is defined according to 
the HR range of the included patients (75 < HR < 210 beats per minute). This bandwidth 
is computed once per measurement according to the dominant frequency of the spectrum 
as follows: the spectrum within the predefined bandwidth is sorted in descending order; 
the average frequency of the first fifty components (~50% of all components) is then 

Figure 2. The block diagram of the proposed NRR (NIRS RR) algorithm, comprising Stage A and
Stage B. (a) Stage A consists of four steps: preprocessing (including OD to Hb and signal quality
assessment), HR frequency bandwidth, interquartile range (IQR), and segmentation. (b) Stage
B consists of three steps: motion artifact assessment (including thresholding and motion artifact
assessment), HR computation (including detrending, multiplication operator, and HR computation),
and RR computation (including band-pass filtering, spectrum, adaptive RR frequency bandwidth,
and finding frequency maximum).

2.3.1. Preprocessing

Using the modified Beer–Lambert law [34], the optical densities (ODs) of the two
NIRS channels are first converted to concentration changes in oxygenated hemoglobin
(O2Hb) and deoxygenated hemoglobin (HHb) (OD to Hb in Figure 2a). Then, the signal
quality of the NIRS channels is assessed using the Signal Quality Index (SQI) algorithm [35]
(signal quality assessment in Figure 2a). The SQI signal is computed in sliding windows
of 10 s, overlapping by 50%. Next, the average of the SQI signal across time is computed
for each channel, and the channel with the greater average SQI is selected. The whole
measurement is excluded in the subsequent analyses if more than 75% of the samples of
the SQI of the selected channel are less than an SQI level of 2, which represents low signal
quality. Otherwise, the algorithm continues to the subsequent steps.

2.3.2. HR Frequency Bandwidth

First, the tHb signal is low-pass filtered by applying a moving average filter of 1 s and
then subtracting it from the original tHb signal. Second, the spectrum of the filtered tHb
signal is computed using the multitaper power spectral density estimation [36] based on
Slepian sequences [37]. In this study, we used the Python method scipy.signal.windows.dpss
in order to compute the Slepian sequences by setting the parameters of standardized half
bandwidth and the number of windows at 2.5 and 5, respectively. Next, a predefined HR
frequency bandwidth between 1.25 Hz and 3.5 Hz is defined according to the HR range
of the included patients (75 < HR < 210 beats per minute). This bandwidth is computed
once per measurement according to the dominant frequency of the spectrum as follows:
the spectrum within the predefined bandwidth is sorted in descending order; the average
frequency of the first fifty components (~50% of all components) is then computed; finally,
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the HR frequency bandwidth (BWHR) is set as the average frequency minus 0.5 Hz and
plus 0.5 Hz.

2.3.3. Interquartile Range (IQR)

In sliding windows of 1 s, we compute the interquartile range (IQR)—the difference
between the third and first quartiles—of the selected tHb signal. Afterwards, the computed
IQR values are interpolated to 100 Hz using cubic interpolation. Subsequently, the IQR
signal is normalized by dividing it by the median of the tHb signal.

2.3.4. Segmentation

The selected tHb and normalized IQR signals are segmented by sliding windows of
30 s overlapping by 75% (i.e., shifting 7.5 s). Examples of the segmented tHb and IQR are
shown in Figure 3a and Figure 3e, respectively. The subsequent steps are implemented on
each segmented 30-second tHb and IQR signal, computing RR in each window (i.e., every
7.5 s).

2.3.5. Motion Artifact Assessment

The segmented IQR is thresholded with a threshold of 1%. The thresholded IQR is
logically one if the IQR is below the threshold, meaning presumably free from motion
artifacts. Figure 3f shows an example of the thresholded IQR signal which has been
obtained from the segmented IQR illustrated in Figure 3e. Next, the percentage of samples
which are one in the thresholded IQR signal is computed. The segment will be dismissed
for RR computation if the percentage is less than 50%. Otherwise, at least 50% of the
segment is presumably free from motion artifacts and the algorithm passes to the next steps
to compute RR.

