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Abstract 

q-Gaussians are probability distributions having their origin in the framework of Tsallis statistics. A 
continuous real parameter q is characterizing them so that, in the range 1 < q < 3, the q-functions pass from 
the usual Gaussian form, for q close to 1, to that of a heavy tailed distribution, at q close to 3. The value q=2 
corresponds to the Cauchy-Lorentzian distribution. This behavior of q-Gaussian functions can be used for 
the analysis of Raman spectra, where Lorentzian and Gaussian profiles are among the line shapes most used 
to fit the spectral bands. In the first part of this discussion, we consider fitting simulations with q-Gaussian 
Tsallis lines and comparison to analyses made by means of Lorentzian and Gaussian lines. In the second 
part we show several examples of fitting experimental data. 
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1. Introduction 

The q-Gaussian functions are probability distributions proper of the Tsallis statistics (Tsallis, 1988, 

Hanel et al., 2009). These functions are based on a generalized form of the exponential function (see 

for instance the discussion in Sparavigna, 2022), where a continuous real parameter q is characterizing 

it. When q is going to 1, the q-exponential becomes the usual exponential function.  The q-Gaussian is 

therefore the Tsallis generalization of the Gaussian distribution. In the range of q-parameter from 1 to 

3, we pass from the Gaussian to a heavy tailed distribution. The value q=2, (Naudts, 2009), corresponds 

to the Cauchy distribution, also known in physics as the Lorentzian distribution; then, the q-Gaussian 

function is the generalization of the Lorentzian distribution too. In heavy tail regions, the function is 

equivalent to the Student’s distribution. The change of  q-parameter is therefore allowing the q-Gaussian 

to pass from Gaussian function to Lorentzian distribution.  

The q-Gaussian had been proposed in 2003 by Howarth et al. as a line shape suitable for describing 

electron paramagnetic resonance (EPR) spectra, "and possibly nuclear magnetic resonance (NMR) 

spectra as well". In the article by Howarth et al., the q-Gaussian function is not mentioned in this 

manner, but as the "Tsallis lineshape". Howarth and coworkers stressed that the Tsallis line shape is 

generalizing the Gaussian and Lorentzian functions "widely used in simulations". The researchers 

compared the proposed Tsallis line shape with experimental EPR spectra, evidencing that the q-line 

shape "often provides a better approximation of the experimental spectrum". Yu. A. Koksharov, 2015, 

for the electron magnetic resonance study of nanoparticles, proposed to use the decomposition of the 

spectra with the Tsallis distributions (that is the q-Gaussian functions).  The method has been tested on 

a two-component spectrum of colloidal magnetite nanoparticles and on broad spectra of iron-containing 
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nanoparticles. In an article of 2009, by Yuanlu Li, the “Tsallis distribution” is given as a function which 

is facilitating the generalization of Gaussian and Lorentzian line shapes by varying the parameter q  “as 

a model of the individual band to correctly assign overlapping bands”. Yuanlu Li simulated the bands 

by computer and analyzed the experimental infrared spectrum of 1,2-bromofluoroethane.  

The Raman bands are usually given as characterized by Lorentzian or Gaussian distributions, or by a 

linear combination (pseudo-Voigt distribution) or by the convolution of them (Voigt distribution) 

(Meier, 2005). In a previous discussion (Sparavigna, 2023a, 2023b), we have proposed the q-Gaussians 

for Raman spectroscopy showing that they are properly mimicking pseudo-Voigt, Voigt functions and 

the Egelstaff-Schofield spectral line shapes. We have also discussed the Raman spectroscopy, for what is 

regarding the D and G bands of carbon-based materials1. Here we consider a series of simulations to 

understand how the fitting by means of q-Gaussians is different from that obtained with Gaussian and 

Lorentzian lines. Then, we apply q-Gaussians to the fitting of several experimental data. 

 

 

Fig. 1: q-Gaussian functions, for different q indices, from 1.1 (quasi-Gaussian) to 2.9 (over-

Lorentzian). The blue curve is the Lorentzian line shape. 

