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ABSTRACT

Over the past two decades, emerging data have found that YKL-40, a secreted
glycoprotein, is elevated in a broad spectrum of human diseases including cancers, liver
injury, asthma, diabetes, inflammatory diseases, and cardiac disorders. In breast
cancer, increased serum levels of YKL-40 are correlated with cancer metastasis and
short survival, suggesting that serum levels of YKL-40 serve as a cancer biomarker.
YKL-40 has the ability to stimulate vascular endothelial cell activation and suppress
mammary epithelial cell differentiation, the pathophysiological events associated with
tumor angiogenesis and poor differentiation. Neutralization of YKL-40 via an anti-YKL-
40 monoclonal antibody in animal trials demonstrates the ability of YKL-40 blockade to
impede tumor angiogenesis and tumor growth, thus holding therapeutic promise for
cancer therapy. Apart from these findings, substantial efforts are urgently required to
decipher the key molecular mechanisms that mediate cancer metastasis and
malignancy, which is expected to significantly offer translational value for breast cancer
diagnosis, prognosis and therapy. This review discusses the current status of research
on YKL-40's expression, biophysiological and pathological activities and functional
inhibition, which is instrumental for future clinical practice.
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INTRODUCTION

YKL-40, also known as human cartilage glycoprotein-39 or chitinase-3-like-1, is a secreted
glycoprotein originally identified from culture medium of a human osteosarcoma cell line MG-
63 (Johansen et al., 1992). Structural analyses of YKL-40 have demonstrated that YKL-40 is
highly conserved in mammals including: human (Hakala et al., 1993), porcine (Shackelton et
al., 1995), cow (Rejman and Hurley, 1988), mouse (Lian et al., 2006), rabbit (De Ceuninck et
al., 2001) and goat (Mohanty et al., 2003). Putative YKL-40-like proteins were also identified
in Drosophila (Kawamura et al., 1999), bacteria (Kzhyshkowska et al., 2007) and oyster
Crassostrea gigas (Badariotti et al., 2006). Human YKL-40 protein contains an open reading
frame of 383 amino acids with a molecular mass of 40 kDa and it is a member of glycoside
hydrolase family 18. This family contains chitinases, but YKL-40 does not have
chitinase/hydrolase activity because of the substitution of an essential glutamic acid with
leucine in the chitinase-3-like catalytic domain; it only binds to chitin-like oligosaccharides
(Fusetti et al., 2003; Renkema et al., 1998). YKL-40 is normally expressed by a number of
different cell types that include chondrocytes (Hu et al., 1996), synoviocytes (Nyirkos and
Golds, 1990), vascular smooth muscle cells (Shackelton et al., 1995), macrophages (Rehli et
al,, 1997) and neutrophils (Kzhyshkowska et al., 2007). However, its biophysiological
function in those cells is incompletely understood.

Mounting evidence has indicated that YKL-40 mediates pathogenesis of multiple
inflammatory diseases, including bacterial infections (Kronborg et al., 2002), rheumatoid
arthritis (Nielsen et al., 2011), osteoarthritis (Volck et al., 2001), hepatic fibrosis (Pizano-
Martinez et al., 2011) and hepatitis (Fontana et al., 2010; Johansen et al., 2000), asthma
and chronic obstructive pulmonary diseases (Park et al., 2010), neuroinflammation (Bonneh-
Barkay et al., 2011) and bowel lesion (Vind et al., 2003). Though molecular mechanisms
underlying these inflammatory disorders are largely elusive, it has been suggested that YKL-
40 is associated with substantial remodeling of extracellular matrix and extensive infiltration
and differentiation of macrophages, the primary leukocytes in response to inflammation.
Studies with YKL-40 deficient mice offered strong evidence supporting this hypothesis, as
these mice exhibited markedly diminished antigen-induced Th2 inflammation and impaired
macrophage activation and differentiation (Lee et al., 2009). In addition, YKL-40 was found
to regulate mitogenesis and survival of fibroblastic cells that participate in tissue injury and
wound repairing (Recklies et al., 2002).