2.3.6. HR Computation

The segmented tHb signal is detrended by calculating a least-squares fit of a straight
line to the data and then subtracting it (detrending in Figure 2b). Next, the detrended
tHb signal is multiplied by the thresholded IQR (multiplication operator in Figure 2b).
Figure 3c shows an example of this converted tHb signal, which corresponds to the tHb
signal shown in Figure 3a. Then, the spectrum of the converted tHb is computed by using
the multitaper power spectral density estimation as explained in Section 2.3.2. Finally, the
HR in the considered window is computed by finding the dominant frequency within the
BWHR. The HR is further used in the next step to limit the allowed RR range.

2.3.7. RR Computation

First, the converted tHb is filtered by using an FIR (finite impulse response) zero-phase
band-pass filter implemented with a Kaiser window (band-pass filtering in Figure 2b).
The lower and higher cutoff frequencies of the filter are set at 0.1 times the computed
HR and 2 Hz, respectively. The higher cutoff frequency was chosen with a 0.5 Hz gap
from the maximum reference RR frequency of the patients included (~1.5 Hz). The gap
was considered in order to prevent filtering the RR components within the transition
bandwidth of the filter. Second, the spectrum of the filtered signal is computed as explained
in Sections 2.3.2 and 2.3.6. Afterward, an adaptive RR frequency bandwidth (BWRR) is
defined as 0.15 and 0.85 times the computed HR (i.e., BWRR = [0.15 ∗ HR, 0.85 ∗ HR]).
Finally, the RR is computed by finding the dominant frequency in the filtered signal
within the BWRR. Figure 3d illustrates the spectrum of the filtered converted tHb signal
corresponding to the converted tHb shown in Figure 3c. The dashed red and green lines and
the solid magenta lines depict the reference and extracted RRs and the BWRR, respectively.
To illustrate the impact of the multiplication by thresholded IQR on the RR computation,
Figure 3b shows the spectrum computed from the original tHb signal displayed in Figure 3a,
i.e., without any motion artifact assessment and multiplication by the thresholded IQR. It
is observed that there is a high error of approximately 0.33 Hz (i.e., 20 breaths per minute,
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BPM) when the original tHb signal is used, while the error is 0.1 Hz (i.e., 6 BPM) when
using the converted signal.
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Figure 3. (a) A 30-second segment of the tHb signal recorded from one of the subjects (Measurement
15). (b) The spectrum computed for the original tHb signal, i.e., without motion artifact assessment
and signal conversion. The dashed red and green lines and the solid magenta line depict the reference
RR, extracted RR, and adaptive RR frequency bandwidth (BWRR), respectively. (c) The converted
tHb signal after motion artifact assessment and multiplication by the thresholded IQR signal. (d) The
spectrum of the converted tHb signal. (e) The IQR signal computed based on sliding windows of
1 s, interpolated to 100 Hz, and normalized by the median of the tHb signal. The dashed black line
depicts the IQR threshold considered for motion artifact assessment (i.e., 1%). (f) The thresholded IQR
signal. It is zero (i.e., contaminated with motion artifacts) if the IQR is above the defined threshold;
otherwise, it is one.