 

 

2. The q-Gaussians 

As given by Umarov et al., 2008, the q-Gaussian function is: 

𝑓(𝑥) = 𝐶𝑒𝑞(−𝛽𝑥2)    (1), 

where 𝑒𝑞(. ) is the q-exponential function and 𝐶 a scale constant.  In the exponent, we use 𝛽 = 1 (2𝜎2)⁄ . 

The q-exponential has the expression:   

𝑒𝑥𝑝𝑞(𝑢) = [1 + (1 − 𝑞)𝑢]1 (1−𝑞)⁄     (2) . 

The plots in the Figures 1 and  2a are showing the behaviour of this exponential for different q values. 

Note that, for q less than one, the function is different from zero on a limited interval.  

 

1 The G-band is the main Raman mode in graphite and graphene, linked to the planar configuration sp2 bonded 

carbon, which is constituting the graphene layers (Application Note).  “The band position is pretty much 

independent of excitation laser frequency” (Application Note). The D-band is the “disorder band” or the 

“defect band”. “This band is linked to the ring breathing mode from sp2 carbon rings … The band is typically 

very weak in graphite and is typically weak in graphene as well. If the D-band is significant, it indicates that 

there are a lot of defects in the material” (Application Note). 
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Fig.2a: q- exponential functions, where 

the blue curve is representing a Lorentzian 

function (q=2). The pink curve 

corresponds to q=1.5 and light blue to q= 

1.01, practically a Gaussian function. The 

green curve is the q-Gaussian for q=0.75 

and red curve for q=0.5.  For q < 1, the 

function is different from zero in a limited 

interval. Being the line symmetric, only the 

right part of it is given in the figure.  

 

The Half Width at Half Maximum of q line shape is given by:  √2 𝜎 √(1 − (1/2)1−𝑞)/(1 − 𝑞). 

 

 

Fig.2b: q- exponential functions for q=1.01 and q=2 on the left, on the right the Half Width at Half 

Maximum as a function of q. 

 

3. GLS, GLP, Voigt and synthetic lines 

In Jain et al., 2018, comparisons are given among Gaussian-Lorentzian sum (GLS or Pseudo-Voigt) 

functions, Gaussian-Lorentzian product (GLP) functions, and Voigt functions. The framework is the 

peak fitting of X-ray photoelectron spectroscopy (XPS). "Plots of the GLS show that it is a better 

mathematical representation of a function that is intermediate between a pure Gaussian and a pure 

Lorentzian”. The GLS also represents a better approximation of the Voigt function. A reason is in the 

fact that the “Voigt function looks like Gaussian for small x (i.e., near line center), and like Lorentzian 

for large x (i.e., out in line wings)” (Townsend, 2008), depending on the choice of parameters.  

 

 

Fig.3: Definition of the Voigt convolution and related functions (plot courtesy Shiyu Ji, under CC BY-

SA 4.0 license, https://en.wikipedia.org/wiki/Voigt_profile#/media/File:VoigtPDF.svg . 

https://en.wikipedia.org/wiki/Voigt_profile#/media/File:VoigtPDF.svg
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Regarding the GLP functions, “because of the more compact nature of the Gaussian, the GLP does not 

have significant wings" (Jain et al., 2018).  GLS, that are also known as Pseudo-Voigt functions, have 

wings with different consistency, and the same is also true for the q-Gaussians, depending on the value 

of parameter q.  