Over the past decade, multiple independent studies have demonstrated that high serum
levels of YKL-40 are correlated with metastasis and poor survival in a variety of human
carcinomas such as breast cancer (Jensen et al., 2003), colorectal cancer (Cintin et al.,
1999), ovarian cancer (Hogdall et al., 2003), leukemia (Bergmann et al., 2005), lymphoma
(Hottinger et al., 2011) and glioblastoma (Pelloski et al., 2005), suggesting that serum levels
of YKL-40 serve as a diagnostic and prognostic cancer biomarker. A crucial regulatory
mechanism was reported to be associated with an angiogenic signature of YKL-40 in the
development of breast cancer and glioblastoma (Francescone et al., 2011; Shao et al.,
2009). The primary focus of this article is to discuss pathophysiological properties of YKL-40
that were identified recently in breast cancer development, thus shedding light on
translational significance in cancer diagnosis and unveiling a novel target potential for cancer
therapy.
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1. YKL-40 in Normal Mammary Gland Development

The adult mammary gland primarily consists of a lobuloalveolar structure with three distinct
cell lineages: myoepithelial cells that form the basal layer of ducts and alveoli, ductal
epithelial cells that line the lumen of ducts and alveolar epithelial cells that synthesize milk
proteins (Russo et al., 1982). During puberty, these cells are able to proliferate and
orchestrate epical-basal luminal buds also referred to as acini, a basic functional unit of the
mammary gland (Hennighausen and Robinson, 2001). Varied levels of YKL-40 were found
in ductal epithelial cells of non-pregnant human and mouse mammary tissue (Figure 1)
(Scully et al., 2011; Shao et al. 2011). During pregnancy and lactation, the mammary glands
undergo vigorous proliferation and differentiation into fully branched ductal network that
develops a secreted duct system capable of producing and collecting milk protein. YKL-40
levels were noticeably evaluated in the ductal epithelial cells from weaning tissue in mice
(Figure 1B). But this strong induction is transient; after involution, the remaining ducts
markedly decreased expression of YKL-40 (Figure 1B), implicating that its function is
associated with mammary gland remodeling and regression. Consistent with these findings,
milk levels of YKL-40 in goat and bovine were increasingly detectable during weaning
(Mohanty et al., 2003; Rejman and Hurley, 1988; Yamada et al., 2002). YKL-40 secretion
was also found in human lactating mammary gland (Roslind et al., 2007a).

A

Human benign breast tissue

Fig. 1. Expression of YKL-40 in normal breast tissue from human and mice
A. In humans at age between 30 and 40, some of benign breast tissue does not express levels of YKL-
40 and some expresses YKL-40 by ductal epithelial cells. B. In mice, mammary tissue of virgin (12-
week old) and parous (10-month old) animals expresses low levels of YKL-40, whereas the tissue at
the initiation of involution (3-weeks after giving birth) demonstrates extensive accumulation of YKL-40
in secreted duct lumen. Bars: 100 mm.
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To simulate an in vivo environment for ductal morphogenesis, a 3-D Matrigel culture system
was established as an in vitro model capable of recapitulating ductal epithelial properties
including cell differentiation, secretion and polarization in the presence of lactogenic
hormones (Debnath et al., 2003; Lee et al., 2007). YKL-40 exhibits the ability to inhibit ductal
epithelial differentiation and polarization (Scully et al. 2011). This inhibitory property of YKL-
40 was found to be at least partially associated with decreased expression of E-cadherin and
increased expression of MMP-9. Reduced E-cadherin led to the loss of intercellular adhesion
and impaired the integrity of apical-basal polarity, the process that occurs during mammary
gland involution (Vallorosi et al.,, 2000). In addition, decreased E-cadherin in mouse
mammary epithelial cells correlated with increased expression of MMPs, both of which
synergistically disrupt cell polarity and contribute to increased cell motility (Xian et al., 2005).
In animal models, xenotransplantation of pre-cleared mouse mammary fat-pad tissue with a
normal mammary epithelial cell line 76N MEC ectopically expressing YKL-40 did not commit
the mammary gland to undergo pathogenesis towards epithelial dysplasia, hyperplasia, or
carcinogenesis, indicating that over-expressed YKL-40 alone is insufficient to develop
mammary tumors (Scully et al., 2011). However, it remains to be determined whether YKL-
40 in coordination with other oncogenic factors (e.g. Ras) is essential for the formation of
breast cancer.