2.4. Algorithm Performance Assessment

We employed three quantitative measures for quantifying the agreement between the
reference and extracted RRs, including the mean of error (ME) or bias, root mean square
error (RMSE), and Bland–Altman limits of agreement (LoA), which is defined as 1.96 times
the standard deviation of the error [38]. In addition, as a quantitative measure to determine
the linear association between the reference and extracted RRs, we computed Pearson’s
correlation coefficient. We assessed the significance of the correlation by performing a
Student’s t-test with α = 1%. Furthermore, we calculated the percentage of the segments
wherein RR was computed in each measurement. The mentioned quantitative measures
were computed for each measurement separately, and the average and standard deviation
for each measure over all measurements were also calculated. Since the reference RR was
recorded with 0.5 Hz, each segment of 30 s contains a total of 15 reference RR samples. To
have an equal number of samples between the reference and extracted RRs, we have taken
the average of the reference RR samples in each 30 s segment.
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We compared the performance of the NRR algorithm with two existing methods
proposed for extracting RR from NIRS in adults, i.e., band-pass filtering (BPF) [24] and
baseline wander (BW) [21]. In these two methods, we set the window length at 30 s, as
used in the NRR algorithm. In addition, the cutoff frequencies of the band-pass filter used
in the BPF method were set to [0.15, 2] Hz according to the range of the reference RR in
this study. To quantitatively compare the performance of the three methods, we computed
the average and standard deviation of the mentioned quantitative measures, determining
the agreement and linear association between the reference and extracted RRs, over all
measurements. As another comparison measure, we defined a boundary wherein the
absolute error in RR computation is less than 30% of the mean of the pairwise reference and
extracted RRs. We refer to this boundary as the 30% boundary. Furthermore, we performed
a Student’s t-test with α = 5% to determine whether there is a significant difference in
performance between the methods.

2.5. Optimization of the Parameters

We conducted a sensitivity analysis of the main parameters used in the NRR algorithm,
i.e., the window length and the two constants 0.15 (Alow) and 0.85 (Ahigh) used in defining

the adaptive RR frequency bandwidth (BWRR =
[

Alow ∗ HR, Ahigh ∗ HR
]
). Among the 19

recorded measurements, 3 measurements were excluded due to having very low signal
quality which was assessed as explained in Section 2.3.1. A total of 20% (i.e., a total of 4.1 h)
of the included 16 measurements were randomly selected to optimize the parameters of the
NRR algorithm. We computed the RMSE as a measure of error and performed Student’s
t-test with α = 5% in order to find the statistically optimal parameters.

3. Results
3.1. Optimization of the Proposed Algorithm’s Parameters

To find a suitable window length, firstly, constants Alow and Ahigh were set at 0.05
and 0.95, respectively. Then, different window lengths from 20 to 60 s with steps of 10 s
were used. As displayed in Figure 4a, the significantly (p < 0.05) lowest RMSE between the
reference and estimated RRs was obtained with a window length of 30 s. Different values
of Alow ranging from 0.05 to 0.2 with steps of 0.05 were investigated to adjust this constant,
given the fact that the window length and the Ahigh were set at the optimal window length
obtained (30 s) and 0.95, respectively. As shown in Figure 4b, 0.15 and 0.2 are the optimal
values for the constant Alow which provide significantly lower RMSEs than the other values.
However, we selected the lower one (0.15) which makes the bandwidth larger. In the last
step, by setting the window length and the constant Alow at the optimal ones computed,
we varied Ahigh from 0.75 to 0.95 with steps of 0.05 to find the optimal value providing
the lowest RMSE. As illustrated in Figure 4c, we found 0.8 and 0.85 as the optimal values
for Ahigh providing significantly (p < 0.05) lower RMSEs than the other values. However,
similarly to the previous step, we selected the higher one (0.85) to set a larger bandwidth
for RR.
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Figure 4. Sensitivity analysis of the main parameters of the NRR algorithm, i.e., window length
and constants (i.e., Alow, Ahigh) regulating the lower and higher sides of the adaptive RR frequency

bandwidth (BWRR =
[

Alow ∗ HR, Ahigh ∗ HR
]

). The bar chart of RMSE computed between the
reference and extracted RRs with respect to (a) the window length, (b) the constant Alow, and (c) the
constant Ahigh selected, averaged over all measurements. The error bars and bar heights depict the
standard deviation and average of RMSE, respectively.

