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Abstract: 

Marine ecosystem models are reasonably proficient at simulating physically-driven features such as 
spring blooms. However, the demands on these models are shifting to complex biological issues such 
as functional diversity, and changes in ecosystems and their services such as exploited fish stocks 
and carbon sequestration. Current ecosystem models generally use a food web structure reduced to 
its bare essentials. A consequence of the simplified structure is that they are specialized to a particular 
time, place and ecosystem state and thereby have limited ability to evolve into a substantially different 
state as a result of internal dynamics or changes in external forcing. We use food web theory and the 
ideas from complexity theory to argue that an improved representation of the structure of marine food 
webs is essential for the next generation of marine ecosystem models. Here we propose that a useful 
guiding principle for model design is provided by earth system models of intermediate complexity; a 
willingness to sacrifice process detail in order to increase the number of interacting components in the 
system and simulate the web of feedback loops. 
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1. Introduction 

 

Coupled physical-biological models of marine ecosystems have become reasonably 
proficient at simulating physically-driven features such as spring blooms (Doney et al. 
2001; Findlay et al. 2006; Sharples et al. 2006).  However, demands on marine 
ecosystem models are shifting to predicting functional diversity, ecosystem change and 
changes in ecosystem services such as carbon sequestration and production of 
exploited resources (IMBER 2005; Rothstein et al 2006). These demands clearly identify 
the need to develop ecosystem models that can deal with such questions without getting 
bogged down in unmanageable complexity.  
 

The purpose of this paper was to provide a vision for the future of marine ecosystem 
models for the ‘Symposium on Parameterization of Trophic Interactions in Ecosystem 
Modelling.’  The model structures and applications covered by the phrase ‘marine 
ecosystem models’ are very diverse and we recognize that ‘beautiful conceptual 
frameworks integrating all of the modelling applications break down in the face of the 
realities of modelling site specific problems for particular practical applications’ (Hannah 
2007).  The goal of this paper is more limited.  We ignore the details of any particular 
model or application and search for general principles that may be useful in guiding the 
development of the next generation of marine ecosystem models.  We will review the 
notion that making models more complicated makes them less accurate and then look to 
complexity theory, climate modelling and food web research for insight on modelling 
principles.  
 

The models discussed herein are biogeochemical-ecological in the sense defined by 
Tett and Wilson (2000).  That is they are biogeochemical in that they conserve at least 
one element (e.g. nitrogen, carbon, phosphorus) and they are ecological in that they 
‘include at least one degree of freedom amongst a set of state variables with a common 
conserved quantity’ (Tett and Wilson 2000).  The models are also assumed to be 
spatially explicit since the physical environment sets the stage for the ecosystem 
dynamics (Longhurst 2006). 
 

 

2. Accuracy and effectiveness 

 

A recent review of aquatic biogeochemical models (Arhonditsis and Brett, 2004) 
supports the commonly held notion that adding complexity to an ecosystem model does 
not improve the simulation; they found no systematic improvement in accuracy or 
predictive capability.  In the context of nutrient-phytoplankton-zooplankton (NPZ) models 
in the open ocean, Friedrichs et al (2006) show that in many cases a carefully tuned 
simple model can perform as well as a more complex model.  On the other hand, a 
pragmatic review of ecosystem models by Fulton et al. (2003) concluded that ‘The 
simplified webs, especially those reduced to less than 25% of the size of the original 
model web, are not able to represent enough of the processes and interactions in the 
system to faithfully reproduce system dynamics, particularly when the strength of 
environmental or anthropogenic pressures change.’ As well, Blackford et al. (2004) and 
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Friedrichs et al. (2007) provide examples where the generality provided by a complex 
model structure allows a single parameter set to provide useful skill in different 
environments (i.e. the models are portable).  
 

The idea that increasing model complexity decreases model accuracy was addressed by 
Costanza and Sklar (1985) in their analysis of freshwater wetlands models.  They 
showed that the maximum model accuracy (fidelity to the observations) decreased 
monotonically as a function of model complexity (Fig. 1a); their word was articulation, a 
function of spatial resolution, temporal resolution and number of state variables.  In other 
words, at the extreme of low complexity the models ‘said much about little’ and at the 
extreme of high complexity the models ‘said little about much.’  It is important to note that 
simplicity was not a guarantee of accuracy, most of the models did not achieve the 
accuracy frontier (Fig. 1a).   
 