Jain et al. considered XPS. “In the theory of X-ray photoelectron spectroscopy, natural line shapes are 

generally assumed to be Lorentzian. There are, however, reasons why this line shape may not be 

observed experimentally” (Jain et al., 2018). After specific discussions, Jain and coworkers explain it 

is possible to argue that “when a set of photoelectrons, which may inherently have a Lorentzian line 

shape, is perturbed by a spectrometer and/or the broadening mechanisms mentioned above, one would 

expect the final signal to have at least some Gaussian character”. Then, “it is plausible that many of the 

components of XPS narrow scans will be best defined and fit by peaks that have both Gaussian and 

Lorentzian character”. According to the researchers, “mathematically, the ‘purest’ way to handle this 

problem is to use a Voigt function”, (Jain et al., 2018), but GLS, GLP and other functions are generally 

proposed by several fitting packages. The same is true for the Raman spectroscopy: the purest line shape 

is considered being the Voigt one (Meier, 2005), but pseudo-Voigt and other functions are used too. 

As stressed by Jain et al., there is “an active area of research [aiming] to determine which synthetic 

function is most appropriate in different situations”. “However, … the most important test of a synthetic 

line shape is not the theory behind it but rather its effectiveness in fitting real data”. For the Raman 

spectroscopy too, we can propose the investigation of new “synthetic” lines, and the q-Gaussian Tsallis 

function is one of them. Synthetic or real? 

 

4. Physical reasons 

Physical reasons for the q-Gaussians are based on Tsallis statistics, regarding fractal and granular 

matter. “The macroscopic stability of powder mixtures and other forms of granular or fibre matter might 

be associated with fractal sets … Under these circumstances, there is no reason for having a relevant 

"thermodynamic" energy proportional to a standard power of the mass of the system. Consequently, 

nonextensive phenomena could be present” (Tsallis, 1995). 

The Tsallis statistics, with the use of  q-parameter  to evaluate the degree of nonextensivity of the system, 

has been proposed for the Stimulated Raman Scattering (SRS) in a collisionless plasma by Sharifi & 

Parvazian (2015). SRS involves a resonant decay of laser electromagnetic waves into scattered 

electromagnetic waves and electron plasma waves (EPW). “Most of the studies for SRS are derived in 

the frame of a fluid description, a Maxwellian distribution function, or a relativistic Maxwellian 

distribution function. However, many space and laboratory plasmas show a non-Maxwellian behavior”  

(Sharifi & Parvazian, 2015). According to Sharifi and Parvazian, new statistical approaches based on 

the generalization of Boltzmann–Gibbs entropy, have been proposed, according to the works by Alfred 

Rényi (1955) and Constantino Tsallis (1988). The statistics that Sharifi and Parvazian are using is the 

q-Gaussian, q-nonextensive velocity distribution, which is generalizing the Maxwellian distribution. 

Regarding the profile of Raman scattering and fluorescence, the collisional broadening and the Doppler 

broadening are relevant (Demtröder, 1985). The Doppler shift is usually given with the Maxwellian 

distribution (Nienhuis & Schuller, 1977). Then, a q-nonextensive generalization is possible in the case 

of Raman scattering too (for neutron scattering, see please De Abreu et al., 2022, Guedes et al., 2019). 

For the Doppler effect on light scattering, let me stress the discussion proposed by Chandrasekhara 

Venkata Raman, in his letter of 1931.  
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5. Separating the overlapping peak signals 

Besides the choice of the synthetic line shape, for fitting the experimental data it is required to establish 

the number and positions of the bands composing the Raman spectrum. This is fundamental for the 

problem of “separating overlapped peak signals (OPS)”. Li et al., 2010, proposed it in the framework 

of Tsallis model and fractional-order differentiation. OPS “is a predominant aspect of signals processing 

of modern times. The separation of received signal and restoration of the desired ones have long been a 

problem in overlapped signals decomposition” (Li et al., 2010). Actually, OPS pertains to a wide range 

of applications, such as in communications, thermal analysis, nuclear-magnetic resonance, in 

spectroscopy in general, and in the X-ray diffraction, as told by Li and coworkers. 

Here in the following, for starting the fitting simulations we consider OPS in the case of a composition 

of three spectral bands. The aim is that of simulating the fitting with the three bands D1, D3 and G, 

relevant for carbon-based materials. In fact, in Sparavigna, 2023a, the q-Gaussians had been proposed 

for the analysis of biochar, a carbonaceous material, considering data collected by Tagliaferro et al., 

2020. 

