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Abstract

We explore the parameter space of the family of static and spherically symmetric solu-
tions of the Einstein field equations for polytropes, that were presented in a previous
paper. This is four-parameter family of exact solutions, of which one parameter can
be factored out, so that there are only three essential free parameters. The solutions
are exact in the sense that no approximations are involved, other than those implied
by the numerical precision limitations. The primary objective of this exploration is to
establish the existence of large collections of specific solutions, and to determine their
main properties.

For each value of one of the three essential free parameters of the family of solutions,
the polytropic index n, taken here, for simplicity’s sake, to be either an integer or a
half-integer, we define and explore the parameter planes spanned by the other two
essential free parameters. In this way, besides establishing their existence, as are also
able to classify the solutions according to their overall matter energy density, as well as
in terms of their proximity to solutions that display an event horizon.

For four values of n we successfully establish an allowed region of the parameter
planes, where the solutions not only exist but also correspond to physically acceptable
matter. We find that there are solutions within these regions with overall matter energy
densities varying all the way from very low to very high, including some that are as
close as one may wish to solutions that display an event horizon, and that therefore
represent black holes, or extremely dense objects very similar to them.
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1 Introduction

In a previous paper [1] we established the solution of the Einstein field equations for the
case of spherically symmetric shells of gaseous fluid located between radial positions r1
and r2 of the Schwarzschild system of coordinates. These solutions are exact in the sense
that they involve no approximations, but they are not written entirely in closed analytical
form. While all relevant functions describing both the geometry and the matter are written
analytically in terms of a single function, which we denote by β(r), and although the
main properties of this function can also be established analytically, it is still necessary to
determine this function in detail by numerical means, including the existence of the internal
and external radii r1 and r2, and therefore the existence of the solution itself.

In this paper we will present a fairly extensive numerical exploration of the parameter
space of these solutions, in order to establish the general picture in regards to their existence
and to their main properties. Connections with some special cases which are already well
known will be pointed out. Some diagnostic observables will be defined and calculated,
which were designed to put in evidence some of the most important properties of the
solutions. In this paper we will be limited to the case in which the polytropic index n,
which is one of the free parameters, is strictly larger that 1, that is, satisfies n > 1.

This paper is organized as follows: in Section 2 we quickly review the new class of
static and time-independent exact solutions for gaseous shells; in Section 3 we discuss the
parameter planes for each value of the polytropic index n, and examine in particular the
allowed regions in each case; in Section 4 we discuss the definition and the behavior of the
diagnostic observables over the allowed regions; in Section 5 we discuss in general terms
how to apply the solutions to problems in astrophysics; and in Section 6 we state our
conclusions.

2 Review of the Polytropic Solutions

In this section we will quickly review the solutions for gaseous fluids presented in [1], in
order to establish the notation, as well as the basic character of the solutions. Both the
notation and the ideas presented in [1] rely on some of the notation and ideas presented
in the previous paper [2], in which we presented the exact solution for the case of liquid
fluids. In this work we will use the time-like signature (+,−,−,−), following [3]. In terms
of the coefficients of the metric, for an invariant interval given in terms of the Schwarzschild
coordinates (t, r, θ, φ) by

ds2 = e2ν(r)c2dt2 − e2λ(r)dr2 − r2
[

dθ2 + sin2(θ)dφ2
]

, (1)

where exp[ν(r)] and exp[λ(r)] are two positive functions of only r, as was explained in [2]
the Einstein field equations reduce to the set of three first-order differential equations

{

1− 2
[

rλ′(r)
]

}

e−2λ(r) = 1− κr2ρ(r), (2)
{

1 + 2
[

rν ′(r)
]

}

e−2λ(r) = 1 + κr2P (r), (3)

[ρ(r) + P (r)] ν ′(r) = −P ′(r), (4)

where ρ(r) is the energy density of the matter, P (r) is its isotropic pressure, and the
constant κ is given by κ = 8πG/c4, where G is the universal gravitational constant and c is
the speed of light. In these equations the primes indicate differentiation with respect to r.
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It is convenient for the analysis of the solutions to change variables in the field equations
from the function λ(r) to a function β(r), which is defined to be such that

e2λ(r) =
r

r − rMβ(r)
, (5)

where rM = 2GM/c2 is the Schwarzschild radius associated to the total asymptotic gravi-
tational mass M , which then implies that we have for the corresponding derivatives

2rλ′(r) = −rM
β(r)− rβ′(r)

r − rMβ(r)
. (6)

Note that β(r) = 0 corresponds to λ(r) = 0 and therefore to exp[2λ(r)] = 1 for the radial
coefficient of the metric. In such cases the variations of the radial coordinate are equal to
the variations of the corresponding proper radial length. Substituting the expressions in
Equations (5) and (6) in the component field equation shown in Equation (2) a very simple
relation giving the derivative of β(r) in terms of ρ(r) results,

β′(r) =
κr2ρ(r)

rM
. (7)

Therefore, in any interval where ρ(r) = 0 we have that β(r) is a constant. Since we must
have that ρ(r) ≥ 0, it therefore follows that β(r) is a monotonically increasing function,
which is a constant if and only if we are within a vacuum region. In addition to this, since
according to the asymptotic boundary condition we must have that β(r) → 1 when r → ∞,
it also follows that β(r) is limited from above by 1. Note that these facts are completely
general for the spherically symmetric static case, irrespective of the type of fluid matter
which is present within the matter region.

In the previous paper [1] we established the solution of the Einstein field equations for
the case of a spherically symmetric shell of gaseous fluid located between the radial positions
r1 and r2 of the Schwarzschild system of coordinates. These positions are not arbitrary,
but rather are obtained as part of the solution of the problem. For this problem we assume
the hypothesis that the gas satisfies the polytropic equation of state

P (r) = K [ρ(r)]1+1/n , (8)

where K, the polytropic constant, is a positive constant, and n > 1, the polytropic index,
is a real number that, merely for simplicity, may be taken to be an integer or half-integer.
For convenience we define the auxiliary quantity

F (r) = K [ρ(r)]1/n , (9)

in terms of which the equation of state becomes simply

P (r) = F (r)ρ(r). (10)

As was shown in [1], given the field Equations (2) through (4) and the equation of state
shown in Equation (8), the solution for λ(r) is given by

λ(r) =







































−
1

2
ln

(

r + rµ
r

)

for 0 < r ≤ r1,

−
1

2
ln

[

r − rMβ(r)

r

]

for r1 ≤ r ≤ r2,

−
1

2
ln

(

r − rM
r

)

for r2 ≤ r < ∞,

(11)
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where once more rM = 2GM/c2, while for ν(r) we have

ν(r) =



































1

2
ln

(

1− rM/r2
1 + rµ/r1

)

+
1

2
ln

(

r + rµ
r

)

for 0 < r ≤ r1,

ν(r2)− (n+ 1) ln[1 + F (r)] for r1 ≤ r ≤ r2,

1

2
ln

(

r − rM
r

)

for r2 ≤ r < ∞.