Costanza and Sklar (1985) then devised a metric that reflected the need for both 
accuracy and a comprehensive description of the system.  They called the metric 
‘effectiveness’ (a combination of articulation and accuracy) and showed that the 
maximum effectiveness was for models of intermediate complexity (Fig. 1b).  Fulton 
(2001) extended the analysis to about 1800 models in a wide range of fields and found 
the same result; maximum effectiveness was for models of intermediate complexity  
 

The concept of effectiveness provides a framework for reconciling two ideas: 1) that 
when compared against common data, a highly tuned simple model generally out 
performs a more complex one; and 2) a more complex model can provide information 
about the system that is not available from the simple model (e.g. greater trophic or 
spatial resolution). Effectiveness is an attempt to quantify the trade off between the two 
and answer the question ‘Given the current state of modelling technology, how much 
complexity is useful?’  The answer will change over time; as the models improve the 
accuracy frontier will move towards the upper right in Fig. 1a and the effectiveness peak 
will move to the right in Fig. 1b.  
 

 

3. Insights from complexity theory  

 

The dominant scientific metaphor is Newton’s Third Law: for every action there is an 
equal and opposite reaction.  This law, developed in the context of simple physical 
systems, when taken as a metaphor, gives rise to a mechanistic view of the world with 
linear chains of cause and effect.  This world view implies that given the correct laws and 
good initial conditions one can confidently predict the time evolution of the system of 
interest.  While this view has been extremely useful and powerful, the advent of quantum 
mechanics and turbulence theory in the late 1800’s and early 1900s showed that the 
mechanistic view had limitations.  
 

As an alternative metaphor, consider the classic thought experiment of complexity 
theory, a sand pile (Bak et al 1987).  A pile of sand has a critical slope where for 
shallower slopes the pile is stable and for steeper slopes the pile is unstable (subject to 
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avalanches).  Consider a sand pile near the critical slope.  Then drop individual grains of 
sand onto the pile one at a time. Each grain introduces a small, and apparently identical, 
perturbation to the pile (the action).  The most common reaction is that nothing happens, 
however sometimes there is a small avalanche and occasionally there is a catastrophic 
avalanche.  The reaction of the system is not proportional to the action.  It turns out that 
there is a power law relationship between the magnitude of the events and the frequency 
that they occur (Fig. 2).  Similar relationships are observed for earthquakes (Bak and 
Tang, 1989; Sornette and Sornette, 1989), mass extinctions (Sneppen et al. 1995) and 
business failures (Cook and Ormerod 2003).  
 

One interpretation of the sand pile result is called sensitive dependence on initial 
conditions; for each drop of a grain, small differences in the details of the initial state 
control whether an avalanche happens.  This interpretation is also called the ‘butterfly 
effect’; the image whereby a butterfly flapping its wings may influence a chain of 
atmospheric events that leads to a tornado (Lorenz 1963; see Wikepedia 2007 for an 
overview).  This interpretation has been important for advances in numerical weather 
prediction.  Over the last 40 years there has been an enormous effort to improve the 
initial conditions for the numerical simulation from a combination of better observations 
and data assimilation.  As a result, the limits of deterministic predictability, a few days, 
have largely been achieved.   
 

Another interpretation of the sand pile is self organized criticality, the idea that complex 
systems naturally evolve to a state where they are near a critical point (i.e. they are 
stable most of the time but subject to dramatic changes such as avalanches).  This 
seems sensible in the context of a pile of sand.  The key insight from complexity theory 
is that systems that exhibit self organized criticality have achieved a balance between 
stability and chaos, or between positive feedbacks and negative feedbacks (Waldrop, 
1992).  They are stable enough to have persistent patterns and fluid enough to be able 
to transmit information: they are always changing.  In the case of the sand pile the 
positive feedback is the acceleration due to gravity and the negative feedback is friction.  
Even though Newton’s Third Law holds at the microscopic scale, the interactions 
between the many grains of sand gives rise to unexpected behaviour (avalanches).  
 

While self organized criticality is a theoretical model it can also be used as a metaphor: 
the key elements are listed in Table 1.  For example, Ormerod (2006) interprets a power 
law relationship in the statistics of business failures in the United States (Cook and 
Ormerod 2003) as evidence of self organized criticality in the economy and claims that it 
is a manifestation of the ‘Law of Unintended Consequences.’  He argues that in an 
economic system with an enormous number of interacting entities, no individual or 
corporate strategy group can anticipate all of the consequences of a particular business 
decision.  As a result, occasionally a decision gets made that leads to the failure of the 
company, through an unexpected chain of events.  
 