In Tagliaferro et al., 2020, in the Figure 6 of their paper we can find the Raman spectra for different 

biochar samples. Biochar is the solid residue of pyrolysis of biomass obtained by thermochemical 

decomposition at moderate temperatures under oxygen-limiting conditions (Bartoli & Giorcelli, 2022, 

Brassard et al., 2019, Han & Kim, 2008, Ok et al., 2015, 2018, Giorcelli et al., 2021, Das et al., 2021, 

Yasim-Anuar et al., 2022). The spectrum analysis made by Tagliaferro and coworkers is based on a 

synthetic line shape the authors proposed with the name “GauLor”. It is a function producing a line 

shape with a “central” part which is Lorentzian and the “wings” that are Gaussian functions. According 

to the definition given by W. Demtröder, 1985, the central part of the line (kernel) is within the range 

determined by the Full Width at Half Maximum of the line, the wings are outside of it; in the GauLor 

line shape the onset of the Gaussian wings is given by a frequency threshold value determined by the 

best fit of all the Raman spectrum. Supposing the existence of a threshold within the Raman scan range, 

the GauLor has the onset of the Gaussian tail which can be very close to the center of the line or quite 

far from it. 

One of the panels of the Figure 6 is based on a four-band model with bands G, D1, D3, D4 (we use the 

notation given by Sousa et al., 2020). To fit Tagliaferro et al. data by means of q-Gaussians, parameters 

q, β, C  have been used for the q-Gaussian functions corresponding to the four bands. The parameters 

have been determined by minimizing the sum of the squares of deviations  𝛥2 = ∑(𝑓𝐷𝑎𝑡𝑎 − 𝑓𝑞−𝐺𝑎𝑢)
2
  

(the sum is made on sample points). The resulting fit is here shown in the Figure 4 (Sparavigna, 2023a).  

 

 

 

Fig. 4: The plot here given is obtained by means of four 

q-Gaussians, fitting data from Tagliaferro et al., 2020, 

regarding a biochar sample. Green (fit) and red (data) 

curves are in good agreement.  The positions of the 

centers of the bands are also marked. 

 

 

6. Fitting simulations 

Looking at the Figure 4, it seems that Gaussian and Lorentzian functions could be suitable for fitting 

data as well as the q-Gaussians, but it is not so. Then, let us simulate some fitting cases to have specific 
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information about the role of the line shape. For simulations, let us consider just three peaks, D1, D3 

and G. The synthetic curve to be fitted is given in the Figure 5. The position of the peaks is maintained 

fixed as in the Figure 4.  

 

 

 

 

 

Fig. 5: The green curve here given is the curve that we 

will use for the first fitting simulations. It is given by 

the three q-Gaussians corresponding to D1, D3 and 

G, of the Fig. 4.  

 

Therefore, we use three q-Gaussians with parameter q as in the Figure 5. Other parameters of the three 

q-Gaussians are: C=0.13956, σ=42.500 (D1), C=0.10971, σ=17.5 (G) and C=0.07600, σ=32.0 (D3). 

The curve provided by the sum of these three q-Gaussians (Fig.5)  is our  synthetic “experimental” data. 

This curve - from now on depicted in red - is given as a function of integers n (500 samples, that is n 

from 0 to 500, x-axis). A convenient scale is given for y-axis. 

The fit of this red curve will be given in green color. The fitting calculation is obtained by minimizing 

the sum of the squares of the deviations  𝛥2 = ∑(𝑓𝑟𝑒𝑑 − 𝑓𝑔𝑟𝑒𝑒𝑛)
2
   iteratively (gradient method). The 

first best fit is proposed in the Figure 6. In this case, the values of parameter q for the tested q-Gaussians 

are constrained to the discretized values 1.01,  1.2,  1.4,  1.6,  1.8,  and 2.0. q=1.01 is representing the 

Gaussian-like q-function. The positions of the centers of these q-Gaussians are fixed as that of Figure 

5. The components of the fit are given by the blue and pink lines. Of course, the constrained q-Gaussian 

fit is providing a perfect fitting curve.  

