

Credit Pricing Model Monte Carlo Acceleration

A new procedure is presented to accelerate the convergence of Monte Carlo simulations using the

Default Correlation model. It is found that the modifications have been implemented correctly, and

that the modifications result in a substantial improvement in the convergence rate of the Monte

Carlo simulation models.

A particular benefit of the model is a dramatic improvement in the stability of delta computations,

allowing more accurate and timely risk management of basket trades. The reason for the

improvement in stability of the deltas is a change in the method of their calculation. The new

method is found to be quite accurate for low and moderate correlations and is explained in detail in

the next section.

The new method generates small negative delta amounts in certain cases. Based on the numerical

results, these negative deltas are not confined to situations of high correlation and/or large spread

differences between credits. The negative deltas do seem, however, to be consistent with zero and

to therefore be the result of a noise component introduced in certain cases by the acceleration

algorithm.

A typical Monte Carlo simulation algorithm assigns each simulation run, or path, an identical

probability weight. If we allow, however, a different probability to be assigned to each simulation

path, we allow more flexibility in the simulation and can thus shape the simulation in accordance

with our needs. For example, we can choose the probabilities of each path in manner such that the

simulation is guaranteed to reproduce the prices of “benchmark” securities, whose prices are known

from market data (see https://finpricing.com/curveVolList.html). A simulation thus calibrated to

benchmarks will then price off-market securities in a realistic manner.

https://finpricing.com/curveVolList.html

The technique of assigning probability weights has, at least theoretically, the additional benefits of

accelerating the convergence of the simulation, as well as allowing the sensitivities of the simulated

price with respect to the benchmark securities to be computed without needing to perform additional

simulations.

To see how this works, consider that a contingent claim has a value iv for simulation path i . The

value computed according to equally-weighted Monte Carlo will be given by


=

=
N

i

iv
N

V
1

1
 (1)

whereas for non-uniformly weighted Monte Carlo we have


=

=
N

i

ii pvV
1

 (2)

where ip is the probability weight for path i .

Obviously then, we require a method of computing the probability weights ip . Let us consider

that we have M benchmark instruments
jB . Let the value of the thj − benchmark instrument in

the thi − simulation path be denoted
ijw . Then, in order to match the benchmark instruments, as

required, we must have


=

=
N

i

iijj pwB
1

 (3)

for all j .

Given that the number of benchmark instruments NM  , the number of simulations, the system

of equations (3) is severly underdetermined, admitting possibly an infinite number of solutions. The

question thus arises as to which of the many solutions to choose.

Intuitively, it makes sense to choose a solution which is as close as possible, in some sense, to the

standard iNpi = − ,1 , while simultaneously matching the benchmark prices. The task now is to

define, in this context, what we mean my “as close as possible”. To do this, let


=

=
N

i

ip
1

)(

where)(x is a convex function. The search for a set of probabilities ip which minimize 

subject to the constraints (3) can be performed by introducing M Lagrange multipliers
j and

solve the Lagrangian dual problem, given by






















−+  

= =

M

j

j

N

i

iijj
p

Bpg
1 1

maxmin 


 (4)

There are many possible choices for)(x , among them

xxx log)(=

which corresponds to the relative entropy,

xx =)(

which corresponds to the square-root (Skorohod) distance, and

2
1

)(







−=

N
xx

which corresponds to the least-squares distance.

The formal solution to the optimization problem (4) is given by














−= 

=

−

ij

M

j

ji gp
1

1)( .

Here we will consider the relative entropy minimization, xxx log)(= . It can be shown that the

probability weights ip which maximize (4) given a set
j is given by














= 

=

M

j

jiji g
NZ

p
1

exp
)(

1



 (5)

where)(Z is the partition function, defined as

 
= =














=

N

i

M

j

jijg
N

Z
1 1

exp
1

)( . (6)

The minimum of (4) over
j can be obtained by minimizing the objective function


=

−=
M

j

jj BZW
1

)(log)( , (7)

then if *

j are the Lagrange multipliers which minimize (7), we can compute the necessary path

probabilities *

ip as














= 

=

M

j

ijji g
NZ

p
1

*

*

* exp
)(

1



. (8)

A slight modification of the above procedure can be made if it is felt that an exact match to the

benchmark prices is undesirable. This situation may occur due to liquidity considerations, or other

difficulties in obtaining accurate prices for the benchmark securities. In this case, we allow a small

discrepancy between the input benchmark prices and those implied by the calibrated simulation.