(12)

The solution introduces into the system, through the interface boundary conditions, the
new physical parameter rµ with dimensions of length, which can be associated to a mass
parameter µ in the same way that rM is associated to M , namely by rµ = 2Gµ/c2. As was
also shown in [1], the determination of the function β(r) in the matter region leads with
no further difficulty to the determination of all the functions that describe both the matter
and the geometry of the system, by means of the exact analytical relations

ρ(r) =
rMβ′(r)

κr2
, (13)

P (r) = K

[

rMβ′(r)

κr2

]1+1/n

, (14)

F (r) = K

[

rMβ′(r)

κr2

]1/n

, (15)

λ(r) =
1

2
ln

[

r

r − rMβ(r)

]

, (16)

ν(r) = ν(r2)− (n+ 1) ln[1 + F (r)]. (17)

The four free parameters of the system are K, n and M , all of which describe the nature
and state of the matter, and the value of β′(r) at its point of maximum, which can also be
seen to be related to the matter, since it determines the general scale of the matter energy
density, as can be seen from Equation (7). Note that the radial positions r1 and r2 are
not chosen by hand, and are defined as the positions where the matter energy density ρ(r)
becomes zero. As was shown in [1], this differential system has the property that once ρ(r)
hits the value zero during the integration, in either direction, it stays at zero from that
point on, thus generating a vacuum region.

For all sets of parameters for which there is a solution of the differential problem the
function β′(r) has a single point of maximum within the matter region, which is the point
where β(r) has its single inflection point. As was also shown in [1], for all existing solutions
with r1 > 0 it holds that rµ > 0. This strictly positive value of rµ implies that the solutions
have singularities at the origin. However, that type of singularity is not associated to an
infinite concentration of matter, but rather, as explained in [2], to exactly zero matter
energy density at that point.

Both for the subsequent analysis and for the numerical approach, it is convenient to
further transform variables at this point, in order to write everything in terms of dimen-
sionless variables and functions. In order to do this we must now introduce an arbitrary
radial reference position r0 > 0. For now the value of this parameter remains completely
arbitrary, other than that it must be strictly positive, and has no particular physical mean-
ing. It is only a mathematical device that allows us to define a dimensionless radial variable
and a dimensionless parameter associated to the mass M by
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ξ =
r

r0
, (18)

ξM =
rM
r0

, (19)

as well as to define the dimensionless function of ξ, to assume the role of β(r),

γ(ξ) = ξMβ(r). (20)

Note that the asymptotic condition that β(r) → 1 for sufficiently large r translates here as
the condition that γ(ξ) → ξM for sufficiently large ξ. Note also that, since β(r) is a limited
monotonic function, it follows from Equation (20) that similar conclusions can be drawn for
γ(ξ), which is therefore a monotonically increasing function which is limited from above,
the upper limit in this case being the parameter ξM . We also have that γ(ξ) is constant
within vacuum regions. As was shown in [1] the function γ(ξ), and thus the function β(r)
as well, are both determined by the second-order ordinary differential equation

π′(ξ) = π(ξ)

{

2

ξ
−

n

n+ 1

1

ξ − γ(ξ)

1 + F (ξ, π)

2F (ξ, π)

[

γ(ξ)

ξ
+ F (ξ, π)π(ξ)

]}

, (21)

where π(ξ) = γ′(ξ) is the derivative of γ(ξ), the primes now indicate derivatives with respect
to ξ, and F (ξ, π) is given by

F (ξ, π) = C

[

π(ξ)

ξ2

]1/n

, (22)

where C = K/
(

κr20
)1/n

is a dimensionless constant associated to the polytropic constant
K. This differential system can be interpreted either as a second-order ordinary differential
equation for γ(ξ), or as one of a pair of first-order coupled ordinary differential equations
determining γ(ξ) and π(ξ), the other equation being simply

γ′(ξ) = π(ξ). (23)

This second interpretation is the one we adopted in [1], and we will also adopt it here. This
pair of first-order ordinary differential equations can be used for the numerical integration
of this differential system, in order to obtain γ(ξ) and β(r), as we in fact did in that paper,
and as we will do here as well. It is important to note that in terms of these dimensionless
variables the equation of state shown in Equation (8) can be written as

P̄ (ξ) = C [ρ̄(ξ)]1+1/n , (24)

where we defined the dimensionless pressure and energy density by

P̄ (ξ) = κr20P (ξ), (25)

ρ̄(ξ) = κr20ρ(ξ). (26)

We also have for the relation in Equation (7), when written in terms of the dimensionless
variables,

π(ξ) = ξ2ρ̄(ξ). (27)

Note that in this formulation of the problem all dimensionfull physical quantities have
vanished from view, and the problem is reduced to purely mathematical terms. All that is
involved is a dimensionless function γ(ξ) of a dimensionless variable ξ, its derivative π(ξ),
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Figure 1: The (C, πe) parameter plane for the case n = 1.5. The Tooper curve approaches
the origin as an integer power, namely as C3. The asymptote is given by πe = 1/C1.5.

and two dimensionless positive real constants, n and C. In particular, the mass M and
the Schwarzschild radius rM no longer appear explicitly in the equations. In essence they
have been replaced by the parameters r0 and ξM , where this last one appears only as the
asymptotic limit of γ(ξ). This is a free parameter of the system that has effectively been
factored out of it. Later on, in Section (5), we will see that what this means is that there
are solutions for all possible values of M and rM . A careful and complete mathematical
study of this dimensionless differential system, followed by a complete tabulation of all the
properties of γ(ξ), is all that stands between our current semi-analytical solution of the
problem and what one could describe as a completely analytical solution of that problem.
Some of the relevant properties of γ(ξ) were in fact derived in [1].

3 The Parameter Planes

We will begin by simply presenting the results of an extensive numerical exploration of
the solutions, and subsequently we will discuss each element that was involved in this
exploration. In their dimensionless formulation, the solutions are described by the three
dimensionless free parameters n, C and πe = π(ξe), where ξe is the position of the inflection
point of γ(ξ), which is also the position of the maximum πe of π(ξ). For each value of n,
the solutions can be classified according to a parameter plane spanned by C and πe. In
this paper we will limit ourselves to cases in which n > 1. We used a discrete set of values
of n, namely the values 1.5, 2.0, 2.5 and 3.0. For each one of these values we scanned the
parameter planes described by the Cartesian coordinates (C, πe), aiming at locating the
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Figure 2: The (C, πe) parameter plane for the case n = 2.0. The Tooper curve approaches
the origin as an integer power, namely as C2. The asymptote is given by πe = 1/C2.0.

allowed regions of these parameter planes, that is, the regions where the solutions, first of
all exist, and second correspond to physically acceptable matter.

In the Figures from 1 to 4 we present the allowed regions of the parameters planes, for
the aforementioned four values of n. As one can see, the four parameter planes shown are
generically quite similar. Each point in one of these graphs corresponds to a run of the
numerical program with the given values of n, C and πe, as well as with the value ξe = 1
for the value of the position of the inflection point of γ(ξ), which is the position of the
extremum of π(ξ), so that πe = π(ξe). This choice, which since we have that ξe = re/r0
can be written as re = r0, means only that from now on we choose the arbitrary parameter
r0 to be the radial position re of this inflection point. The runs were done on a grid with
variations of C given by ∆C = 0.01, starting from C = 0.01.