 

  

Fig. 6: Red curve is the curve to fit (the 

same as the green curve in Figure 5), and 

the green curve is the best fit (constrained 

q parameters). Curves are 

indistinguishable. The components are 

given by blue and pink lines. Fitting 

parameters are: q=1.2, C=0.13966, 

σ=42.416 (D1), q=1.2, C=0.10966, 

σ=17.416 (G) and q=1.4, C=0.0763, σ= 

32.083 (D3). The sum of the squares of the 

deviations is  Δ2 =  4.1 x 10−6  . In the lower part of the image, the brown line is giving the difference 

between the red and the green line (the range is from -0.02 to 0.02). No appreciable difference is 

displayed. 
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If we relax constraints about the values of the q-parameters, that is all values ranging from 1.01 to 2.0 

are possible for the three bands, the best fit we obtain is given in the following Figure 7. 

 

Fig. 7: Red curve is the curve to fit, and 

the green curve is the best fit 

(unconstrained q). Fitting parameters are: 

q=1.1875, C=0.13900, σ=42.750 (D1), 

q=1.1875, C=0.1096, σ=17.583 (G) and 

q=1.4125, C=0.07633, σ= 31.916 (D3). 

The sum of the squares of the deviations is  

Δ2 =  1.0 x 10−5   . As in the previous figure, 

the brown line represents the difference 

between red and green line. 

 

 

Comparing the results given in the Figures 6 and 7, we could conclude that an uncertainty of ±0.01 is 

given about the value of fitting parameter q. 

Let us change the curve to be used for simulations. Again, let us use three peaks, D1, D3 and G, as given 

in the Figure 8. The q-Gaussians parameters q are 1.2 (D1), 1.8 (G) and 1.4 (D3). Other parameters of 

the three q-Gaussians are: C=0.13956, σ=42.500 (D1), C=0.10971, σ=17.5 (G) and C=0.07600, σ=32.0 

(D3).  These parameters are the same of those for the simulation regarding the Figure 5. 

 

  

 

 

Fig. 8: As in the Figure 5, the green curve here 

given is the curve that we will use for the new 

fitting simulations. The three q-Gaussians are 

corresponding to D1 (q=1.2), D3 (q=1.4) and G 

(1.8). Note the different right wing.  

 

Here in the following Figures the results of the best fit (constrained and unconstrained). 

 

Fig. 9: Red curve is the curve to fit, and the 

green curve is the best fit (constrained q 

parameters). Curves are indistinguishable. 

The components are given by blue and pink 

lines. Fitting parameters are: q=1.2, 

C=0.13966, σ=42.416 (D1), q=1.8, 

C=0.10966, σ=17.416 (G) and q=1.4, 

C=0.0763, σ= 32.083 (D3). The sum of the 

squares of the deviations is  Δ2 =  3.1 x 10−6  

. 
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Fig. 10: Red curve is the curve to fit and the 

green curve is the best fit (unconstrained q). 

Fitting parameters are: q=1.20, C=0.13900, 

σ=42.583 (D1), q=1.7625, C=0.1096, 

σ=17.583 (G) and q=1.4375, C=0.07633, σ= 

32.083 (D3). The sum of the squares of the 

deviations is  Δ2 =  8.2 x 10−6   . 

 

Comparing the results in the Figures 9 and 10, we could conclude that an uncertainty of ±0.05 is given 

about the value of parameter q obtained from fitting procedure. 

 

7. Two components 

Let us consider a simulation, where the D3 peak has a null contribution. How is reacting the 

unconstrained simulation? It reacts in a very positive manner. 

 

Fig. 11: Red curve is the curve to fit, 

obtained just with D1 and G components. 