Self organized criticality is a special case of the more general idea of critical behaviour or 
criticality. Criticality can be loosely defined as follows. A phase transition is the 
movement of the system from one (mostly) stable state to another (an avalanche is a 
transition from one state of the sandpile to another). Criticality is the behaviour of the 
system near a phase transition.  Criticality arguments are now being used in theoretical 
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investigations in evolutionary ecology (Solé et al. 1999), food web dynamics and stability 
(Solé and Montoya 2001), and landscape ecology (Pascual and Guichard 2005). 
 

The importance of chaos and criticality for understanding and modelling marine 
ecosystems is not widely accepted in the oceanographic modelling community.  
However the existence of regime shifts (Hare and Mantau 2000; Sheffer and Carpenter 
2003; Choi et al. 2005) raises the distinct possibility that physics and chemistry are not 
sufficient to explain all the changes in marine ecosystems. The limitations of the 
Newtonian metaphor for ecological systems were revealed empirically by Hsieh et al. 
(2005). They found strikingly different dynamical behaviour in long time series of physical 
and ecological variables in the North Pacific. The time variation in physical variables 
could be modelled as the sum of a large number of linear modes whereas the variation 
in the ecological variables was best described by a few strongly nonlinear modes. The 
‘avalanche’ metaphor seemed more apt in describing the pattern in ecological variability 
and their response to physical variability than the ‘action-reaction’ metaphor. A recently 
published analysis of an 8-year mesocosm study run under constant environmental 
conditions comes closest to demonstrating chaotic dynamics in a plankton community 
(Beninca et al. 2008). The study showed that the time variability of any particular 
plankton group could not be predicted beyond 15 days, a temporal window related to the 
generation time. These studies illustrate that nonlinear complexity theory cannot just be 
considered academic; it should be taken seriously in approaching the development of 
marine ecosystem models.  
 

Despite the inherent difficulties in modelling systems that exhibit criticality, useful 
modelling and prediction is done in fields such as weather, climate, earthquakes, 
avalanches, and the economy.  A reasonable set of guidelines for how one approaches 
such systems is provided by Waldrop (1992) 
There is a need for extensive observations and ongoing monitoring;  
Deterministic prediction of future states is not possible, one can only predict the 
likelihood of certain events;  
There needs to be an ongoing search for nonlinear interactions and feedback loops.  
Whether or not marine ecosystems exhibit criticality, these seem like reasonable 
guidelines.  The next section of this paper focuses on feedback loops.  
 

  

4. Models and feedback loops 

 

Consider two broad categories of models: weather prediction and climate prediction. In 
atmospheric weather prediction, observations are used to prescribe the initial state and 
then the model predicts the state of the atmosphere over the next few days (the wiggles; 
Fig. 3).  Whereas in climate modelling the goal is to compute the mean state of the earth 
system (atmosphere, ocean, ice, land surface, hydrology) without recourse to 
observations and then predict changes in the mean state (e.g. climate change 
prediction).   
 

From the perspective of the atmospheric model the fundamental equations are the same 
for both the weather and the climate models; what differ are the feedback loops that are 
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included.  Weather prediction models tend to include feedbacks that operate on the time 
scales relevant to predicting the weather 24 to 48 hours in advance, whereas climate 
models include feedback loops that operate on longer timescales.  For example, in 
traditional weather forecast models the sea surface temperature (SST) is held constant 
as the impact of the changes in SST over a day or so have been thought to be small, 
whereas in climate modelling the ocean is an important component as the changes in 
SST play a major role in the evolution of the atmosphere.  
 

The quest for improved simulation has led both modelling communities to include 
feedbacks from other (non-atmospheric) components of the earth system such as air-
sea interactions (Chen et al. 2007; Zhang et al. 2006), land-atmosphere interactions (Dai 
et al. 2003; Brochu and Laprise 2007) and ice-ocean-atmosphere interactions (Pellerin 
et al. 2004).  In addition there has been a move towards ensemble prediction (prediction 
of statistics; Zhu 2005; Buizza et al. 2005) to deal with sensitive dependence on initial 
conditions and critical behaviour.  In a recent assessment of global climate models, 
Reichler and Kim (2008) found that the multi-model ensemble mean performed much 
better than any of the individual models.  This reinforces the importance of considering 
not only different initial conditions and parameter values but different model formulations 
(e.g. Gentleman et al 2003).  
 