3.2. Results of the Proposed Algorithm

After optimizing the parameters of the algorithm, the remaining 80% (i.e., not in-
cluded in the sensitivity analysis, see Section 3.1) of the 16 included measurements, a
total of 16.4 h or a total of 7872 30-s signal segments, were used for the validation of the
proposed algorithm. Figure 5 illustrates the scatter plots of the measurements comparing
the reference and extracted RRs. Looking at the reference RR, we observe that the range
of reference RR differs between the measurements. As an example, the reference RR in
Measurement 2 ranges approximately from 24 to 36 BPM while in Measurement 5 it ranges
from approximately 60 to 85 BPM. In addition, it is observed that the patients in some
measurements such as Measurements 8, 14, and 15 experienced more variation (~40 BPM)
in RR than others. Looking at the scatterplots, we observe that there is a significant linear
association (p < 0.01) between the reference RR and the extracted RR by the NRR algorithm
in all measurements.

Table 1 summarizes the quantitative measures computed in this study to determine
the agreement and linear association between the reference and extracted RRs. The ME
or bias was lower than approximately 1 BPM (~2% of the average reference RR) in all
measurements, except for Measurements 1 (2.4 BPM), 7 (2.7 BPM), and 15, which had
the highest bias (8.1 BPM). The average and standard deviation of bias calculated on all
measurements are 1.1 and 2.1 BPM (i.e., 1.1 ± 2.1), respectively. The RMSE is lower than
4 BPM in all measurements (exceptions: 1, 4, 7, 15), with the highest one computed for
Measurement 15 (12.2 BPM) and average and standard deviation of 3.8 ± 3.0 BPM. The LoA
has an average and standard deviation of 6.7 ± 4.7 over all measurements. The highest LoA
was obtained in Measurement 15 (18.1 BPM) which had also the highest bias and RMSE.
However, looking at Pearson’s correlation, we observe the lowest correlation obtained in
Measurement 7 (48%) while it was 71% in Measurement 15. The greatest correlation was
obtained in Measurement 5 (96.7%) with an average and standard deviation of 84.5 ± 12.3
computed on all measurements. Looking at the included segments’ percentages, we
observe that the RR has been extracted on average for about 94% of the signal segments
in all measurements, i.e., leaving on average about 6% of the signal segments with no RR
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computed due to being highly contaminated by motion artifacts. The lowest percentage of
included segments was obtained in Measurement 15 (69.6%). This shows that Measurement
15 was the one in this study with the highest level of contamination by motion artifacts.
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Figure 5. Scatter plots showing the linear association between the reference RR and the extracted RR
by the NRR algorithm per measurement. The x and y axes represent the RR in breaths per minute
(BPM). Each black dot corresponds to the reference and extracted RRs of each 30-second signal
segment. The blue dashed line depicts the identity line (y = x). The correlation between the reference
and extracted RRs is significant in each measurement (p < 0.01).
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Table 1. Quantitative measures for assessing the performance of the proposed NRR algorithm per
measurement.

Measurement ME 1 (BPM 2) RMSE 3

(BPM) LoA 4 (BPM) Pearson’s r (%) Included
Segments (%)

1 2.4 5.9 10.6 76.1 92.1
2 0.2 1.3 2.5 83.8 99.8
3 0.3 1.7 3.2 94.4 99.9
4 0.4 8.1 15.9 72.9 79.2
5 −0.6 1.5 2.6 96.7 99.0
6 0.9 2.0 3.4 84.6 100
7 2.7 5.1 8.4 48.4 99.1
8 0.3 3.8 7.5 85.5 95.5
9 −0.1 2.0 4.0 90.4 96.2
10 −0.5 1.5 2.7 95.7 94.5
11 −0.1 1.8 3.6 87.5 98.8
12 0.0 2.5 4.9 93.1 87.0
13 1.1 3.5 6.5 89.6 96.0
14 0.8 4.4 8.6 93.6 96.5
15 8.1 12.2 18.1 71.4 69.6
16 1.0 2.9 5.7 87.6 97.4

Average 1.1 3.8 6.7 84.5 93.8
Std 5 2.1 3.0 4.7 12.3 8.5

1 Mean of error. 2 Breaths per minute. 3 Root mean square error. 4 Bland–Altman limits of agreement. 5 Standard
deviation.