The green curve is the best fit 

(unconstrained q). Fitting parameters are: 

q=1.200, C=0.13966, σ=42.4166 (D1), 

q=1.800, C=0.10966, σ=17.5833 (G) and 

q=1.862, C=-3.333  x 10−4    , σ= 7.250 

(D3). The sum of the squares of the 

deviations is  Δ2 =  4.0 x 10−6   . The results 

regarding D3 tell us that it does not exist 

for sure. 

 

8. Moving D3 

In the previous simulations we have maintained fixed the positions of the centers of the bands. Now, let 

us relax this condition, and assume that the position of D3 can change. To understand the role of the 

position of the center of this peak, we use the fit with unconstrained q parameters.  

 

 

 

 

Fig.12: The position of the center of the peak D3 in the 

fitting is changed. The best fit is given at position 340 

(399 in the Figures 5 and 8). However, the minimum is 

quite flat and therefore the position of the center can 

be assume given with an uncertainty of  ±2.  
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To observe the effect of position of D3 center line, 

let us move it to the right and to the left of 5 units, 

maintaining fixed the positions of D1 and G. The 

effect of the shift of D3 in the fitting results 

regarding the two components G and D3 is shown in 

the three plots of Figure 13. 

 

 

 

 

 

 

 

 

Fig. 13: Changing the position of D3 band of -5 (top) 

and +5 (bottom) with respect to the reference 

position (middle), the values of the sum of the 

squares of deviations change according to the 

previous Figure 12. Note that the G band quite 

changes accordingly. 

 

9.  Gaussian and Lorentzian functions 

What happens if we use Gaussian and Lorentzian functions instead of the q-Gaussians? Results are 

given in the following figures.  We use for the fit Gaussian-like functions, that is q-Gaussians with 

q=1.01, and Lorentzian functions (q=2).  

 

Fig. 14:  Here we use three q-Gaussians, with 

the same q value equal to 1.01, for the fit of the 

red curve. The positions of the centers of these 

Gaussians have been fixed as that of the Figure 

8. The green curve is the best fit. In the lower 

part of the image, the difference between the red 

curve and the green curve is given. There is a 

great difference due to the wings of the 

Gaussians. Δ2 =  7.83 x 10−3 . Fitting parameters 

are:  C=0.14100, σ=45.250 (D1),  C=0.096, 

σ=24.25 (G) and C=0.0776, σ= 39.41 (D3). 

 

Let us relax the condition of the fixed position of the center of D3. We move it to the right, in the 

position 399+15. The result is given in the following Figure 15, and it is displaying a better 

approximation, but the relative weights of D3 and G are quite different. 
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Fig. 15: Three q-Gaussians with the same 

q value equal to 1.01. The positions of the 

centers of D1 and G are fixed. The center 

of D3 is at 399+15.  The green curve is the 

best fit. In the lower part of the image, the 

difference between the red curve and the 

green curve is given. Δ2 =  2.43 x 10−3 . 

Fitting parameters are:  C=0.14266, 

σ=45.333 (D1),  C=0.049, σ=13.33 (G) 

and C=0.1213, σ= 39.16 (D3). 

 

In the approximations given by the iterative approach, changing the positions of D1 and G does not 

produce a better result. However, let us stress the difference of relevance of D3 with respect to G shown 

in the Fig.15. In the following Figures, we continue with fitting simulations, introducing Lorentzian 

functions. Let us consider two Gaussians for D1 and G, and a Lorentzian function for D3. The positions 

of the centers of the peaks are the same as in the Figure 8. 

 

Fig. 16: Here we use for fitting two q-

Gaussians with the same q value equal to 1.01 

for D1 and G, and a Lorentzian function for 

D3. The positions of the centers of these 

Gaussians have been fixed as that of the 

Figure 8. The green curve is the best fit. In the 

lower part of the image, the difference 

between the red curve and the green curve is 

given.  Δ2 =  2.08 x 10−3 . Fitting parameters 

are:  C=0.1300, σ=44.33 (D1),  C=0.095, 

σ=19.5 (G) and C=0.095, σ= 30.66 (D3). 

