
 

 

 

 

Credit Pricing Model Monte Carlo Acceleration 

 

 

A new procedure is presented to accelerate the convergence of Monte Carlo simulations using the 

Default Correlation model.  It is found that the modifications have been implemented correctly,  and 

that the modifications result in a substantial improvement in the convergence rate of the Monte 

Carlo simulation models.   

 

A particular benefit of the model is a dramatic improvement in the stability of  delta computations, 

allowing more accurate and timely risk management of basket trades.  The reason for the 

improvement in stability of the deltas is a change in the method of their calculation.  The new 

method is found to be quite accurate  for low and moderate correlations and is explained in detail in 

the next section. 

 

The new method generates small negative delta amounts in certain cases.  Based on the numerical 

results, these negative deltas are not confined to situations of high correlation and/or large spread 

differences between credits.  The negative deltas do seem, however,  to be consistent with zero and 

to therefore be the result of a noise component introduced in certain cases by the acceleration 

algorithm. 

 

A typical Monte Carlo simulation algorithm assigns each simulation run, or path, an identical 

probability weight.  If we allow, however, a different probability to be assigned to each simulation 

path, we allow more flexibility in the simulation and can thus shape the simulation in accordance 

with our needs.  For example, we can choose the probabilities of each path in manner such that the 

simulation is guaranteed to reproduce the prices of “benchmark” securities, whose prices are known 

from market data (see https://finpricing.com/curveVolList.html).  A simulation thus calibrated to 

benchmarks will then price off-market securities in a realistic manner. 

https://finpricing.com/curveVolList.html


 

 

 

The technique of assigning probability weights has, at least theoretically, the additional benefits of 

accelerating the convergence of the simulation, as well as allowing the sensitivities of the simulated 

price with respect to the benchmark securities to be computed without needing to perform additional 

simulations. 

 

To see how this works, consider that a contingent claim has a value iv   for simulation path i .  The 

value computed according to equally-weighted Monte Carlo will be given by 
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whereas for non-uniformly weighted Monte Carlo we have 
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where ip  is the probability weight for path i .     

 

Obviously then, we require a method of computing the probability weights ip .    Let us consider 

that we have M  benchmark instruments 
jB .  Let the value of the thj −  benchmark instrument in 

the thi −  simulation path be denoted 
ijw .  Then, in order to match the benchmark instruments, as 

required,  we must have 
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for all j . 

 



 

 

Given that the number of benchmark instruments NM  , the number of simulations, the system 

of equations (3) is severly underdetermined, admitting possibly an infinite number of solutions.  The 

question thus arises as to which of the many solutions to choose. 

 

Intuitively, it makes sense to choose a solution which is as close as possible, in some sense, to the 

standard iNpi = − ,1 , while simultaneously matching the benchmark prices.  The task now is to 

define, in this context, what we mean my “as close as possible”.  To do this, let 

 


=

=
N

i

ip
1

)(  

 

where )(x  is a convex function.   The search for a set of probabilities ip  which minimize   

subject to the constraints (3) can be performed by introducing  M  Lagrange multipliers 
j  and 

solve the Lagrangian dual problem, given by 
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There are many possible choices for )(x , among them 
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which corresponds to the relative entropy, 

 

xx = )(  

 

which corresponds to the square-root (Skorohod) distance, and 
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which corresponds to the least-squares distance. 

 

The formal solution to the optimization problem (4) is given by 
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Here we will consider the relative entropy minimization, xxx log)( = .  It can be shown that the 

probability weights ip  which maximize (4) given a set 
j  is given by 
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where )(Z  is the partition function, defined as 
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The minimum of (4) over 
j  can be obtained by minimizing the objective function 

 


=

−=
M

j

jj BZW
1

)(log)(  , (7) 

 

then if *

j  are the Lagrange multipliers which minimize (7), we can compute the necessary path 

probabilities *

ip  as 
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A slight modification of the above procedure can be made if it is felt that an exact match to the 

benchmark prices is undesirable.  This situation may occur due to liquidity considerations, or other 

difficulties in obtaining accurate prices for the benchmark securities.  In this case, we allow a small 

discrepancy between the input benchmark prices and those implied by the calibrated simulation.  

This effectively means that we prefer calibrated path probabilities which are closer to the uniform 

1−= Np  in exchange for slight mismatches in the benchmarks.  This shifts the relative importance 

of the benchmarks versus the relative entropy, placing more emphasis on entropy. 

 

To allow this slight mismatch of benchmarks, we introduce a tolerance term into the objective 

function )(W , as 
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where   is an overall tolerance factor, while i  is an optional tolerance factor, which may in 

general by a function of the benchmark price 
jB . 

 

There exist many methods by which the objective function )(W  or )(
~
W  may be minimized, 

some of which require explicit computation of the gradient of (7) or (9).  This is given by 
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and 
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The path weighting procedure lends itself to an efficient method of calculating sensitivities with 

respect to the input benchmark prices, or deltas.   The major assumption which makes this 

application of the method practicable is that the distributions involved in the Monte Carlo 

simulation from which the paths are generated do not depend strongly on the benchmark prices.  

If this is the case, then we can reuse the simulation paths from one simulation run, re-calibrating 

them to match perturbed benchmark prices.  The security in question is then repriced with the 

new path weights, enabling the computation of the hedge ratios. 

 

Let the cashflows of a security in simulation path i  be denoted iG .  We will then have 
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The sensitivity of G  with respect to the benchmark securities 
jB  is then written 
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Using equation (5) a straightforward calculation shows that 
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and since our benchmark securities are given by equation (3), then we have 
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from which we have the result that 
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If we perform a linear regression analysis of the iG  over the benchmark expectations 
jg , that is we 

compute 
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then we find that 
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Of course, if the sensitivities desired are not with respect to the benchmark securities, then one has 

more work to do.  In our case, however, equation (19) is exactly what we want. 

 

It can be shown that in the case that the path weights ip  are computed using the relative entropy, 

that the regression (20) can be replaced by a re-computation of the weights using the simulation 

paths already computed, and the perturbed benchmark securities. 

 

The constraints corresponding to equation (3) for the case of credit contingent contracts can be 

written in the form of default probabilities, since there is a one-to-one correspondence between 



 

 

between the input credit spreads (prices) and the unconditional default probabilities of individual 

names. 

 

We are thus able to compute, for each name involved in a given trade, the probability )(tS that the 

name will survive until time t .  Let ( )ji tS  be the unconditional probability that name i  survives 

until time 
jt .  Then we can write 
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where 
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where in turn ki  is the default time of name i  in the k -th simulation path. 

 

However, given the nature of the Monte Carlo simulation used for the pricing of credit derivatives, a 

more efficient implementation of the constraints (12) can be obtained if we instead define the 

default probability ( )ji tD  as 
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which is the probability that 
jij tt − 1
, ie., that name i  defaults between times 1−jt  and 

jt . We 

then write 
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where 
kijg~  is the “dual” of 

kijg , that is 
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Running the simulation allows us to track 
kijg~ , from which we can compute the partition function 

)(Z , and thus to determine those path weights which reproduce the input single-name default 

probabilities. 

 

 

 