3.3. Comparison with the Existing Algorithms

Figure 6 shows an example (Measurement 5) of the reference RR and the RR extracted
by the proposed NRR algorithm compared with the ones obtained by the BPF and BW
methods. It is observed that the BW method works poorly in this measurement in capturing
the trend of the reference RR (except for the last ~20 min). The BPF method has provided
a better RR extraction than the BW method, providing a Pearson’s correlation of approxi-
mately 87%. However, it has some outliers that have errors of more than approximately
20 BPM. On the contrary, the RR extracted by the NRR algorithm has no outliers and
follows the trend of the reference RR from the beginning of the measurement to the end,
providing a correlation of approximately 97%.
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Figure 6. An example of the reference RR signal (in red) and the extracted RR signals obtained by
using the NRR algorithm (in green), band-pass filtering (BPF) method (in blue), and baseline wander
(BW) method (in black). The x and y axes represent the time and RR in minutes and breaths per
minute (BPM), respectively. In this measurement (Measurement 5), Pearson’s correlation magnitude
between the reference and extracted RRs is 97% (p < 0.01) using the NRR algorithm, 87% (p < 0.01)
using the BPF method, and 56% (p < 0.01) using the BW method, indicating the superior performance
of the NRR algorithm than BPF and BW methods.
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Figure 7 shows the scatterplot and the Bland–Altman plot for the three methods
between the reference and extracted RRs when all the measurements are concatenated
together. From the scatterplots, it is observed that the RR extracted by the NRR algorithm
linearly follows the reference RR in different RR ranges with a Pearson’s correlation co-
efficient of 95.5% (Figure 7a). This confirms the adaptability of the NRR algorithm to
different ranges of RR. Conversely, the scatterplots obtained for the BPF (Figure 7b) and
BW (Figure 7c) methods are more sparsely distributed around the identity line than the
one obtained for the NRR algorithm. In the scatterplot of the BW method (Figure 7c),
the majority of the points are above the identity line, showing the bias of the method to
result in a lower RR than the reference RR. Although a significant (p < 0.01) correlation
was obtained by the BPF and BW methods between the reference RR and the extracted
RR, the correlation (60.5% and 34.0%, respectively) is substantially lower than the one
obtained by the NRR algorithm. Looking at the Bland–Altman plots, we observe that the
BPF and BW methods result in a greater bias in computing RR than the NRR algorithm.
Looking at the Bland–Altman limits of agreement (LoA) and comparing it with the 30%
boundary (explained in Section 2.4), we observe that the LoA of the NRR algorithm fell
within the 30% boundary. This shows that 95% of the error between the reference and
extracted RRs, represented by LoA, is lower than 30% of the average RRs. Looking at the
Bland–Altman plots of the BPF and BW methods, we observe that the LoA of both methods
fell outside the 30% boundary, indicating a higher error, i.e., a wider distribution of error, in
RR computation by these methods than the NRR algorithm. The percentage of data points
outside of the 30% boundary in the Bland–Altman plots of the NRR, BPF, and BW methods
is 2.7%, 22.2%, and 27.4%, respectively. Looking at the bias in the plots, we observe that