Here is the part of the description of the parameter planes which is common to all four
cases. The strong solid lines represent the Tooper curves. Over these curves lie the solutions
found by Tooper [4] a long time ago. Over these curves we have that ξ1 = 0, meaning that
these solution are for filled spheres rather than for shells, and also that ξµ = 0, which is
the particular condition imposed by Tooper in order to obtain his solutions, which avoids
the singularity at the origin. Below these curves there are no acceptable solutions of the
differential equation, since the solutions diverge when one integrates towards ξ = 0. Later
on we will examine in more detail exactly what happens in this case. Therefore, all existing
solutions are necessarily above the Tooper curves.

The strong dashed lines represent the Dominant Energy Condition [5] curves (or DEC
curves for short). Above these curves the stress-energy tensor of the matter does not satisfy
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Figure 3: The (C, πe) parameter plane for the case n = 2.5. The Tooper curve approaches
the origin as a fractional power, namely as C5/3. The asymptote is given by πe = 1/C2.5.

this condition, so that the behavior of the matter is not physically acceptable. Note that
this does not mean that the solution of the differential equation itself does not exist above
these curves, since in general it does in fact exist, and can be calculated without too much
trouble. It just means that there is no physically possible matter that would result in
these solutions. It can be shown that for very large values of πe the DEC curves tend
asymptotically to the asymptotes shown in the graphs, with the light doted lines, which
are given by

πe(C) =
1

Cn
. (28)

Note that this implies that the allowed regions extend indefinitely to arbitrarily large values
of πe, always below the DEC curves, and becoming ever closer to C = 0. Of course, due
to this we can only show a finite portion of these allowed regions in the graphs. Therefore,
all physically acceptable solutions are necessarily below the DEC curves, as well as above
the Tooper curves. It should be noted that over the C = 0 axis there are also no solutions,
since in this case, according to the definition of C given immediately after Equation (22),
we have that K = 0, so that according to the equation of state shown in Equation (8) we
then have pressureless dust, and therefore there are no stable static solutions. Therefore
all acceptable solutions must have C > 0, that is, strictly positive C. It should also be
noted that, since πe is the maximum value of the necessarily positive function π(ξ), the
πe = 0 axis corresponds to flat, empty space, since in this case we have that π(ξ) ≡ 0, which
means that γ′(ξ) ≡ 0 and hence that β′(r) ≡ 0, which in turn, by Equation (7), implies
that ρ(r) ≡ 0 and therefore that there is no matter present at all.
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Figure 4: The (C, πe) parameter plane for the case n = 3.0. The Tooper curve approaches
the origin as a fractional power, namely as C3/2. The asymptote is given by πe = 1/C3.0.
The vertical lines mark the anomalous region. The crosses mark points where a divergence
was detected when integrating outward, towards infinity.

The set of facts just described identifies completely the allowed regions of the solutions,
for each value of n. Every solution must be above the Tooper curves, below the DEC curves,
and away from the πe axis. The small remaining gaps between the DEC and Tooper curves,
seen on the extreme right of the graphs, are a consequence of the numerical difficulty when
running the program in those regions. What seems to happen in this case is that at this
point the DEC curves fall off in a very sharp way, and immediately cross the Tooper curves.
The effect of this is that, according to the numerical exploration performed so far, there
seems to be no acceptable solutions anywhere more than a distance ∆C = 0.01 to the right
of these gaps. Therefore, all existing acceptable solutions must also be located to the left
of these gaps. Further investigation of these small regions would be numerically expensive,
and this seems to be unnecessary at this stage.

In the graphs one can also see the light dashed lines, that represent sequences of allowed
solutions that constitute limits that we will describe here as black hole limits. What we mean
by such a black hole limit is one in which the formation of an event horizon is approached,
so that the geometry everywhere outside that horizon tends to be given by the exterior
Schwarzschild metric. Note that there is no matter dynamics involved in these limits, they
are simply sequences of static solutions. What is being stated here is that there are static
solutions, within our family of static solutions, which are as close as one may wish to what
is sometimes referred to as a naked black hole solution, at least in what concerns the region
strictly outside the event horizon.
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Figure 5: Double logarithmic graph of πe versus C over the Tooper curves for each value
of n, showing that they approach the origin as powers. So long as n > 1 the Tooper curves
can be written as πe(C) = αnC

m near the origin, where m = n/(n− 1).

We should point out the peculiar behavior of the case n = 3.0 for the larger values of
C. The vertical lines seen in Figure 4 characterize the region where the behavior is quite
different from all other cases. The onset of this anomalous behavior occurs approximately
at C = 0.43, and is characterized by increasingly larger values of ξ2 as C is increased, thus
leading to long running times for the program, when integrating outward. This behavior
becomes severe around C = 0.53, with very large values of ξ2, that can go all the way up
to 6× 104 or more. It seems to cease after C = 0.63.

In some cases between C = 0.53 and C = 0.63 the program even detects a divergence
when integrating outward, which is very unusual, and was completely unexpected. This of
course represents a failure to satisfy the asymptotic boundary condition, so that in this case
the solution does not really exist. The points of the parameter plane where this happens
are marked with small crosses in the graph. To the right of C = 0.63 the situation seems to
normalize to some extent, but still with values of ξ2 that are significantly larger that usual.

It is uncertain whether these divergent cases are caused by the accumulation of numerical
errors during very long integration runs, which could prevent the graph of γ(ξ) from crossing
the ξ axis. And the opposite effect is also possible, since it is also true that in some cases
the graph of γ(ξ) may in fact cross the ξ axis due to these accumulated numerical errors.
The detailed examination of this region would require a large number of very numerically
expensive runs, so that for the time being a refinement of this analysis will have to wait.

Note that this anomalous behavior refers only to the outward integration. The integra-
tion inward still works in the typical way, even if the outward one diverges. This leads to
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partial solutions, which are valid only within finite radial intervals of ξ, from zero to some
finite value. They just cannot be extended to radial infinity. These partial solutions may
still be relevant, since they may play a role as the inner parts of multi-layered solutions. In
this case they do not have to satisfy the asymptotic boundary condition at radial infinity,
but rather a set of boundary conditions on an interface located at some finite value of ξ.

Finally, let us point out that the Tooper curves for n > 1 all approach the origin C = 0
of the graphs behaving like (possibly fractional) powers, as described in the figure captions.
In Figure 5 one can see log-log plots of these curves for all values of n that were used. The
fact that the left-hand portions of these curves behave like straight lines betrays such a
power behavior, so that for each value of n we have that

πe(C) ≃ αnC
m, (29)

near to and to the right of the point C = 0, where αn is some constant, and one can abstract
from the numerical data that the power m is given by

m =
n

n− 1
. (30)

Note that this is singular for n = 1 and negative for n < 1, indicating a profound change
in the behavior of the whole system in such cases.