 

Fig. 17: Let us consider, as in the previous 

figure, two q-Gaussians with the same q value 

equal to 1.01 for D1 and G, and a Lorentzian 

function for D3. The position of the center of 

G3 is shifted to the left of 4 units.  The green 

curve is the best fit. In the lower part of the 

image, the difference between the red curve 

and the green curve is given.  Δ2 =  1.98 x 10−3 

. Fitting parameters are:  C=0.1310, 

σ=44.083 (D1),  C=0.104, σ=20.41 (G) and 

C=0.089, σ= 29.75 (D3). 

 

Comparing the two last figures, Fig. 16 and 17, we can see that a rather small shift of the center of D3 

is producing an evident change in the G peak. The change of  Δ2  is negligible. We can also compare 

the behavior of the D3 Lorentzian band (Fig. 16 and 17) to that of the D3 q band in Fig.13: they are 

similar but in opposite trends.  
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For the fitting simulations, we limited the sampling to the range displayed by the x-axis of the figures. 

In the case of the use of Gaussian and Lorentzian functions, an expanded range is relevant for sure. 

However, if the curve to be fitted is composed by components which have a behavior intermediate 

between Gaussian and Lorentzian, it is better to use q-Gaussian functions.   

 

10.  Fitting data 

Simulations tell that we can distinguish the results obtained by means of the q-Gaussians line shapes 

from those deduced using Gaussian and Lorentzian functions.  We can also determine the value of q 

parameter for each component, and the position of its center. Of course, if the synthetic “experimental” 

curve that we use for the simulation is produced by pure Gaussian and Lorentzian functions, the fitting 

by means of q-Gaussians is suitable too, being Gaussian and Lorentzian functions two cases of q-

Gaussians. Then, to obtain further information about the role of q-Gaussians in Raman fitting, we must 

pass to the analysis of true experimental data. This is the subject of the second part of the proposed 

research work. 

 

11. Synthetic Organic Pigments 

Let us start from a spectrum of SOPRANO database (https://soprano.kikirpa.be/index.php?lib=sop , 

Fremout & Saverwyns, 2012).  The first Raman spectrum of this database that we consider  is named 

PO72. It is a synthetic pigment benzimidazolone (Creative Common Attribution – NonCommercial - 

NoDerivatives 4.0  License), https://soprano.kikirpa.be/index.php?lib=sop&id=PO72_A_785_kikirpa , 

analyst Wim Fremout. The first peak considered is that at 1595 cm−1.  Here in the following Figures 18 

and 19, the data and the best fit. The agreement is remarkable. The largest component has q=1.65.  

  

 

 

 

Fig. 18: Best fit (in green) of the spectral 

data (in red) regarding a peak of the 

SOPRANO PO72 spectrum. Arbitrary 

units on both axes.  

 

 

Fig. 19: Data, best fit and components. .  

Δ2 =  2.43 x 10−4 .of the same peak given 

in Fig.18. The components are three. 

From left to right, the fitting parameters 

are: q=1.01,  C=0.01223, σ=13.15;  

q=1.65, C=0.2673, σ=7.45 (large peak); 

and q=1.01, C=0.0067, σ= 36.25.  

https://soprano.kikirpa.be/index.php?lib=sop
https://soprano.kikirpa.be/index.php?lib=sop&id=PO72_A_785_kikirpa
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What happens if we use the Lorentzian function for the main peak? Here the result in the Fig.20. 

  

Fig. 20: Data, best fit and components.  Δ2 =  

1.93 x 10−3 . The components are from left to 

right Gaussian, Lorentzian and Gaussian. Note 

the difference in both kernel and wings. The 

fitting with the q-Gaussian function, given in 

Fig.19, is perfect, not that obtained with a 

Lorentzian function.  

 

 

 

Another spectrum that we consider is PBk31 (aniline black), available  

https://soprano.kikirpa.be/index.php?lib=sop&id=PBk31_A_785_kikirpa . The Raman shift between 

the two peaks is of 1579 cm−1. 