the BW method has a considerable bias of 7.2 BPM in computing RR, while it is −3.8 and
0.8 BPM for the BPF and NRR methods, respectively.
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Figure 7. Scatter plots between the reference RR and the extracted RRs using (a) the NRR algorithm,
(b) the band-pass filtering (BPF) method, and (c) the baseline wander (BW) method when all mea-
surements are pooled together. Each black dot corresponds to each 30-second signal segment. The
Bland–Altman plots of the reference RR and the extracted RRs using (d) the NRR algorithm, (e) the
BPF method, and (f) the BW method. The solid magenta line and the dashed red lines depict the bias
and the Bland–Altman limits of agreement, respectively. The cyan lines represent the 30% boundary,
wherein the error between the reference and extracted RRs is lower than 30% of the mean of the
pairwise RRs.
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Table 2 summarizes the quantitative measures determining the agreement and linear
association between the reference and extracted RRs by each method, averaged over all
measurements. The average of ME or bias computed over all measurements by the NRR
(1.1 BPM) and BPF (−1.4 BPM) methods is lower than the one in the BW method (8.4 BPM).
However, the standard deviation of ME obtained in the NRR algorithm (2.1 BPM) is much
lower than the ones obtained by the BPF (11.6 BPM) and BW (14.1 BPM) methods. The
average and standard deviation of RMSE and LoA obtained in the NRR algorithm are
3.8 ± 3.0 BPM and 6.7 ± 4.7 BPM, respectively, which are substantially lower than the ones
obtained in the BPF method (RMSE = 10.0 ± 10.7 BPM; LoA = 14.0 ± 11.1 BPM). Although
the BW method had a higher average and standard deviation of RMSE (12.6 ± 12.2 BPM)
compared with the BPF method, it has a lower average and standard deviation of LoA
(11.4 ± 5.8 BPM), which are still higher than the ones obtained in the NRR algorithm. The
average and standard deviation of Pearson’s correlation obtained in the NRR algorithm
(84.5 ± 12.3%) are greater than the ones obtained by the BPF (70.8 ± 15.0%) and BW
(51.1 ± 26.0%) methods. Figure 8 shows the raincloud plot of the absolute error between
the reference and extracted RRs for each method. Here, the natural logarithm, i.e., ln(), of
the absolute error plus one has been shown for the sake of having a proper visualization
of the error. It is observed that the majority (75%, represented by the third quartile in
the box plot) of the error in the NRR algorithm fell approximately between 0 and 1, in
ln(1 + BPM), whereas in the BPF and BW methods the error is more distributed and the
majority fell up to approximately 2.5. Looking at the distribution plots, we observe the error
was distributed mainly about zero in the NRR algorithm. Conversely, in the distribution
plot for the BPF method, there are two additional peaks at about the greatest error, which is
due to the outliers as shown in Figure 6. However, the distribution plot of error obtained for
the BPF method is less sparse than the one obtained for the BW method, which is roughly
uniformly distributed. The result of the statistical comparison between the performance of
the three methods in RR extraction against each other showed all three methods performed
significantly differently from each other (p < 0.05). Therefore, the NRR algorithm performed
significantly better than the BPF and BW methods in computing RR.