2. Serum Levels of YKL-40 in Cancer Patients—a Potential Diaghostic and
Prognostic Marker

A multitude of clinical studies have revealed that serum levels of YKL-40 were elevated in
patients with a series of carcinomas including breast (Jensen et al., 2003), colorectum
(Cintin et al., 1999), ovary (Hogdall et al., 2003), prostate (Kucur et al., 2008), brain (Pelloski
et al., 2005) and blood (Bergmann et al., 2005). These increased levels were correlated with
poorer survival of cancer patients (Bergmann et al., 2005; Cintin et al., 1999, 2002; Hogdall
et al., 2003; Jensen et al., 2003; Johansen et al., 2003; Pelloski et al., 2005), suggesting that
serum levels of YKL-40 serve as a prognostic cancer biomarker (Johansen et al., 2009). In
breast cancer, increased serum levels of YKL-40 were found in 19% of patients with primary
cancer (Johansen et al., 2003) and 30% of patients with metastatic cancer (Jensen et al.,
2003), supporting the notion that YKL-40 is associated with cancer aggressiveness (Cintin et
al., 2002; Jensen et al., 2003; Johansen et al., 2004).

Jensen et al. surveyed 78 age-matched healthy females and 100 breast cancer patients with
local regional metastasis and distant metastasis including bone, lung and liver tumor and
found that serum levels of cancer patients were significantly higher than those observed in
healthy subjects (an average of 137 ng/ml vs. 97 ng/ml, p<0.0001) (Jensen et al., 2003). In
addition, an analysis of over 5-year survival showed that the median survival of patients with
serum level of YKL-40 <168 ng/ml was 2.4-fold longer than patients with its levels >168
ng/ml (95% CI:1.8-4.3, p=0.00003). 93% (28 of 30) of the latter cancer populations
developed distant metastasis in which patients with liver metastasis demonstrated the
highest serum levels of YKL-40 (an average of 230 ng/ml, 96-832 ng/ml). They also reported
that high serum levels of YKL-40 were a stronger predictor of survival vs. other breast
cancer markers such as Her2/neu and estrogen receptor (ER), thus serving as an
independent, sensitive biomarker. These findings were supported by a different study
(Yamac et al., 2008), validating that the serum levels of YKL-40 are a prognostic marker of
breast cancer.

In an attempt to determine if testing serum levels of YKL-40 can be utilized to evaluate
therapeutic efficacy, Coskun et al. measured serum levels of YKL-40, MMP-2 and MMP-9 in
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27 patients with locally metastatic breast cancers after receiving neoadjuvant therapy (5-
Fluorouracil, Doxorubicin and Cyclophosphamide) (Coskun et al., 2007). In a subset
responsive to these therapies (n=21), the serum levels of YKL-40 were decreased by 26.7%
(from an average of 146.4 to 107.3 ng/ml), whereas its serum levels from the non-responsive
group (n=6) were unchanged. In contrast, neither MMP-2 nor MMP-9 was altered in these
enrolled populations. These data suggest that testing serum levels of YKL-40 informs
additional value for directing therapeutic strategies in breast cancer treatment.

Apart from above described potential applications of YKL-40, its serum levels were also
implicated in early detection of some cancers including breast and ovarian cancer (Dupont et
al., 2004; Qin et al., 2007). For example, Dupont et al. (2004), compared sensitivity of three
ovarian cancer biomarkers YKL-40, CA125, CA15-3 in 30 ovarian cancer patients with stage
I and Il and found that preoperative serum levels of YKL-40, CA125 and CA15-3 were
evaluated in 20(65%), 11(35%) and 4(13), respectively, suggesting that YKL-40 was more
likely to detect early stages of the cancer than CA125 and CA15-3 (p=0.039). In breast
cancer, a high incidence (95%) of the cancer was diagnosed in menopausal women at age
over 40 when estrogen dramatically declines and the majority of these cancers (60-90%) are
estrogen-dependent and responsive to ER-directed therapy, demonstrating a favorable
prognosis. But, the population of estrogen-independent patients may be associated with
increased levels of YKL-40, based on the findings that YKL-40 expression by cancers was
negatively correlated with ER (see below) and serum levels of YKL-40 were more sensitive
in prediction of patient survival than ER (Jensen et al., 2003). Therefore, testing serum levels
of YKL-40 may hold promise for the early diagnosis of breast cancer, a population that
probably predicts worse outcome.