3.1 The Dominant Energy Condition

Since the Dominant Energy Condition (DEC) [5] is a cornerstone of the determination of
the allowed regions in the parameters plane of the solution for each value of n, let us derive
the form that this condition takes for the polytrope solutions. In order to do this we start
with a preliminary discussion of the Weak Energy Condition (WEC) [5]. Let us start, then,
by noting that we have for the metric tensor,

gµν =













e2ν(r) 0 0 0

0 − e2λ(r) 0 0
0 0 −r2 0
0 0 0 −r2 sin2(θ)













, (31)

and also that we have for the stress-energy tensor,

T ν
µ =













ρ(r) 0 0 0
0 −P (r) 0 0
0 0 −P (r) 0
0 0 0 −P (r)













. (32)

The WEC is a condition on the stress-energy tensor, namely the statement that, for all
causal vector fields V µ, it hold that

TµνV
µV ν ≥ 0. (33)

Consider now a completely arbitrary vector field

V µ =
(

V0, V1, V2, V3

)

, (34)

so that we get for the corresponding covariant components Vµ = gµνV
ν
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Vµ =
(

e2ν(r)V0,− e2λ(r)V1,−r2V2,−r2 sin2(θ)V3

)

. (35)

This implies that we get for V 2 = VµV
µ

V 2 = e2ν(r)V 2
0 − e2λ(r)V 2

1 − r2V 2
2 − r2 sin2(θ)V 2

3 , (36)

on which, for the time being, we will impose no conditions at all. Consider now the vector
field Wµ defined by

Wµ = Tµ
νV

ν . (37)

In terms of this vector field the tensor expression in the WEC can be written as

Tµ
νVµV

ν = VµW
µ, (38)

where

Wµ =
(

ρ(r)V0,−P (r)V1,−P (r)V2,−P (r)V3

)

. (39)

Therefore the tensor expression in the WEC, which is the contraction of V µ and Wµ, reads

VµW
µ = ρ(r) e2ν(r)V 2

0 + P (r) e2λ(r)V 2
1 + P (r)r2V 2

2 + P (r)r2 sin2(θ)V 2
3 . (40)

Since ρ(r), P (r), the exponentials and the squares are all positive quantities, this is a sum
of positive terms, and is therefore positive. We therefore conclude that the WEC is satisfied
for all vector fields V µ, regardless of any conditions imposed on them, and in particular for
all causal vector fields, given that from Equations (38) and (40) we have

T µ
ν VµV

ν ≥ 0, (41)

so that the WEC is satisfied. Apparently this is a consequence of the fact that both gµν
and Tµν are diagonal. Since the quantity above is an invariant, this condition of course
holds on all reference frames.

Let us now discuss the DEC, which once more is a condition on the stress-energy tensor.
Given an arbitrary future-pointing causal vector field V µ, consider once more the vector
field given by Wµ = Tµ

νV ν . The DEC is the statement that, for all future-pointing causal
vector fields V µ, the vector field Wµ is also a future-pointing causal vector field. Let us
consider once more the vector field V µ and its covariant components Vµ, but we now impose
that it is a future-pointing causal vector field, with V0 > 0, and hence that it also satisfy
the condition

V 2 ≥ 0, (42)

which from Equation (36) implies that

[

e2ν(r)V 2
0

]

−
[

e2λ(r)V 2
1 + r2V 2

2 + r2 sin2(θ)V 2
3

]

≥ 0. (43)

Let us now consider again the vector field Wµ given in Equation (39), where W0 = ρ(r)V0

is positive because ρ(r) is positive and because V µ is a future-pointing causal vector field,
so that V0 ≥ 0. Let us recall that the DEC consists of the statement that, if V µ is a
future-pointing causal vector field, then Wµ is also a future-pointing causal vector field.
Using the metric tensor we have for its covariant components
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Wµ =
(

ρ(r) e2ν(r)V0, P (r) e2λ(r)V1, P (r)r2V2, P (r)r2 sin2(θ)V3

)

. (44)

We now simply calculate W 2 = WµW
µ, and thus get

W 2 = ρ2(r) e2ν(r)V 2
0 − P 2(r) e2λ(r)V 2

1 − P 2(r)r2V 2
2 − P 2(r)r2 sin2(θ)V 2

3

= ρ2(r)
[

e2ν(r)V 2
0

]

− P 2(r)
[

e2λ(r)V 2
1 + r2V 2

2 + r2 sin2(θ)V 2
3

]

. (45)

Now, since V µ is a future-pointing causal vector field we have from Equation (43) the
condition for the quantities within brackets in the equation above,

[

e2ν(r)V 2
0

]

≥
[

e2λ(r)V 2
1 + r2V 2

2 + r2 sin2(θ)V 2
3

]

. (46)

Besides, from Equation (45) we have that the condition W 2 ≥ 0 is equivalent to

ρ2(r)
[

e2ν(r)V 2
0

]

≥ P 2(r)
[

e2λ(r)V 2
1 + r2V 2

2 + r2 sin2(θ)V 2
3

]

, (47)

and therefore from Equation (46) we conclude that so long as ρ2(r) ≥ P 2(r), and therefore
so long as

ρ(r) ≥ P (r), (48)

we have that

W 2 ≥ 0. (49)

Since we also have that W0 ≥ 0, it follows that Wµ is a future-pointing causal vector field,
so that the DEC is satisfied.

The question then remains of determining when we have the condition ρ(r) ≥ P (r) for
all values of r within the matter region. Interestingly, it is fairly easy to do this in the case
of the solutions for polytropes. If we assume that ρ(r) ≥ P (r), which is equivalent to

P̄ (r)

ρ̄(r)
≤ 1, (50)

and use the polytropic equation of state in the dimensionless form given in Equation (24),
then it follows that

P̄ (ξ)

ρ̄(ξ)
= C [ρ̄(ξ)]1/n , (51)

from which the DEC reduces to

C [ρ̄(ξ)]1/n ≤ 1. (52)

Recalling from Equation (27) that we have ρ̄(ξ) = π(ξ)/ξ2, the condition reduces to

π(ξ)

ξ2
≤

1

Cn
. (53)

This must be true for all values of ξ within the matter region. It suffices therefore to impose
this condition only at the point where ρ̄(ξ) is maximum, that is, at the point where π(ξ)/ξ2

is maximum. However, as one can see in the figures given in [1], for the larger values of πe,
and hence of ρ̄(ξ), the points of maximum of ρ̄(ξ) and of π(ξ) tend to coincide, as do the
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values of these two quantities at their points of maximum, if we use the value ξe = 1 for
the point of maximum of π(ξ), as we do here.

Therefore, if we consider the point ξe = 1, the position of the inflection point of γ(ξ)
at which we start the numerical runs, where π(ξ) = γ′(ξ) has its global maximum πe, then
we see that it is a fair estimate for high-density solutions to consider the DEC curve as
located approximately at this point, and thus we arrive at a simple constraint among the
free parameters of the solutions, for large values of πe and ρ̄(ξ),

πe ≤
1

Cn
. (54)

This determines the asymptotic behavior of the DEC curve πe(C), for very small values of
C and correspondingly very large values of πe, as shown in the graphs. For each value of
the polytropic index n, and given some value of the dimensionless polytropic constant C,
the equality case in Equation (53) gives us a maximum allowed value of the parameter πe.
It therefore establishes an allowed region within the (C, πe) parameter plane of this family
of solutions. The exact relation between C and πe for the DEC curve, given by the equality
case in Equation (53), can be easily obtained by numerical means.