Table 2. Quantitative measures for assessing the performance of the proposed NRR algorithm and
the two existing methods, i.e., band-pass filtering (BPF) and baseline wander (BW), averaged over all
measurements.

Algorithm ME 1 (BPM 2) RMSE 3 (BPM) LoA 4 (BPM) Pearson’s r (%)

NRR 1.1 ± 2.1 3.8 ± 3.0 6.7 ± 4.7 84.5 ± 12.3
BPF −1.4 ± 11.6 10.0 ± 10.7 14.0 ± 11.1 70.8 ± 15.0
BW 8.4 ± 14.1 12.6 ± 12.2 11.4 ± 5.8 51.1 ± 26.0

1 Mean of error. 2 Breaths per minute. 3 Root mean square error. 4 Bland–Altman limits of agreement.
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Figure 8. Raincloud plot of the absolute error between the reference RR and the extracted RR by using
the NRR algorithm (first panel), the band-pass filtering (BPF) method (second panel), and the baseline
wander (BW) method (third panel). The x axis represents the natural logarithm of the absolute error
(in BPM) plus one. This was done to have a better visualization of the error distribution.

4. Discussion

In this study, we developed a novel algorithm, the NRR algorithm, for extracting RR
from neonatal NIRS signals recorded in NICUs. To the best of our knowledge, the proposed
NRR algorithm is the first algorithm in the NIRS literature introduced for extracting RR
from clinical neonatal NIRS data. The existing methods of RR extraction from NIRS were
validated on adult data recorded during the resting stage in a controlled environment
(i.e., laboratory environment), whereas the NRR algorithm was validated on neonatal
data recorded in a neonatal intensive care unit. We assessed the performance of the NRR
algorithm in terms of agreement and linear correlation between the reference and extracted
RRs. The results showed a high degree of agreement between the reference and extracted
RRs in terms of ME (1.1 ± 2.1 BPM), RMSE (3.8 ± 3.0 BPM), and LoA (6.7 ± 4.7 BPM). In
addition, a high linear correlation (r = 84.5 ± 12.3%; p < 0.01) was achieved between the
reference and extracted RRs.

We compared the performance of the NRR algorithm with two existing methods,
i.e., BPF [24] and BW [21]. Compared with the BPF and BW methods, the NRR algo-
rithm showed a stronger agreement between the reference and extracted RRs in terms
of ME, RMSE, and LoA. Likewise, the NRR algorithm showed a greater Pearson’s cor-
relation (84.5 ± 12.3%) between the reference and extracted RRs compared with the BPF
(70.8 ± 15.0%) and BW (51.1 ± 26.0%) methods. The results of the statistical test imple-
mented confirmed the significant (p < 0.05) outperformance of the NRR algorithm over the
BPF and BW methods in RR extraction from neonatal NIRS data.

There are several challenges when working with clinical neonatal data compared with
healthy adult data. First, neonatal HR and RR have a greater range than the adult ones, and
therefore a NIRS system with a higher sampling rate is required. Hence, we used a NIRS
system with a 100 Hz sampling rate, whereas the sampling rate was 12.5 Hz in [24] wherein
the BPF method was introduced. Second, clinical data, especially the data recorded in the
intensive care unit, typically has a lower data quality than the data recorded in a controlled
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environment due to electromagnetic interference and some limitations in data acquisition
which could increase the error in the analyses. Thus, in this study, we used the SQI (Signal
Quality Index) algorithm [35] to assess the NIRS signal quality and exclude the signal
segments which have very low signal quality, i.e., lower than the SQI level of 2 (low signal
quality). Third, clinical data generally has a higher level of motion artifacts due to voluntary
and unintentional patient motion than the data recorded in a controlled environment where
the subjects’ movements are restricted. In the existing BPF [24] and BW [21] methods,
motion artifacts were not considered in the analyses and the signals were recorded during
the resting state. Conversely, in this study, we used the IQR (interquartile range) to detect
motion artifacts and exclude the signal segments that were highly contaminated with
motion artifacts. Fourth, there is more variation in the signal source in clinical recordings
than in recordings from healthy subjects in the resting state. Therefore, in this study, we
introduced an adaptive RR frequency bandwidth for computing RR that is updated in each
segment according to the computed HR as explained in Section 2.3.7. All in all, taking
into account the clinical data challenges, we have developed a robust algorithm, NRR, that
results in a superior performance than the existing methods in extracting RR from neonatal
and clinical NIRS data.

The NIRS system used in this study provides raw NIRS signals (optical densities)
with a high sampling rate, i.e., 100 Hz, whereas the existing clinical NIRS systems are
incapable of such. High sampling rate NIRS has advantages when extracting physiological
information such as RR. One advantage is that it gives the opportunity to assess the
signal quality. The NIRS signal quality can be assessed by determining the strength of
the heartbeat component in the signals as proposed in [35,39,40], which requires a high
sampling rate in order to capture the heartbeats. Another advantage is that, compared
with a low sampling rate, it provides a larger number of samples in a specified window; so,
with IQR computed in sliding windows of, e.g., 1 s, a better representation of the motion
artifacts in the window is achieved.