For the purposes of this discussion the important conceptual difference between the 
weather prediction and the climate prediction models is that the weather prediction 
models are much more strongly constrained by observations.  A key feature of weather 
prediction over the last 40 years has been the development of the global observation 
network and the data assimilation technology to enable the models to take advantage of 
the observations in order to improve the initial conditions in order to combat the butterfly 
effect.  
 

Another way to think about the use of the observations is that key feedback loops have 
been cut and replaced by observations. For example in a model based on an NPZ 
structure, the community composition is embedded in the model’s rate parameters.  If 
the rate parameters are fixed then the implied community structure cannot change even 
if the natural response to the external forcing would be a change in community structure.  
Allowing the community composition (or the rate constants) to be determined by the 
model allows the model solutions more freedom to adjust to changing conditions but also 
provides the opportunity for the solution to wander off into states that differ greatly from 
the observed state.   
 

Although comparisons between physical and ecosystem models must be approached 
with caution, we suggest that the current generation of ecosystem (or NPZ type) models 
with typically 3-10 state variables share some characteristics with the weather prediction 
models (as defined above). For any given application, the choice of the number of state 
variables, the parameterizations, the biological rate constants and the selection of which 
feedback loops to simulate, means that the model has been specialized for a particular 
time, place and state of the ecosystem.  This allows one to understand the current state 
of the system and to make short term predictions.  But most of the feedback loops have 
been cut and this limits the ability of the system to evolve into a state substantially 
different from the original state.  As such the models are not able to simulate large 
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changes in community composition that might be expected to occur due to climate 
change or anthropogenic impacts (e.g. eutrophication or removal of large predators).  
 
5. Insights from food web theory  

 

So far, we have argued that systems that exhibit critical behaviour are poised between 
stability and rapid transitions to alternative states and that critical feedback loops must 
be included in models to reproduce these transitions. The interplay between complexity, 
stability and feedbacks has pre-occupied theoretical ecologists for decades. A major line 
of inquiry started with May’s (1972) seminal finding that community models (based on 
Lotka-Volterra equations) become increasingly unstable as they become more complex, 
in opposition to a large body of field and experimental observations which pointed to 
ecosystem complexity (biodiversity) as a positive influence on ecosystem resilience and 
stability. Many person-years of research have been expended in resolving this 
conundrum and, although the answers are not in by any means, some of the findings 
from that body of work link back to the ideas we raised above and can provide guidance 
in the development of marine ecosystem models.  
 

One general finding is that the structure of the food web matters, independently of the 
details of how each compartment in the model functions. For example, randomly 
connected webs do not result in stable, functioning ecosystems (Martinez et al. 2006) 
and they are not found in nature anyway (Lawlor 1978). Apparently, there is no neutral 
model of food web structure comparable to the neutral model of community assembly. 
There is continuing research for theories that explain observed food web structures with 
the least number of assumptions (maximum parsimony). A model popular in the late 
1980s-early 90s was the cascade hypothesis (Pimm et al. 1991). This model assigned 
food web links randomly subject to two constraints: (1) all feeding relations are 
hierarchical (e.g. the large eat the small) and (2) species only feed lower in the 
hierarchy. This model enjoyed some initial success when synthetic food webs generated 
from it seemed to compare well with empirical food webs. However, this early success 
turned out to be due in good measure to limitations of the data. As better and more 
detailed data on food web structure came in, the cascade model was shown to be 
inadequate (Williams and Martinez 2000) and tends to be dynamically unstable 
(Martinez et al. 2006). This has implications for the strict feeding hierarchy that is a 
common feature of marine ecosystem models (Armstrong 1999). 
 

An alternative to the cascade model is the niche model proposed by Williams and 
Martinez (2000). The niche model retains the feeding hierarchy, but randomly assigns 
each consumer (or predator) a niche value (where they fall on the hierarchy) and a 
feeding range whose mid-point is less than the consumer with a higher niche value. A 
consumer then eats from all the species that fall in its assigned range. This model leads 
to synthetic food webs with cannibalism, omnivory (feeding on more than trophic or niche 
level) and trophic overlap (consumers share resources). All these features have been 
found in empirical food webs, including marine food webs (Link 2002). They have also 
long been proposed as stabilizing features of food web dynamics (Kuijper et al. 2003; 
Emmerson and Yearsley 2004). As a result, the niche model is having good success in 
reproducing empirical patterns (Jordàn and Scheuring 2004) as well as in producing 
food web models with good stability properties (Martinez et al. 2006). In particular, a 
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niche structure improves persistence of species in model food webs, i.e. it minimizes the 
risk of extinction. Marine ecosystem models that explicitly model omnivory (Armstrong 
2003, Pahlow et al 2008) may find additional justification here. 
 