3.2 Determination of the DEC Curve

Here we will describe in detail how we determined the position of the DEC curve. For
technical reasons, this is better done before the determination of the Tooper curve, as
we will see. The program that integrates the differential system given in Equations (21)
and (23) has two monitoring procedures installed within it, one for identifying a divergence
during the integration, and the other to identify a violation of the DEC. This last one does
its job by monitoring the quantities P (ξ) and ρ(ξ) as they are calculated, as well as the ratio
P (ξ)/ρ(ξ) of the two, which according to the DEC has to be always below 1. Whenever
this ratio goes above 1, at any point ξ, the program creates a flag file to record the event.
The existence of this flag file can then be used by another program in order to institute a
search for the position of the DEC curve. Note that from Equation (52) the DEC condition
can be written as

ρ̄(ξ) ≤
1

Cn
, (55)

thus showing that the condition can be written in terms of ρ̄(ξ) only, so that this is the
only quantity that we really have to monitor. Starting from the inflection point of γ(ξ), as
we will always do here, there may be violations of the DEC either when integrating to the
right or when integrating to the left. However, in order to search for the position of the
DEC curve it suffices to integrate only to the left, due to the following argument. Since
from Equation (27) we have that

ρ̄(ξ) =
π(ξ)

ξ2
, (56)

and since we will always start the integration from the point of maximum of π(ξ), located
at ξ = ξe = 1, taking a derivative with respect to ξ and applying at ξe we have that

ρ̄′(ξe) =
π′(ξe)

ξ2e
− 2

π(ξe)

ξ3e
= −2π(ξe), (57)
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given that we have that π′(ξe) = 0 and also that ξe = 1. Since π(ξe) is a strictly positive
quantity, it follows that ρ̄(ξ) increases when we go to the left-hand side of ξe and decreases
when we go to the right-hand side of it. It follows from this that the point of maximum of
ρ̄(ξ) is always located to the left of the point of maximum of π(ξ). Therefore, in order to
detect a violation of the DEC, it suffices to integrate only to the left of the inflection point.

For each value of n the determination of the DEC curve starts at the lowest value of C
for which one wishes to include the DEC curve in the graph. At that point, for that value
of C, we start the search at the value of πe given by the asymptote, which is always above
the DEC curve,

πe =
1

Cn
. (58)

We then integrate the differential system only to the left, towards the origin, expecting to
find a violation of the DEC at this initial point of the search. Once the violation is detected
at any point ξ we abort the integration, decrease the value of πe by a certain variation
∆πe, and repeat the integration. This proceeds until a violation of the DEC is no longer
detected, meaning the we are now below the DEC curve. Once this happens we return πe
to its previous value, decrease the variation ∆πe by some constant factor, and continue the
downward search for the position of the DEC curve.

This results in a fast exponential search for the position of the DEC curve, since the
variation ∆πe, which represents the distance between the position of the search and the
position of the DEC curve, decreases exponentially. Note that we can start with a rather
large value of ∆πe, since it will be decreased exponentially fast. We chose to start with
∆πe = 0.1. The stop criterion for this downward search is the condition that the addition of
∆πe to πe no longer change πe, meaning that the relative precision represented by ∆πe/πe
falls below the precision level at which the search program runs. Since that program runs
in double precision mode, this guarantees the localization of the DEC curve within that
double precision level. Naturally the precision of the results of the search is also affected
by the precision with which the differential system is integrated. The integration code runs
in quadruple precision mode, and we chose to use an integration interval of ∆ξ = 10−5.
Since the integration program uses the Runge-Kutta fourth-order integration algorithm,
this results in an excellent level of precision, certainly much greater than what is needed
just for the graphs.

Once we have obtained the position of the DEC curve for the current value of C, by
means of the inner loop over values of πe, we enter an outer loop in which we now change
the values of C. We increment C by a fixed variation ∆C, which will characterize the grid
size used for the graphs. We chose to use ∆C = 0.01. Having the new value of C, we
repeat the whole search process downward, for the position of the DEC curve. In this next
search process we use as the initial value of πe the last value of this variable obtained in
the previous search process. Due to the properties of the DEC curve, which has negative
derivative everywhere, this starting value of πe is guaranteed to be above the DEC curve at
the new value of C, but it is much closer to it than an initial value based on the asymptote,
thus making the search more efficient.

The stop criterion for the loop over values of C is that, when the current exponential
search downward over πe concludes, the integration program detect, in its last run, the
presence of a divergence. This detection will also result in the creation of a flag file recording
the event, to be used by external programs. The presence of a divergence means that the
downward search over πe not only found the DEC curve, but also crossed below the Tooper
curve at that value of C. Once the DEC curve has either been crossed or has become
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Figure 6: All the functions obtained from a trial solution of the differential equation with
parameters below the Tooper curve. The integration diverges when one integrates towards
the origin. The left vertical line marks the initial point of the integration to either side,
and the right vertical line marks the position of ξ2 as obtained by the integration to the
right side. The parameters used were n = 1.5, C = 1/3, ξe = 1.0 and πe = 0.5.

sufficiently close to the Tooper curve, there is no longer any chance of finding any point
(C, πe) of the parameter plane that is both below the DEC curve and above the Tooper
curve, within the precision limitations with which the graphs are being produced.

3.3 Determination of the Tooper Curve

The determination of the position of the Tooper curve relies on the detection of divergences
in the integration process, when one crosses below that curve. We should therefore examine
in more detail, before anything else, what happens when we try to run the program below
the curve. The program would usually stop cold when a divergence is detected, but there is
an option to still run it for a little while, in order to plot the graph shown in Figure 6, where
one can see a representation of the behavior of the differential system when we run below
the Tooper curve, in a simple case, with the parameters n = 1.5, C = 1/3 and πe = 0.5. The
behavior shown is quite typical. The graph shows all the relevant quantities as functions of
the radial variable ξ. The left vertical dotted line, located at ξ = 1, is the location at which
we start the integration of the differential equation shown in Equation (21), to either side.
The integration to the right-hand side proceeds normally and produces a value ξ2 ≈ 2.9 for
the outer radius, as indicated by the right vertical dotted line. To the right of this point
we have the exterior Schwarzschild solution, with ξM ≈ 0.97.

However, the integration to the left-hand side cannot be completed, a value for ξ1 is
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never found, and the process has to be interrupted when divergences are detected. As one
can see in Figure 6, the function γ(ξ) never crosses the ξ axis, and never develops a constant
value around the origin. Its derivative π(ξ) does not assume a second zero, and instead
turns around and diverges quickly to positive infinity. The second derivative π′(ξ) diverges
even faster to negative infinity. The graphs of the metric functions λ(ξ) and ν(ξ) do not
cross one another, and in fact diverge to positive and negative infinity respectively, which is
the exact opposite of their usual behavior, when the two graphs do cross, and then diverge
in the opposite directions. The dimensionless matter energy density ρ̄(ξ) displays a strong
divergence to infinity, and therefore so does ρ(ξ), thus characterizing a hard singularity of
the matter energy density.

In this simple case it can be determined that the derivative π(ξ) diverges to infinity
faster than 1/ξ, and therefore that neither π(ξ) nor ρ̄(ξ) are integrable functions around
the origin. However, due to the singular behavior of the measure factor exp[λ(ξ) + ν(ξ)]
near the origin, it is unclear whether or not this divergence corresponds to a either a finite
or an infinite total amount of energy around the origin. The detection of the divergence
included in the integration program consists of detecting the turnaround of the function
π(ξ), and therefore the change of sign of its derivative π′(ξ).