3. Breast Cancer Expression of YKL-40

Analyses of differential gene expression profiing have showed significantly higher
expression levels of YKL-40 in carcinoma tissues from breast, ovary and brain than those in
adjacent normal tissues, including gene microarray and serial analysis of gene expression
(SAGE) (Lal et al., 1999; Lau et al., 2006). Consistent with these data, several independent
studies with large cancer cohorts from different laboratories including ours demonstrate that
YKL-40 expressed by breast cancer is associated with clinical outcomes (Kim et al., 2007;
Roslind et al., 2007b; Shao et al., 2011). Breast cancers at early stages such as ductal
carcinoma in situ (DCIS) expressed low and medium levels of YKL-40 (Shao et al., 2011). In
a survey of 203 cases of infiltrating ductal carcinomas (IDC), we found that 121 of 203 cases
(59.6%) exhibited negative or low expression of YKL-40 and 82 patients (40.4%) were YKL-
40-positive in which 43 patients (21.1%) displayed strong expression of YKL-40 and 39
patients (19.2%) expressed medium levels of YKL-40 (Shao et al., 2011). Elevated YKL-40
expression was strongly associated with high tumor grade (p<0.0001). This population
(21.1%) of strong YKL-40-positive cancers was similar to patients containing elevated serum
levels of YKL-40 reported previously (20-24% of patients) (Johansen et al., 2003; Johansen
et al., 1995), implicating that serum levels of YKL-40 may reflect its strong tissue expression.
However, in the study of relationship between tissue levels of YKL-40 and tumor malignancy,
we found that cancer tissue expression, contrary to its levels in the blood, was not correlated
with distant metastasis, overall survival or disease-free survival in 8-year follow-up studies
(Shao et al., 2011). This finding was reinforced by the others surveying 630 breast cancer
patients (Roslind et al., 2007b), indicating that testing tissue levels of YKL-40 alone is not
sufficient to predict cancer prognosis. YKL-40 levels in cancer were associated with
expression of Her2/neu (p<0.01), but were inversely correlated with ER, progesterone
receptor (PR) (p<0.0001), GATA3 (p=0.0137) and E-cadherin (p=0.0417) (Kim et al., 2007;
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Shao et al., 2011), suggestive of its association with cancer dedifferentiation. Interestingly,
some of their divergent relationships were also reported. For instance, elevated expression
of YKL-40 in breast cancer was found to correlate with both positive levels of ER and PR
(Roslind et al., 2007b) and short disease-free survival (Kim et al., 2007). The reasons for
these discrepancies are still unclear and may be attributed to the different quantification
analyses and agents engaged for IHC analysis in cancers (Shao et al. 2011). Nevertheless,
all the data demonstrate that expression levels of YKL-40 by cancer tissue are associated
with cancer dedifferentiation and other breast cancer markers, which may enhance cancer
diagnosis.

4. Pathological Function and Molecular Mechanisms of YKL-40 in Breast
Cancer Development

Owing to lack of its chitinase activity, the pathological role of YKL-40 in cancer development
is not fully understood. Recently, Chen et al. have reported that a chitin-binding motif located
between 325 and 339 amino acid residues at the C terminus of YKL-40 is critical for YKL-40
activities in colonic epithelial cells (Chen et al., 2011a; Chen et al., 2011b). But it needs to
be further identified if a single amino acid residue is the key element for YKL-40 function. In
breast cancer, evidence from patient's specimens and xenografted animal models has
provided new mechanistic insights into YKL-40-induced tumor development (Shao et al.,
2009). Cancer tissue expression of YKL-40 from IDC patients was positively correlated with
CD34 density, a vascular endothelial cell marker (p=0.006). In animal studies, a breast
cancer line MDA-MB-231 and a colon cancer line HCT-116 engineered to express ectopic
YKL-40 gave rise to four and eightfold larger tumors than ones formed from their
corresponding control cells. Accordingly, the levels of blood vasculature formed in YKL-40-
expressing HCT-116 and MDA-MB-231 tumors were 1.8 to 2.0-fold greater than those in
control tumors, demonstrating that YKL-40 acts as an angiogenic factor to promote tumor
development. Such angiogenic signature of YKL-40 was also validated in glioblastoma, the
most lethal primary brain tumor characterized by strong vascularization (Francescone et al.
2011). Furthermore, YKL-40 is appreciated to regulate VEGF production in glioblastomas,
thus synergistically enhancing tumor angiogenesis.

