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Summary of reproducibility

Scope of reproducibility
‘Object Detection meets Knowledge Graphs’ [1] by Fang et al. describes a framework
which integrates external knowledge from knowledge graphs, or background knowl‐
edge, into object detection. They apply twodifferent approaches to quantify background
knowledge as semantic consistency. An existing object detection algorithm is re‐optimized
with this knowledge to get updated knowledge‐aware detections. The authors of [1]
claim that this framework can be applied to any existing object detection algorithm
and that this approach can increase recall, while maintaining mean Average Precision
(mAP). In this work, the framework is implemented and the experiments are conducted
as described in [1], such that the claims can be validated.

Methodology
The authors in [1] describe a frameworkwhere a frequency based approach and a knowl‐
edge graph based approach are used to determine semantic consistency. A knowledge‐
aware re‐optimization function updates the detections of a baseline Machine Learning
object detection algorithm. Both the baseline and its re‐optimized correlates are evalu‐
ated on two publicly available benchmark datasets, namely PASCAL VOC 2007 and MS
COCO 2014. The replication of the experiments was completed using the information
in [1] and clarifications of the author, as no source code was available. The framework
was implemented in PyTorch and evaluated on the same benchmark datasets.

Results
We were able to successfully implement the framework from scratch as decribed in [1].
We have bench‐marked the developed framework on two datasets and replicated the
results of all matrices as described in [1]. The claim of the authors of [1] can not be
confirmed for both described approaches. The results either showed an increase of
recall at the cost of a decrease in mAP, or a maintained mAP, without an improvement
in recall. Three different backbone models show similar behavior after re‐optimization,
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concluding that the knowledge‐aware re‐optimization does not benefit object detection
algorithms.

What was easy
The methodology was well described and easy to understand conceptually.

What was difficult
There was no source code available, which made it difficult to understand some tech‐
nicalities of the implementation. The authors failed to mention a number of crucial
details and assumptions of this implementation in the paper, which are essential for
reproducing the methodology without making fundamental assumptions.

Communication with the authors
We contacted the authors to elaborate onmissing details, however no contact was found
with the contact‐information on the paper. Fortunately, a different email address of
Yuan Fang was found online, to which he did respond fast and with clear explanations,
for which we would like to express our gratitude.

1 Introduction

Object detection is one of the key tasks in computer vision. The PASCAL Visual Object
Classes (VOC) challenge is one of the most accepted benchmarks for object detection.
This challenge reads: ”Where are the instances of a particular object class in the image
(if any)?” [2]. In other words, the goal is to find a set of locations, or bounding boxes,
in an image and to classify each instance with a label from a predefined set of classes
[3]. Most state‐of‐the‐art methods for object detection, such as Faster R‐CNN [4], only
use the visual features that are present in the images, while ignoring the vast amount of
background information that is available.

Figure 1. Toy example of an object detection.
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Background information can be beneficial for classifying the detected objects [5]. For a
humanclassifier, whohas this background information at its disposal, it canbe common
sense that certain classes happen to co‐occur more often than others. Figure 1 shows a
scenario where a student is holding a drink. A human will classify the drink as a beer
more likely than a water (assuming these are the only options), even though the liquid
can not be identified directly. For machines, this ‘common sense’ is not self‐evident. As
a result, the machine is uncertain about the class of the drink and might even (wrongly)
classify it as a water. One way to represent this background knowledge in a machine‐
readable way, is a knowledge graph. A knowledge graph nowadays has many different
definitions [6]. In this paper it is defined as the original semantic network. This network
is a knowledge base that represents semantic relations between concepts in a network
such that the nodes represent the concepts and the edges represent the relationships
between the nodes [7]. Figure 2 shows a toy example of such a knowledge graph, which
would help identify the drink in Figure 1 as a beer rather than a water. It is expected
that employing a large‐scale knowledge graph as external background knowledge will
improve the classification capabilities of the object detectors.

Figure 2. A toy knowledge graphmodeling seven concepts as nodes (e.g., student and beer), as well
as their relationships as edges (e.g., ”student drinks beer”).

In this work we aim to replicate the findings of a knowledge‐aware object detection
framework, as described in ‘Object Detection meets Knowledge Graphs’ [1]. The pro‐
posed framework combines ‘traditional’ deep learning methods with the semantic con‐
sistency of a knowledge graph. The goal is to quantify and generalize the knowledge
from the ConceptNet knowledge graph [8], and apply this semantic consistency to the
object detection output of a Faster R‐CNN [4] network to get an updated object predic‐
tion. Additionally, a frequency based method to determine semantic consistency di‐
rectly from the datasets is applied. A custom re‐optimization function is used to update
the detections from a baseline object detection algorithm. The system is evaluated on
the PASCAL VOC 2007 [2] and MS COCO 2014 [3] benchmark datasets.

2 Scope of reproducibility

The authors of [1] claim that any existing knowledge detection algorithm can be re‐
optimized by their proposed knowledge‐aware detections. They propose two methods
to extract semantic consistency between different classes frombackground information
that are used to define the knowledge‐aware detections. The first method is a frequency‐
based approach that uses information directly from the datasets and the secondmethod
is based on the information from a knowledge graph.
We aim to reproduce the claims that integrating background knowledge to conventional
deep learning object detection algorithms will improve the recall while maintaining the
same level of mean Average Precision (mAP).
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3 Methodology

3.1 Model descriptions
The authors of [1] used a Caffe implementation of the Faster R‐CNNnetworkwith a VGG‐
16 backbone pretrained on ImageNet.1 Our work utilizes the readily available PyTorch
implementation of the Faster R‐CNN network with a pretrained ResNet50 backbone.2
The model was trained separately on each dataset for evaluation on the specific dataset.
Additionally, a VGG‐16 backbone aswell as a ResNet18 backbonewere implemented and
trained for supplementary experiments.