Marine ecosystem models however are not only about connections but also about flows 
of matter and energy among compartments. From a theoretical ecological perspective, 
this brings in the concept of interaction strength. Interaction strengths are derived from 
the well-known Lotka-Volterra equations (Jordan and Scheuring 2004). They quantify 
how much changes in the abundance of one species directly affect the abundance of 
another species (there are also indirect effects that are not included). They are 
phenomenological and are independent of any specific mechanistic interaction between 
pairs of species.   They are exceedingly difficult to measure in practice (Berlow et al. 
2004), and only in experimental settings or in well defined ecosystems that can be 
followed over extended periods of time. Nevertheless, the study of interaction strengths 
in models and in the real ecosystems has been a central feature of community ecology 
for a long time. 
 

Early food web models assumed that interaction strengths are randomly distributed (May 
1972, 1973). Empirical research however established that most interaction strengths are 
weak, that is, most species really have very little influence on others, with only a few 
strong interactions (Paine 1980, Berlow 1999). Therefore, the distribution of interaction 
strengths in a complex food web is not random but skewed towards weak interactions.  
Theoretical research has also shown that models that are built on weak interactions are 
more stable than models built on strong interactions (McCann et al. 1998, Kokkoris et al. 
1999). Most importantly, models skewed towards weak interactions can grow in 
complexity without loosing stability; thus apparently resolving the conundrum raised by 
May’s (1972, 1973) work. However, what is more important is the pattern of interaction 
strengths, i.e. how the few strong interactions are coupled to the many weak ones (De 
Ruiter et al. 1995, Neutel et al. 2002). Recent research suggests that the stability of 
complex food webs may depend on long feedback loops that involve multiple trophic 
levels (at least 3) and coupling of weak and strong chains of interactions (Rooney et al. 
2006, Neutel et al, 2007). These results support the finding from Fulton et al. (2003) that 
excessive truncation of food webs in models leads to unrealistic results.  
 

We have argued here that we need to include all the necessary feedbacks in order to 
predict ecosystem dynamics beyond the near term.  Food web ecologists have been 
pioneers in the analysis of complex networks. Many decades of research have provided 
strong evidence that the structure of the ecosystem is central to its function, as is the 
case with other types of complex networks (Strogatz 2001). The theoretical focus on 
ecosystem stability and persistence is increasingly relevant to marine ecosystem 
modelling as we move towards models with multiple functional groups (Le Quéré 2005, 
Hood 2006). There are still very significant challenges in modelling the regional and 
global distribution of functional types (Anderson 2005), in particular preventing the 
simulation of “kingdoms” where one functional type dominates and others become 
extinct or near extinct (Gregg et al. 2003; Le Quéré et al. 2005). Drawing on food web 
theory might help design models that are more robust and where functional groups are 
more persistent. 
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One major difference between the class of models investigated in food web theory and 
the models commonly developed and applied in marine biogeochemistry and ecology is 
the greater importance of environmental forcing in the latter. Marine models assume that 
biogeochemical and ecological variability is largely determined by the physical 
environment (Friedrichs et al. 2006). Ecosystem models coupled to physical models are 
closer to linear webs that are controlled largely by external inputs (e.g. nutrients), and 
such webs tend to be globally stable or persistent (McCann 2000, Woods et al. 2005). 
The lessons from food web theory therefore may be less applicable than portrayed here. 
On the other hand, the importance of external forcing in controlling ecosystem dynamics 
in the ocean may be overstated. Apart from the evidence of different dynamics in 
physical and ecological time series (e.g. Hsieh et al 2005) and of ecological variability 
independent of physics (Beninca et al. 2008), f-ratios (the ratio of allochthonous to 
recycled nutrients in fuelling marine food webs) are low over most of the oceans and 
over non-bloom periods ( Laws et al 2000).  Under these conditions, questions of 
structure and stability similar to those asked of community (Lotka-Volterra) models 
become relevant (e.g. Lima et al. 2002). 
 