In concert with these findings in vivo, YKL-40 is able to induce endothelial cell migration and
tube formation in vitro (Malinda et al., 1999). The molecular mechanisms underlying YKL-40-
induced angiogenesis involve the co-activation of membrane receptor syndecan-1 and
integrin a,B3 through binding to heparan sulfate that is present in syndecan-1 on the cell
surface (Shao et al., 2009). YKL-40 activates intracellular signaling effectors focal adhesion
kinase (FAK) and MAP Kinase that mediate endothelial cell adhesion and motility. Although
membrane receptors specific for YKL-40 binding have not yet been identified, the heparin-
binding affinity of YKL-40 appears to be essential for its activity, resembling the heparin-
binding property of other proteins such as the extracellular matrix protein vitronectin and
angiogenic factors bFGF and VEGF (Beauvais et al., 2004; Bernfield et al., 1999; Shao et
al., 2009).

In addition to the ability of YKL-40 to drive tumor vessel formation, YKL-40 directly enhances
tumor cell mobility and invasiveness. For instance, YKL-40, induced by transcription factors
NFI-X3 and STAT3, promotes glioma cell migration and invasion (Singh et al., 2011). YKL-
40 up-regulates other tumor-promoting factors (e.g. MMP-2) that participate in tumor
metastasis (Ku et al.,, 2011). In addition, YKL-40 also demonstrates the capability of
stimulating inflammatory mediators such as C-chemokine ligand 2(CCL2) and chemokine
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CX moatif ligand 2(CXCL2) from splenic macrophages; thereby, enhancing tumor metastasis
in xenotransplanted animal models (Libreros et al., 2012).

5. YKL-40 Blockade Potential for Therapeutic Application

To date, little is known about specific inhibition of YKL-40's function. A key barrier of
inhibitory approaches is insufficient knowledge about functional domain(s) of YKL-40. We
recently developed a neutralizing anti-YKL-40 antibody (named mAY) from mice immunized
against recombinant YKL-40 (Faibish et al., 2011). mAY markedly suppressed YKL-40-
induced angiogenesis both in cultured cells and xenografted animal models. In addition,
mAY abolished YKL-40-induced activation of membrane receptor VEGF receptor 2 (FIk-
1/KDR) and intracellular signaling MAP kinase Erk 1 and Erk 2 in vascular endothelial cells.
mAY was also found to facilitate death response of tumor cells U87 to y-irradiation through
decreased expression of pAKT and AKT. Such pre-clinical studies offered therapeutic
promise for the possible development of a humanized anti-YKL-40 antibody in treatment of
advanced breast cancers. YKL-40 gene knockdown is another YKL-40-directed approach to
suppressing YKL-40 expression (Ku et al., 2011; Zhang et al., 2010). Tumor cells expressing
YKL-40 siRNA abrogated tumor angiogenesis and tumor growth in vivo (Shao et al., 2009).
In order to eliminate YKL-40 action, Iragavarapu-Charyulu’s group utilized a YKL-40 ligand
chitin to bind YKL-40 and found that treatment of mammary tumor-bearing mice with chitin
suppressed lung metastasis (Libreros et al., 2012). Other alternative approaches that block
YKL-40 signaling pathways may also suffice to prevent YKL-40 activity or be synergistic in
conjunction therapies with YKL-40-directed inhibitors, which remains to be explored. A
number of neutralizing antibodies or small molecules are available for possible blockade of
signaling pathways employed by YKL-40 such as monoclonal anti-integrins avp3 (LM609) or
ovp5 (P1F6) antibodies, MAPK inhibitor SU1498, and/or AKT inhibitor GSK690693. Some of
these inhibitors have demonstrated the ability to inhibit YKL-40-induced angiogenesis in vitro
(Shao et al., 2009), but their therapeutic efficacies have not been yet validated in tumor
models in vivo.