3.2 Datasets

VOC — The method is tested on two widely accepted benchmark datasets for object de‐
tection. The first is the PASCAL VOC 2007 dataset [2]. The VOC dataset consists of 10k
images that are divided into 2.5k training set, 2.5k validation set and 5k test set.3 The
data is annotated for 20 different classes. The test set contains a number of objects that
are annotated as ’difficult to detect’. For the challenge evaluation such objects are dis‐
carded, although no penalty is incurred for detecting them [2].

COCO — The second benchmark is the Microsoft COCO dataset [3]. COCO is an annual
challenge that at times updates the dataset. For this approach, the 2014 dataset is used.
This dataset consists of 165k images split into 83k for training, 41k for validation and
41k for testing.4 For this (and the author’s) approach, the training and validation set are
combined for training, except for a subset of 5k images, that is divided again into 1k
for validation and 4k for offline testing. The ground truth of the test set is not publicly
available, thus evaluation is limited to the offline test set. COCO consists of 91 differ‐
ent classes, however 11 classes were later removed from annotation, which leaves 80
effective classes. This results in some images in the set being ’empty’. These images are
ignored during training/inference. To align with the indexing of annotation, the model
maintains the 91 classes, but the 11 redundant classes are ignored during evaluation.
The 20 classes in the VOC dataset are a subset of the COCO classes.

3.3 Metrics
Themain performancemetrics that are used are recall@100 andmeanAverage Precision
(mAP)@100. As stated in the COCO evaluation description, “all metrics are computed
allowing for at most 100 top‐scoring detections per image (across all categories)”.5 Both
recall and AP are calculated per class and averaged at the end. The recall is determined
per class according to

recall =
TP

TP + FN
; (1)

where TP is the number of true positives, and FN is the number of false negatives. To
simplify the implementation, the number of FN is not directly determined, but the sum
of TP and FN is equal to the number of ground truth objects.
The AP is a precision‐recall curvemetric that calculates theweightedmean of precisions
achieved at each recall threshold.6 The cumulative number of true‐positives (TP) and

1https://github.com/rbgirshick/py‐faster‐rcnn
2https://pytorch.org/vision/stable/models.html
3http://host.robots.ox.ac.uk/pascal/VOC/voc2007/index.html
4https://cocodataset.org/download
5https://cocodataset.org/detection‐eval
6https://blog.roboflow.com/mean‐average‐precision/
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false‐positives (FP) are determined for the whole test set per class, in descending order
of the confidence score. Subsequently, the recall is segmented into 101 equal parts, and
for each segment the interpolated precision is determined, which is the maximum pre‐
cision value for a given recall. A detection is considered to be a TPwhen the Intersection
over Union (IoU) with the ground truth (of the correct class) is at least 0.5 for the VOC
dataset. For the COCO dataset the mAP is calculated for different IoU thresholds {0.50,
0.55, . . . , 0.95} and then averaged. Besides recall@100, the recall@10 is determined
for the COCO dataset, as well as the recall@100 specifically for small, medium and large
objects.

3.4 Notation
Consider a set of pre‐defined labels L = f1; 2; :::; Lg. Let an existing object detection al‐
gorithm output a set of bounding boxes B = f1; 2; :::; Bg for each image. Each bounding
box b 2 B is assigned a label ‘ 2 Lwith probability p(‘jb). Per image, these probabilities
can be encoded by a matrix P of size B�L. The goal is to construct a knowledge‐aware
matrix P̂ based on the semantic consistency knowledge. A bounding box is potentially
assigned a new label ‘̂ = argmax‘(P̂b;‘).

3.5 Semantic consistency
To quantify background knowledge that is fundamentally symbolical and logical, it is
proposed to determine a numerical degree of semantic consistency for each pair of con‐
cepts. The more likely that two concepts appear in the same image, the higher the de‐
gree of semantic consistency.
The matrix S, of size L � L, is defined such that S‘;‘0 captures the degree of semantic
consistency between the two concepts ‘ and ‘0;8(‘; ‘0) 2 L2. The matrix is symmetrical,
and the diagonal contains the self‐consistency of a concept (a concept can occur more
than once in the same image).
Two methods to determine semantic consistency are applied, in the same manner as
the original paper.

Frequency based method — The simple way to compute S is to use the frequency of co‐
occurrences for each pair of concepts. In this work, both the VOC and COCO datasets
are used to identify the co‐occurences. The semantic consistency is calculated, based
on point‐wise mutual information [9] using the following equation.

S‘;‘0 = max
�
log

n (‘; ‘0) N

n(‘)n (‘0)
; 0

�
(2)

Here n(‘; ‘0) denotes the frequency of co‐occurrences for concepts ‘ and ‘0, n(‘) denotes
the frequency of ‘ and N is the total number of instances in the background data.
To determine the frequency of co‐occurrences, the number of unique combinations of
objects are counted for each image in both datasets. Then the results are summed for all
images, before applying equation 2. The co‐occurrences are given by the multiplication
of n(‘) and n(‘0). For self‐occurrences the ‘handshake’ equation

n(‘; ‘) = n(‘)� n(‘)� 1

2
(3)

is used. Figure 3 and Table 1 show a sample image to provide an example on how the
(co‐)occurrences are counted.
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