This effectively means that we prefer calibrated path probabilities which are closer to the uniform

1−= Np in exchange for slight mismatches in the benchmarks. This shifts the relative importance

of the benchmarks versus the relative entropy, placing more emphasis on entropy.

To allow this slight mismatch of benchmarks, we introduce a tolerance term into the objective

function)(W , as


==

+−=
M

j

jj

M

j

jj BZW
1

2

1 2
)(log)(

~



 (9)

where  is an overall tolerance factor, while i is an optional tolerance factor, which may in

general by a function of the benchmark price
jB .

There exist many methods by which the objective function)(W or)(
~
W may be minimized,

some of which require explicit computation of the gradient of (7) or (9). This is given by

 
= =














=



 N

i

M

j

ijjki

k

gg
Z

W

1 1

exp
)(

1)(





 (10)

and

kk

kk

WW









+




=



)()(
~

. (11)

The path weighting procedure lends itself to an efficient method of calculating sensitivities with

respect to the input benchmark prices, or deltas. The major assumption which makes this

application of the method practicable is that the distributions involved in the Monte Carlo

simulation from which the paths are generated do not depend strongly on the benchmark prices.

If this is the case, then we can reuse the simulation paths from one simulation run, re-calibrating

them to match perturbed benchmark prices. The security in question is then repriced with the

new path weights, enabling the computation of the hedge ratios.

Let the cashflows of a security in simulation path i be denoted iG . We will then have


=

=
N

i

ii pGG
1

.

The sensitivity of G with respect to the benchmark securities
jB is then written


= 






=



 M

k j

k

kj B

G

B

G

1




. (16)

Using equation (5) a straightforward calculation shows that

()j
jj

N

i

iij

N

i

ii

N

i

iiji

k

gG

gGGg

pgpGpgG
G

,cov

111

=

−=

















−=





===

 (17)

and since our benchmark securities are given by equation (3), then we have

()kj

kjkj

k

j

gg

gggg
B

,cov=

−=




 (18)

from which we have the result that

()  () 
=

−
=



 M

k
kjjkkk

j

gggG
B

G

1

1
,cov,cov . (19)

If we perform a linear regression analysis of the iG over the benchmark expectations
jg , that is we

compute


























−− 

=

M

j

jj gG
1

0varmin 


 (20)

then we find that

j

j
B

G




= . (21)

Of course, if the sensitivities desired are not with respect to the benchmark securities, then one has

more work to do. In our case, however, equation (19) is exactly what we want.

It can be shown that in the case that the path weights ip are computed using the relative entropy,

that the regression (20) can be replaced by a re-computation of the weights using the simulation

paths already computed, and the perturbed benchmark securities.

The constraints corresponding to equation (3) for the case of credit contingent contracts can be

written in the form of default probabilities, since there is a one-to-one correspondence between

between the input credit spreads (prices) and the unconditional default probabilities of individual

names.

We are thus able to compute, for each name involved in a given trade, the probability)(tS that the

name will survive until time t . Let ()ji tS be the unconditional probability that name i survives

until time
jt . Then we can write

() 
=

=
N

k

kkijji pgtS
1

 (12)

where



 

=
otherwise

tif
g

jki

kij
0

1 
 (13)

where in turn ki is the default time of name i in the k -th simulation path.

However, given the nature of the Monte Carlo simulation used for the pricing of credit derivatives, a

more efficient implementation of the constraints (12) can be obtained if we instead define the

default probability ()ji tD as

() () ()jijiji tStStD −= −1

which is the probability that
jij tt − 1
, ie., that name i defaults between times 1−jt and

jt . We

then write

() 
=

=
N

k

kkijji pgtD
1

~ (14)

where
kijg~ is the “dual” of

kijg , that is



 

=
−

otherwise

ttif
g

jkij

kij
0

1~ 1 
. (15)

Running the simulation allows us to track
kijg~ , from which we can compute the partition function

)(Z , and thus to determine those path weights which reproduce the input single-name default

probabilities.