6. The way forward  

 

A major issue in designing an ecosystem model is how to provide a reasonable 
representation of the overall structure of the food-web without drowning in a sea of state 
variables and unconstrained parameters.  This issue is often characterized as a choice 
between adding more state variables to explicitly represent more of the components of 
the ecosystem and using a small number of state variables with sophisticated 
parameterizations that allow the internal dynamics to evolve in response to the state of 
the system (e.g. Denman 2003).  In short a choice between ‘lots of dumb boxes’ and ‘a 
few smart boxes.’   
 

An approach developed by some members of the climate modelling community is called 
Earth System Models of Intermediate Complexity (EMICS; Claussen et al. 2004).  The 
driving force was the need to have computationally tractable models while 
acknowledging the need to include more components of the earth system in a spatially 
explicit framework.  The overall philosophy is a willingness to sacrifice process detail in 
order to increase the number of interacting components (e.g. atmosphere, ocean, ice, 
hydrological cycle, land surface).  The approach is a philosophy not a prescription; a 
range of different approaches have been tried.  
 

The primary assumption of the intermediate complexity approach is that the entire 
system needs to be modelled in order to simulate the large scale features and the 
response to external forcing.  This approach accepts that sacrificing process detail and 
spatial and temporal resolution will result in an increasing disconnect (or misfit) between 
local data and model predictions as one move up the trophic-size scale.  In some cases, 
the connection to local (species specific) data may have to be provided by detailed 
models for specific applications which are driven by the intermediate complexity model.  
A similar approach was proposed by Kareiva et al. (2005) following an extensive review 
of ecosystem models for all parts of the biosphere. 
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The differences between the intermediate complexity approach and the rhomboid 
approach of de Young et al. (2004) are largely a matter of emphasis.  The approach 
advocated here emphasizes the need to model the entire system in order to provide the 
proper virtual environment for the detailed species models. The rhomboid emphasizes 
the increased trophic resolution at the level of interest and presupposes the existence of 
a model of the entire system.  The proposed approach also contrasts with the 
incremental approach where additional components are added to a truncated food web 
only when they can be justified by improved agreement with observations (e.g. Anderson 
2005).  
 

Incorporating more complete representations of food web structure into marine 
ecosystem models will inevitably push them towards increased complexity. Anderson 
(2005) and Hood et al. (2006) among others rightly point out that model performance is 
likely to fall with increasing complexity because of the effect of the large number of 
unconstrained parameters.  We argue that the decline in accuracy is not a sufficient 
reason to reject a more complex model structure. The effectiveness metric (Constanza 
and Sklar 1985) attempts to quantify the trade-off between model accuracy and a more 
comprehensive description of the system. The community needs such a framework to 
guide us to the complexity level that is justified by our current understanding of 
processes and our ability to constrain them with data. Friedrichs et al. (2007) by looking 
at both accuracy and portability of the models have made a useful start in that direction.  
The potential links between effectiveness and portability remain to be explored.  
 

Two recent attempts to model complete aquatic ecosystems contain aspects of the 
intermediate complexity approach.  The Bay Model 2 (BM2) of Fulton et al. (2004) and 
the Lakeweb model of Håkanson and Gyllenhammer (2005) used coarse spatial, 
temporal, and trophic resolution in order to include many of the interacting components.  
In the context of global biogeochemistry, Le Quéré et al (2005) developed a more 
complex version of an NPZ model to better capture the variability in plankton and 
biogeochemical properties. They sacrificed biological process detail by using simple 
internal dynamics in order to include 10 plankton functional types embedded in a global 
ocean model.   
 

Model validation is crucial for weeding out weak approaches and keeping the models 
and modellers on track.  This is admittedly more difficult as the models become more 
complex. In that context, the validation has to go beyond the comparison of point data 
towards testing whether the models capture the main features and statistics of 
ecosystem structure. Output could be compared to findings from macro ecology, which 
describes broad scale patterns in the terrestrial and more recently oceanographic 
ecosystems (Li 2002). The self-organizing maps of Allen et al. (2007) provide a novel 
approach to validation based on broad patterns across multiple variables.  Validation on 
statistics rather than point data meshes well with the theoretical and empirical evidence 
that ecosystems display nonlinear and even chaotic dynamics that place fundamental 
limits on the predictability of the system.  
 