This study has some limitations that could be addressed in future studies. Due to
limited resources and access to participants, especially in an intensive care environment,
we were only able to enroll 10 neonates in the study. We chose to enroll 10 neonates
based on previous experience with similar studies [19,41–43] and the practical constraints
of conducting research in a clinical setting. The algorithm proposed in this study was
validated on a dataset with a total number of 7872 signal segments. However, a validation
of the algorithm is needed on a more extensive dataset acquired from a larger population
and a more diverse group of patients in order to recognize this RR monitoring approach
as suitable for current clinical routines of RR monitoring in hospitals. The NRR algorithm
computes RR every 7.5 s; however, this delay in RR computation could be problematic if
analyzing short characteristics of RR is desired. In addition, the NRR algorithm was used
as an offline algorithm in this study, but it would be more beneficial in clinical practice
to develop an online version of the algorithm. This could be achieved by implementing
a few adjustments in Stage A of the algorithm. For instance, the signal quality could be
assessed in each 30-s window, and the HR frequency bandwidth could be updated during
the measurement every 10 min.

Extracting RR from neonatal NIRS provides the opportunity to have two perfectly
synchronized clinical biomarkers—i.e., RR as well as cerebral oxygen saturation—using
a single clinical system. RR, on the one side, is known as one of the main vital signs
recorded in a standard clinical routine that is an early predictor of clinical deterioration in
children [44–47]. Furthermore, RR monitoring is of great importance in neonates admitted
to NICUs as respiratory distress is one of the leading causes of morbidity in the first
days of life [48–51]. NIRS-monitored cerebral oxygen saturation, on the other side, is of
great value for determining brain oxygen perfusion, so it has been widely incorporated
into the standard clinical routine in NICUs [18]. NIRS monitoring has shown feasibility
in diagnosing different clinical conditions such as hypotension, hypoxia, hypocapnia,
hypercapnia, anemia, apnea, and asphyxia [10,52–57]. Therefore, a NIRS system with
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the extracted RR opens up the possibility of having a concurrent and complementary
assessment of respiration and cerebral perfusion in neonates admitted to the NICU. As
a potential use, the system could facilitate the concurrent analysis of RR and cerebral
oxygenation for detecting abnormal respiratory events such as tachypnea and apnea and
analyzing their effect on cerebral hemodynamics [7,12]. In addition to RR and cerebral
oxygen saturation, while applying the NRR algorithm to the raw NIRS signals we could
also compute the HR signal (see Section 2.3.6). As a result, we could potentially measure
three facets of physiological information, i.e., cerebral oxygen saturation, HR, and RR,
using only a single cerebral NIRS system. The portability and easy-to-use features of such
a system would make it ideal to be used in the first hours or days of life in clinics, i.e.,
imposing a minimal burden on the patient and the nurse. In addition, it could prospectively
eliminate the need for extra electrodes for RR and HR monitoring with adhesive electrodes.
The elimination of excessive and adhesive electrodes would reduce discomfort, stress,
and the risk of epidermal stripping, and also could facilitate parent–neonate physical
interaction [25–29,58,59].

5. Conclusions

In this study, we developed a novel algorithm, NRR (NIRS RR), for extracting RR
from clinical NIRS signals recorded in neonates. The results showed a high degree of
agreement and a high linear correlation between the reference RR and NIRS-extracted RR.
The NRR algorithm outperformed two existing algorithms, i.e., BPF and BW. Therefore,
simultaneous RR and cerebral oximetry using a single sensor in a neonatal intensive care
setting is feasible. Combining neonatal cerebral NIRS with the extracted RR in a single
monitoring system allows for a perfectly time-synced integrated analysis of the impact of
abnormal respiratory events (e.g., apnea) on cerebral hemodynamics.
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