Let us now describe in detail how we determined the position of the Tooper curve.
This was done once the DEC curve had already been determined. The exponential search
downward towards the Tooper curve proceeded exactly like that for the DEC curve. For
each value of n the determination of the Tooper curve starts at the largest value of C for
which the position of the DEC curve was successfully determined. At that point, for that
value of C, we start the downward search at the value of πe given by the DEC curve, which
is always above the Tooper curve. Since we are looking for a divergence when integrating
inward, we integrate the differential system to the left only, towards the origin. If the
integration concludes with no divergence, resulting therefore in a definite value for ξ1, we
decrease the value of πe by a certain variation ∆πe, and repeat the integration. This
proceeds until a divergence is detected, meaning that we are now below the Tooper curve.
Once this happens we abort the integration, return πe to its previous value, decreases the
variation ∆πe by some constant factor, and continues the downward search for the position
of the Tooper curve.

Once again this results in a fast exponential search, this time for the position of the
Tooper curve, since the variation ∆πe, which represents the distance between the position
of the search and the position of the Tooper curve, decreases exponentially. Note once again
that we can start with a rather large value of ∆πe, since it will be decreased exponentially
fast, and again we chose to start with ∆πe = 0.1. Once more the stop criterion for this
downward search is the condition that the addition of ∆πe to πe no longer change πe,
meaning that the relative precision represented by ∆πe/πe falls below the precision level
at which the search program runs. Since this second search program also runs in double
precision mode, this guarantees the localization of the Tooper curve within that double
precision level. Naturally, once again the precision of the results of the search is also
affected by the precision with which the differential system is integrated. We recall that the
integration code runs in quadruple precision mode, and again we chose to use an integration
interval of ∆ξ = 10−5. Since the integration program uses the Runge-Kutta fourth-order
integration algorithm, once again this results in an excellent level of precision, certainly
much greater than what is needed just for the graphs.

Once we have obtained the position of the Tooper curve for the current value of C, by
means of the inner loop over values of πe, we enter an outer loop in which we now change
the values of C, which we will now decrease rather than increase. We decrease C by a fixed
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variation ∆C, which will characterize the grid size used for the graphs. Again we chose to
use ∆C = 0.01. Having the new value of C, we repeat the whole search process downward,
for the position of the Tooper curve. In this next search process we use as the initial value
of πe the last value of this variable obtained in the previous search process. Due to the
properties of the Tooper curve, which has positive derivative everywhere, this starting value
of πe is guaranteed to be above the Tooper curve at the new value of C, but it is much
closer to it than an initial value based on the DEC curve, again making the search more
efficient. The stop criterion for the loop over values of C is that C would become zero or
negative at the next decrement. This can be done by checking whether the current value
of C is such that C ≤ ∆C. We therefore stop the process of determining the Tooper curve
at C = ∆C.

It should be noted that the stop criterion for the loop over πe may fail in some cases, if
we are very close to C = 0. This is so because, specially for the case n = 1.5, the Tooper
curve approaches C = 0 with zero derivative. This tends to make πe and ∆πe always
commensurate in this case, so that the test that the addition of ∆πe to πe fails to change
πe may never succeed. Due to this it was necessary to implement a maximum number of
iterations of the loop over πe, which we chose to be 52. The average number of iterations
in order to locate the Tooper curve within the double precision level is a little over 32.

3.4 Alternative for the Tooper Solutions

Since in our current system of dimensionless variables the determination of the solution
exactly over the Tooper curve is somewhat tricky, given the instability due to the fact that
the program will fail rather catastrophically even an infinitesimal mount below that curve,
it is worth mentioning that there is an alternative way to obtain the solutions in this case.
As we approach the Tooper curve in the parameter plane the point of maximum of the
dimensionless energy density ρ̄(ξ) migrates to the origin ξ = 0. In the limit, when we hit
the Tooper curve, it has a certain maximum value ρ̄0 located at that origin, where we also
have that ρ̄′(0) = 0. Since according to Equation (56) we have that

π(ξ) = ξ2ρ̄(ξ), (59)

it follows that π(ξ) behaves as ρ̄0ξ
2 near the origin, and hence that γ(ξ) behaves as (ρ̄0/3) ξ

3

there. Since both the function γ(ξ) and its derivative π(ξ), as well as the second derivative
π′(ξ), all start at zero at ξ = 0, it is clear that we cannot use these variables in order to
integrate the equation starting from the origin. However, we can rewrite our equations in
terms of the function ρ̄(ξ) instead of π(ξ), and this will allow us to integrate the differential
system from the origin, since we have that ρ̄(0) = ρ̄0 6= 0. If we do this we obtain the
following pair of coupled ordinary differential equations,

ρ̄′(ξ) = −ρ̄(ξ)
n

n+ 1

1

ξ − γ(ξ)

1 + F (ρ̄)

2F (ρ̄)

[

γ(ξ)

ξ
+ F (ρ̄)ξ2ρ̄(ξ)

]

, (60)

γ′(ξ) = ξ2ρ̄(ξ), (61)

where

F (ρ̄) = C[ρ̄(ξ)]1/n. (62)

This first-order differential system determines the two variables γ(ξ) and ρ̄(ξ) in terms of
ξ, with the initial conditions γ(0) = 0 and ρ̄(0) = ρ̄0 at the origin ξ = 0. Once ρ̄(ξ) is
determined, we can also determine π(ξ) using Equation (59). Note that we have here only
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three free parameters, namely n, C and ρ̄0, where this last one will determine both ξ2
and ξM , as well as ξe. On the other hand, ξ1 and ξµ are fixed at zero. Since we are now
constrained to be over the one-dimensional Tooper curve, we have one less free parameter
as compared to the constraint of being within the two-dimensional allowed region of the
parameter plane. Using this alternative method one can get the Tooper solutions more
easily, and this is in fact essentially what Tooper did in [4].

4 Mapping the Observables

On a second phase of the exploration we measured certain observables over the allowed
regions, in order to characterize the general behavior of the solutions throughout the regions.
These can be considered as diagnostic observables, and they can be seen in Figures from 7
to 10. Using them we may, for example, classify the solutions as corresponding to either
low-density or high-density distributions of matter, or as being either close to or distant
from forming an event horizon.

Each run of the program produces four fundamental numbers as results that charac-
terize that solution, given by the dimensionfull radii r1, rµ, r2 and rM , and hence by the
corresponding dimensionless quantities ξ1, ξµ, ξ2 and ξM . These are all encoded in the
function γ(ξ); ξµ is the constant value of γ(ξ) within the inner vacuum region, that is, to
the left of ξ1; ξ1 is the point where π(ξ) = γ′(ξ) becomes zero when integrating inwards;
ξM is the constant value of γ(ξ) within the outer vacuum region, that is, to the right of ξ2;
ξ2 is the point where π(ξ) = γ′(ξ) becomes zero when integrating outwards.

All these quantities have well-defined physical meanings, although we believe that in
the case of rµ the complete physical meaning has not yet been completely established; r1
is the inner radius, or the radial coordinate characterizing the inner vacuum region; rµ, at
least for the time being, has only the meaning of being zero for the Tooper solutions; r2
is the outer radius, or the radial coordinate characterizing the overall size of the matter
distribution; rM is the Schwarzschild radius, associated to the total mass M and to the
total energy Mc2 of the bound gravitational system. Next we will define our diagnostic
observables and describe their main properties.