6. Future Challenges

Elevated serum levels of YKL-40 are not limited in cancers; instead, they are also involved in
a vast array of other diseases including: chronic inflammation (Johansen, 2006), type 2
diabetes (Persson et al., 2011), obesity and insulin resistance in children (Kyrgios et al.,
2011), Alzheimers’ diseases (Perrin et al., 2011), heart failure (Harutyunyan et al., 2011) and
other cardiovascular disorders (Kjaergaard et al., 2010), liver injury and hepatitis (Fontana et
al., 2010) and lung cystic fibrosis (Lee et al., 2011). These findings suggest that YKL-40 may
also serve as a diagnostic biomarker for these diseases as well. However, there are many
unsolved questions remaining to be addressed, as YKL-40 may mediate pathogenesis of
these diseases. First, it is unknown whether YKL-40 functions identically or distinctively in
different diseases, as we currently don’t understand mechanistically the common event of
why YKL-40 is elevated in these individual diseases. Second, in breast cancer, little is known
whether tissue expression of YKL-40 contributes to its serum levels, as its expression by
breast cancer cells, in contrast to its serum levels, was not correlated with cancer metastasis
and short survival. In cancer microenvironment, infiltrating leukocytes, in addition to cancer
cells, may also contribute to its serum concentrations. It would be quite interesting to know
whether there is an intimate association between tissue expression levels and serum
concentrations of YKL-40 in the same cancer patients, and whether leukocytes are the
primary determinator of serum levels of YKL-40. Genetic impacts in its tissue expression and
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serum levels should be taken into account as well because several independent studies
have unveiled their close relationship in different diseases. For instance, a promoter single
nucleotide polymorphism (SNP) (-131->G) is positively correlated with serum levels of YKL-
40 (P=1.1x10"°), asthma (P=0.047) and bronchial hyperresponsiveness (P=0.002) in
pulmonary diseases (Ober et al., 2008). Likewise, the SNP (-131->G) is also associated with
the severity of hepatitis C virus-induced liver fibrosis (Berres et al., 2009). Agreed with these
reports, varied levels of YKL-40 in individual benign breast tissue (Figure 1A) may also
implicate the genetic influence in its distinct expression patterns. Interestingly, similar
investigation of this SNP in glioblastomas demonstrated no significant correlation with
patient survival (Boisselier et al., 2009). In addition to this relationship required to be
established in breast cancer, it is urgent to add significant efforts to identify pathologic role(s)
of YKL-40 in breast cancer metastasis and malignancy, based on our current knowledge of
YKL-40 in endothelial cell angiogenesis. Third, regulation of YKL-40 gene expression in
breast cancer development is largely undefined. Understanding its regulation at
transcriptional and translational levels will give rise to therapeutic value in impeding its
expression, thus reducing its activity. Fourth, it is still enigmatic if YKL-40 also stimulates
angiogenesis in the development of normal mammary gland, as different levels of YKL-40
were observed in normal tissue. It remains to be explored if distinct microenvironment and/or
cues present in normal vs. abnormal breast tissue contribute to its diverse functions. Such
studies will enhance our understanding of different functional roles of YKL-40 in normal
mammary tissue and carcinomas. Finally, one of the most challenging research approaches
is to identify membrane receptor(s) specific for YKL-40 binding, which would not only provide
new mechanistic insights into YKL-40's actions, but also establish proof-of-principle for
offering a novel mechanistically-directed target for treatment of a number of cancers as well
as other types of diseases.

The neutralizing anti-YKL-40 antibody mAY may hold therapeutic promise; thus, it can be
anticipated that development of a humanized anti-YKL-40 antibody will pave a novel
therapeutic avenue for anti-angiogenic therapy in cancer patients. In particular, blockade of
YKL-40-induced tumor angiogenesis may benefit patients that are resistant to other anti-
angiogenic drugs or develop angiogenic rebound following anti-angiogenic therapies. There
is growing evidence showing that the benefits of anti-angiogenic agents (e.g. sunitinib, an
anti-VEGF receptor kinase inhibitor and bevacizumab, an anti-VEGF antibody) appear to be
transitory in the treatment of several types of advanced cancers, as drug resistance, tumor
regrowth and extensive vascular recovery rapidly develop once the therapy is terminated
(Bergers and Hanahan, 2008; Burstein et al., 2008; Verhoeff et al., 2009; Wick et al., 2010).
In line with these clinical trials, treatment of xenografted models with an anti-VEGF receptor
2 antibody unexpectedly resulted in extensive tumor revascularization, increased
invasiveness and rapidly ectopic dissemination (Casanovas et al., 2005; Paez-Ribes et al.,
2009). In addition, a short-term therapy with sunitnib, AG-013736 or AG-028262 (VEGF
receptor inhibitors) and SU11248 (VEGF and platelet-derived growth factor receptor kinase
inhibitor) accelerated local tumor invasion and multiple distant metastases after intravenous
injection of tumor cells or removal of primary tumors (Ebos et al., 2009; Mancuso et al.,
2006). This immediately acquired adaption to the anti-angiogenic therapies is realized to be
associated with a distinct angiogenic switch by which tumors undergo robust
revascularization and malignant transformation. It is also noteworthy that bevacizumab has
recently been removed by the Food and Drug Administration from monotreatment of
metastatic breast cancers. Therefore, it should be taken into account for alternative anti-
angiogenic therapy in breast cancer in the future such as an anti-YKL-40 antibody.
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