 

 

 

 

 

 

 

Fig. 21: Data, best fit and components.  

Δ2 =  2.33 x 10−3  . The components are 

two. From left to right, the fitting 

parameters are: q=1.60,  C=0.260, 

σ=2.76 and  q=1.01, C=0.158, σ=4.50.   

 

Then, let us consider PBr42, Cromophtal Brown RBN, available at the link 

https://soprano.kikirpa.be/index.php?lib=sop&id=PBr42_A_785_kikirpa . The peaks of the Raman 

shift are at 955 and 983 cm−1  respectively.  

https://soprano.kikirpa.be/index.php?lib=sop&id=PBk31_A_785_kikirpa
https://soprano.kikirpa.be/index.php?lib=sop&id=PBr42_A_785_kikirpa
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Fig. 22: Data, best fit and components.  Δ2 =  2.25 x 
10−3  . The components are two. From left to right, 

the fitting parameters are: q=1.875,  C=0.341, 

σ=2.633 and  q=1.125, C=0.059, σ=3.63.   

 

 

12. Baseline or component? 

Of the spectrum PV27, https://soprano.kikirpa.be/index.php?lib=sop&id=PV27_A_785_kikirpa, which 

is the violet Triarylcarbonium, we consider the two peaks at 1600 cm−1. Here we can investigate a 

further problem, related to the role of the baseline.  Let us start with the best fit with two components 

given in the following figure. As for the previously proposed fits, we used the baseline corrected data 

given by the web page.  

 

 

Fig. 23: Data, best fit and components. .  Δ2 =  1.28 x 10−3  . The components are two. From left to 

right, the fitting parameters are: q=1.162,  C=0.0992, σ=16.916 and  q=1.612, C=0.0984, σ=11.75..   

 

https://soprano.kikirpa.be/index.php?lib=sop&id=PV27_A_785_kikirpa
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The agreement is good. However, we have a small difference in the part of the spectrum between the 

two peaks and about the vertex of the first peak. To understand why there are these differences, let us 

consider the original data too. They are given in the following figure. We can use the original data and 

choose a local linear baseline (the green line), to have a different baseline correction. 

 

 

 

Fig. 24 – On the left, the corrected and the original data as given by the web page of Soprano. In the 

middle, the original data and a local linear baseline here used for fitting, to obtain a different best fit. 

On the right, the best fit with two components, with the data corrected with the local baseline. We have 

a better agreement. Parameters q are slightly changed into 1.12 and 1.48 respectively. 

 

 

 

 

 

Fig. 25: Best fit with three components. The q 

parameters of the two large peaks are 1.02 and 1,6 

respectively. 

 

 

 

In the Fig.24, we have proposed the best fit with two components. We can further investigate, for the 

same data, the role of a third component included in the fit. The result is given in the Fig.25. For the 

data here considered, and about the fitting with two or three components, a question can be posed: is 

the third component strictly necessary, or is it simply the result of an approximation in the choice of the 

baseline? We have used a local linear baseline, but a non-linear baseline could give us a better result, 

eliminating the necessity of the third component. 

 

13. Other peaks 

Of the spectrum PV27, https://soprano.kikirpa.be/index.php?lib=sop&id=PV27_A_785_kikirpa, let us 

consider the fitting of other peaks (baseline corrected).  

https://soprano.kikirpa.be/index.php?lib=sop&id=PV27_A_785_kikirpa
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Fig. 26: Best fit with three components. 

The q parameter of the large peak (216 

cm−1) is 1.012 (a Gaussian). 

 

 

 

 

Fig. 27: Best fit with three components. 

The largest peak is at the Raman shift of 

420 cm−1. The q-parameters of the blue 

and pink lines are 1.40 and 1.46 

respectively.  

 

 

 

 

 

Fig. 28: Best fit with three components. 

The largest peak is at the Raman shift of 

1180 cm−1. The q-parameter of the 

largest blue peak is 1.30.  
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