Experience in other fields suggests that the way to deal with limits on predictability is to 
abandon the reliance on deterministic prediction and explore the suite of possible 
outcomes from many model runs with different initial conditions and model formulations.  
We need to move towards ensemble prediction that makes probabilistic statements and 

  10



assesses the likelihood of events rather than focussing on the mean trajectory of the 
system. In that sense, more complex models may be more effective than the simpler 
models in revealing the full range of dynamic behaviour that is consistent with our 
current understanding. 
 

Findings from food web theory clearly support a more comprehensive coverage of the 
food web than is common in marine ecosystem models.  The stability properties of food 
webs appear linked to long feedback loops that integrate structure and dynamics across 
all trophic levels. Truncated food webs may not be able to reproduce the dynamics of 
these systems and their responses to environmental change. But food web theory may 
also help in the design and parameterization of more complex marine ecosystem 
models. High level rules such as “some food web structures are better than others at 
producing stable and persistent food webs” and “Interaction strengths are patterned to 
maximize stability” can help constrain structure and parameters. When coupled to the 
growing field of metabolic ecology which sets constraints on organism activity, 
abundance, and trophic structure, based on body size and temperature (Brown et al. 
2004; Woodward 2005), the parameterization of more complex models may be more 
tractable than is sometimes allowed.  
 

The concepts of unpredictable behaviour and system stability may seem contradictory. 
However, the definition of stability that underpins much of the recent work on ecosystem 
structure and dynamics is not an equilibrium view. Many of the results are based on non-
equilibrium definitions of stability, considering the variance of fluctuating populations, 
rather than the speed of return to equilibrium. In that context, non-equilibrium dynamics 
and structural properties that confer stability are actually complementary facets of the 
same view of ecosystems as continuously changing, yet persistent, systems.  The idea 
of community, rather than population, stability (Tilman 1996) is broadly consistent with 
the idea of dynamic stability.  
 

While encouraging the development of complex models, we do not discount the 
importance of simpler models that provide both insights into processes and prediction 
models for specific questions (Harte 2002; Peters 1991). The proposal here is for a 
system view (or simulation model in the sense of Harry, 2003) that integrates the 
separate processes and feedback loops into a framework for assessing possible state 
changes (e.g. regime shifts) and the occurrence of extreme events.  
 

We have argued that including a comprehensive description of the structure of marine 
food webs is central to the design of the next generational of marine ecosystem models; 
it is not simply a desirable feature.  This would represent a transition from 
biogeochemical to ecological models (Tett and Wilson 2000).  We propose that a useful 
guiding principle is provided by the earth system models of intermediate complexity, a 
willingness to sacrifice process detail in order to increase the number of interacting 
components in the system and simulate the web of feedback loops.  
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Tables 

 

Table 1.  The key elements of self-organized criticality (and the sand pile) as a metaphor  

 

1 The system naturally evolves towards a critical state, i.e. it is ‘self organized’; 

2 The dominant feature is small scale interactions between a large number of entities 

(the grains of sand); 

3 These interactions (or feedback loops) can lead to large scale events; 

4 There is not necessarily an action-reaction relationship between the observed forcing 

and the observed response, in other words, unobserved changes in the system can 

lead to observable consequences (e.g. avalanches). 

5 Prediction of the detailed evolution of the system is not possible, however, 

probabilistic prediction is.  
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Figures 

 

 

 

 

 

Fig. 1: a) Accuracy as a function of articulation from the review of wetlands models by 
Costanza and Sklar (1985), where articulation is a proxy for model complexity.  The 
‘accuracy frontier’ is an estimate of the maximum possible accuracy as a function of 
articulation for wetlands models at the time of the review.  b) Model effectiveness as a 
function of articulation from Costanza and Sklar (1985).   The effectiveness frontier is 
their estimate of the maximum possible effectiveness as a function of articulation for 
wetlands models at the time of the review.  The panels are redrawn from Costanza and 
Sklar (1985).   
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Fig. 2: A power law relationship between the frequency of occurrence and the intensity 
of the events.  
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Fig. 3: Schematic of the difference between weather prediction models (a) and climate 
models (b) for the purposes of this paper.  In each panel the black line represents the 
fluctuations (or wiggles) about the mean (or observed state) and the grey line represents 
the mean state which changes in panel b). In the weather prediction family the model 
predicts the fluctuations about an observed state whereas in climate prediction family the 
model must predict the changes in the mean state and the fluctuations (or at least the 
statistics of the fluctuations which often contribute to the maintenance and evolution of 
the mean state).  
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