4.1 Definition of the Observables

We will define, for the purposes of the calculations with the program, three ratios involving
the quantities ξ1, ξµ, ξ2 and ξM , that will have useful properties regarding the character-
ization of the solutions. All these ratios will assume values within the interval [0, 1]. The
first one we will name the Energy Ratio, which is defined as

ER =
rµ

rM + rµ

=
ξµ

ξM + ξµ
. (63)

This quantity has the property that it is zero when ξµ = 0, and hence it characterizes the
Tooper curve in this way. It also has the property that if ξµ is very large, with ξµ ≫ ξM ,
then it approaches the value 1. This ER → 1 limit characterizes, therefore, solutions which
are maximally different from the Tooper solutions. Presumably these are solutions in which
other forms of energy are more important than the energy associated to the total asymptotic
gravitational mass M .

The second ratio we will name the Horizon Ratio, defined as
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HR =
rM
r2

=
ξM
ξ2

. (64)

Since all our solutions here have the property that ξM < ξ2, this quantity is always smaller
than 1. However, there may be limits in which it approaches 1. This quantity has the
property that for very low-density objects, for which ξM ≪ ξ2, is approaches zero. There-
fore, this observable indicates low-density solutions when it is small, as is the case over the
Tooper curves for small values of C. On the other hand, if ξM and ξ2 become very close,
then this ratio approaches 1. In this case one approaches a situation in which an event
horizon forms at the position ξ2, according to the exterior Schwarzschild solution, which
is valid outside ξ2, and which in this case acquires the well-known coordinate singularity
at ξ2. Therefore this ratio discriminates between low-density and high-density solutions,
including the onset of black hole solutions, in the HR → 1 limit.

The third ratio we will name the Quantum Ratio, defined as

QR =
r1
r2

=
ξ1
ξ2
. (65)

Clearly the name chosen requires some explanation. This has the property that it is zero
if ξ1 = 0, in which case we have solutions for filled spheres, instead of shells. In this way,
it characterizes the Tooper curve just like ER, but since there are many other solutions for
which ξ1 ≪ ξ2, even if ξ1 6= 0, this diagnostic is not particularly helpful.

On the other hand, if we recall that all the matter in the system is located between ξ1
and ξ2, we see that when the inner radius approaches the outer radius the proper volume
containing the matter shrinks to zero, resulting in infinite localized matter densities. If we
consider the radial coordinate, we have that in this case the coordinate thickness ξ2 − ξ1
of the shell goes to zero, so that the corresponding proper length will eventually become
commensurate with the correlation lengths (or wavelengths) of the fields associated to the
particles of matter within the shell. In this case it is to be expected that the quantum
behavior of the matter will prevent this thickness from decreasing any further. In other
words, it is reasonable to expect that the quantum properties of the matter will prevent the
shell from degenerating into a true two-dimensional surface. Therefore, the limit QR → 1
indicates situations in which the quantum properties of matter come into play.

4.2 Behavior of the Observables

As one can see in the graphs shown in Figures from 7 to 10, the qualitative behavior of
the ratios ER, HR and QR as functions of C and πe is quite similar for all the values of n
explored, thus indicating that the same is at least qualitatively true for ξ1, ξµ, ξ2 and ξM as
well. In all graphs there are essentially the same regions with the same specific properties
for the solutions, with the possible exception of the rather small anomalous region for the
larger values of C, in the case n = 3.0.

Let us start by describing how each one of the three ratios behaves along the allowed
regions. The ratio ER goes to zero at the Tooper curves, as expected, thus pinpointing the
locations of these curves. It seems to increase towards 1 as we enter the asymptotic parts of
the allowed regions, with C → 0 and πe → ∞, thus indicating that ξµ becomes very large
as we travel deeper into these regions.
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Figure 8: The observables energy ratio ER, horizon ratio HR and quantum ratio QR for
n = 2.0. The contour curves are spaced vertically by 0.05.
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The ratio HR has values smaller than 1, but sometimes not close to zero, over the whole
length of the Tooper curves, and very small values near the point C = 0. This means
that there may be solutions with significant overall matter density on the Tooper curve,
specially in the case N = 1.5. There are also solutions with very small such density near
C = 0. This ratio also seems to increase towards 1 as we enter the asymptotic parts of the
allowed regions, with C → 0 and πe → ∞, thus indicating that as we travel deeper into
these regions we proceed towards high overall densities and the formation of event horizons.

The ratio QR is zero over the whole length of the Tooper curves, thus indicating that we
have ξ1 = 0 there, as expected. It is also either zero or very small over most of the allowed
regions, thus indicating that in general we have ξ1 ≪ ξ2. It only becomes significantly
larger than zero for small C, near the πe axis. Also, it can be seen that it increases slowly
as we travel into the asymptotic regions. This indicates that on limits for which C → 0
and πe → ∞ within these regions the quantum effect on the matter will eventually come
into play.

Examining what happens in each part of the allowed regions, some general conclusions
can be formulated. To begin with, over or near the Tooper curves we never have the
formation of event horizons. The same is true for the parts of the DEC curves shown in
the graphs. Another way to say this is to point out that for finite and non-zero values of C
the solutions also never form horizons, and that for the larger values of C they never get
anywhere even close to that.

For each value of n the asymptotic region, where C → 0 and πe → ∞, is the one region
where we can approach the formation of an event horizon. This is also the region where
we get extremely high overall matter densities, since this density increases as we enter
more deeply into this asymptotic region. The exploration of the black hole limits in these
asymptotic regions would require a whole new set of runs, and will have to be postponed
to a future paper.

The two basic properties of the Tooper curves, that over them we have ξ1 = 0 and
ξµ = 0, are confirmed by our exploration. Very low density objects seem to exist mostly
near the origin, for very small values of both C and πe. That seems to be the realm of the
main-sequence stars. It may be possible to find somewhat similar solutions in the small
mostly regular region located beyond the anomalous region of the case n = 3.0, but at this
point it is not really clear what the true character of these solutions may be.

Below the Tooper curves, that is for very small values of πe, given certain values of n
and C, as well as for sufficiently large C, there are no solutions at all. The upper limit for
C is somewhere between 0.5 and 0.8 depending on the value of n. As a curious point of
some interest here, let us point out that the case in which we have n → ∞ and C = 1/3
corresponds to a gas of photons, or of some other type of massless particles, for which we
do not expect to find any static solutions.

Close to the DEC curve we have extremely relativistic matter, with overall matter
densities that vary from significant to very high. Presumably in this case the speed of
sound in the gas is close to the speed of light, and it is possible that the average speed of
thermal agitation is also close to the speed of light. This implies immense thermal energies
and temperatures, and it can be imagined that this also helps to prevents the formation
of event horizons. Anyway, these cases seem to be far beyond any objects that one could
hope to find in nature.
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Figure 9: The observables energy ratio ER, horizon ratio HR and quantum ratio QR for
n = 2.5. The contour curves are spaced vertically by 0.05.
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5 Application to Astrophysics

Let us now discuss how one can use this family of solutions in order to obtain the solutions
for definite objects, say with given mass and outer radius. To start with, let us assume that
we want the solution for an object of mass M , and therefore with Schwarzschild radius rM .
The problem poses itself of what values of n, C and πe should be used in order to obtain
a solution with the required properties. Note that the value of M is not directly involved
in the choice of these dimensionless parameters. There is no single solution to this first
problem, but rather a significant amount of free choice involved.

Regarding the value of n, one can either choose an appropriate value of n to represent
the type of behavior of the matter involved, or one can construct, for example, a two-
layer solution, with layers that are connected by means of appropriate interface boundary
conditions at a certain interface between two different layers of matter, with different ther-
modynamic behaviors. A two-layer model of a star with a radiative inner layer, say with
n = 3.0, and an isentropic outer layer, say with n = 1.5, comes to mind. Putting aside for
now this more complex alternatives, let us just assume that we simply chose some value of
n for a single-layer solution.

For any values of C and πe that one chooses to run the program with, assuming that
the point (C, πe) is within the allowed region of the parameter plane for the value of n
to be used, there will result definite values for ξ1, ξµ, ξ2 and ξM . If we have a required
value of rM , then we can at once determine the parameter r0, for any values of C and πe
whatsoever, since we have that

r0 =
rM
ξM

. (66)

This determines the position r0 of the inflection points of both β(r) and γ(ξ), and therefore
the position of the point of maximum of π(ξ). Having determined r0, we can now determine
all other relevant dimensionfull quantities, since we have that

r1 = ξ1r0, (67)

rµ = ξµr0, (68)

r2 = ξ2r0. (69)

We therefore see that there are solution for all possible positive values of rM , and hence of
M . The fact that the parameter rM was factored out of the system, when we wrote it in
terms of dimensionless parameters, betrays the existence of a scaling transformation among
the solutions, parametrized by the value of rM . Any point (C, πe) of the parameter plane
corresponds in fact to an infinite set of similar solutions, for all possible values of rM , and
hence of M . At this point we may also determine the polytropic constant K, since we have
that

K = C
(

κr20
)1/n

, (70)

where κ = 8πG/c4. If one wants to have a certain given value, say, for r2, then it will be
necessary to explore the parameter plane in order to find a point (C, πe) that yields the
required values of both M and r2. And again there may be more than just one such point.

Note that, given n, since we still have the two free parameters C and πe, we have open
to us the possibility of choosing freely one more property of the object under study, besides
the mass and the outer radius, and still have the means to find the corresponding solutions.
For example, we may require that rµ = 0, which will put us squarely on top of the Tooper
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Figure 10: The observables energy ratio ER, horizon ratio HR and quantum ratio QR for
n = 3.0. The contour curves are spaced vertically by 0.05.
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curve. But a more interesting alternative does immediately come to mind, that of choosing
the surface temperature of the object. If and when this was done, it could result in a
complete map of the relations between mass, outer radius and surface temperature of stars,
which might even be verifiable against observations. However, that would require a detailed
and fully relativistic study of the temperature and hence of the energy in the context of
these solutions, which we are currently not prepared to deliver. And of course it would
probably be far more compelling to do this in the context of a two-layer model for the
stars.

Given the way in which one has to use the program in order to obtain solutions with
specific given properties, it would be useful to have approximate numerical functions im-
plementing either (ξ1, ξµ, ξ2, ξM ) or (r1, rµ, r2, rM ) in terms of n, C and πe. These could
then be used to solve numerically for the parameters needed in order to obtain, for ex-
ample, some required mass and outer radius. Even the function data generated in order
to produce the graphs shown in Figures from 7 to 10, or the graphs themselves, could, at
least in principle, be used for that purpose. For example, if one requires M to be, say,
the mass of the Sun, and r2 to be its outer radius, this determines the value of the ratio
HR(C, πe) = rM/r2, which in turn determines a curve on the (C, πe) parameter plane.
Running the program at any point on this curve will generate a solution for the required
values of M and r2. This means, of course, that we are still able to require some given
value for one more characteristic of the Sun, such as its surface temperature.

6 Conclusions

Unlike the Schwarzschild, Reissner-Nordström and Kerr-Newman solutions of the Einstein
field equations, which represent static vacua and are valid only in the exterior region of
a spherically or axially symmetric material object, the family of solutions for polytropic
matter that we presented in [1] consists of static and spherically symmetric solutions valid
over the whole extend of the three-dimensional manifold. This makes them of particular
interest as models for astrophysical objects, in both the low-density case, such as main
sequence stars, and in the high-density case, particularly in the case of black holes or
objects close to them in terms of their exterior metric structure.

In the previous paper [1], in which the solutions were presented, we also presented a few
examples of such solutions, both with low and high matter densities, including both the
functions that represent the matter and the functions that represent the geometry. However,
even in its dimensionless form, this is a rather large three-parameter set of solutions, and
of course due to space limitations we could give only a few illustrative examples. In this
paper we explored a significant part of this three-dimensional parameter space, in order to
establish both the existence of specific solutions and some of the main properties of these
solutions.

We did this for a small set of values of the polytropic index n that includes some of
those which are most often used in astrophysics. These are usually either integer of half-
integer, but it should be pointed out that neither the solutions nor the program have any
limitations regarding the use of real numbers for n, other than that n must be strictly
positive and finite. The other free dimensionless parameters of the family of solutions
are the dimensionless polytropic constant C and the maximum value πe of the necessarily
positive function π(ξ), which is the derivative of the function γ(ξ), which in turn is the
central element of the whole family of solutions.

The existence of the solutions hinges on the existence of the radial positions r1 and r2,
that is, on the existence of values of r at which the matter energy density ρ(r) becomes
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exactly zero. These are also the positions ξ1 and ξ2 where the derivative π(ξ) of the function
γ(ξ) becomes exactly zero. We found that many such solutions do in fact exist, in various
different regions of the (C, πe) parameter planes, for each value of n that was tried. These
solutions span a large space of possibilities, from very low-density solutions to very high-
density ones. Also, it seems that there exist solutions that are as close as one may wish to
situations in which an event horizon exists, but this sector requires further exploration.

Besides examining the question of the existence of the solutions, we also examined
the behavior of the matter using the Dominant Energy Condition (DEC). This condition
determines whether or not the matter associated to the solutions behaves in a physically
acceptable way. We found that there are many solutions for which this condition is satisfied.
Combining the condition of existence and the DEC we located the allowed regions of the
parameter planes, where all physically acceptable solutions are located. These regions have
asymptotic sub-regions, for very large values of πe, in which we are led to surmise that
solutions representing black holes, or solutions in some sense close to them, are located.

Of course these asymptotic regions will have to be explored using approaches other than
mapping the complete regions, and thus such an effort will have to be postponed to a future
paper. Besides these asymptotic regions, there are other small regions which might deserve
further scrutiny, as was pointed out in the text. And we should not forget that the cases
with n < 1, which promise to be significantly different from the ones explores here, are still
to be examined in any amount of detail.

However, we would like to finish by pointing out that the most significant limitation of
this set of solutions is a rather fundamental one, namely that they do not include the angular
momentum of rotating objects. The extension of these solutions to that case remains as a
very significant and important open challenge.
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