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Abstract 

Combined techniques of geophysics, hydrology and hydrogeology were employed in the estimation of groundwater 
recharge. Effects of meteorological factors on groundwater recharge were critically explored. Using tritium tagging and 
electrical resistivity techniques groundwater recharge was estimated. VES data was obtained from 16 stations, each 
with a traverse length of 500 m and inter station distance of 800m. Both the wet and dry season saw the completion of 
Tritium tagging surveys at every site. The study also looked at how weather conditions effected the stations aquifers 
productivity and recharge. The study found that rising rainfall causes an increase in groundwater recharge. The episodic 
variations in rainfall during period match with the patterns of groundwater recharge variation (1988-2018). The study 
also revealed a positive association between rainfall and groundwater recharge with a correlation coefficient of 0.9 but 
a negative correlation between groundwater recharge, temperature and evaporation with correlation coefficients of -
0.52 and -0.42. But when the three climatic variables were combined with groundwater, the regression analysis 
revealed a multiple coefficient of determination of 0.821 percent (R²= 82.1 percent). Tritium tagging technique show 
that the recharge estimate in the study area varies between 6 and 19 percent. The study also revealed a linear 
relationship between electrical resistivity of the top soil and the estimated recharge. 
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1. Introduction

In the time past, hand dug wells as shallow as 8 m could produce water even during the dry season, in a similar vein, 
boreholes drills to depth of about 15m could produce water all year long. Ironically, however these same boreholes and 
hand dug wells dried up after a few years. This situation has persisted overtime and it is necessary to look in to its 
potential causes. 

The majority of the boreholes were first and foremost drilled based on geophysical surveys that revealed the presence 
of aquifers within the depths reached during the initial drilling from which water was retrieved. As the years passes by, 
the aquifer recharge or productivity began to decline to a stage where an attempt to pump a 300litres of water will take 
more than an hour for an electrically propelled sumo-pump while it take a similar time for a manually operated borehole 
to pump 20 litres of water. 

The decline in the recharge of the aquifer is a pointer to the fact that the available groundwater is not too sufficient, 
therefore since groundwater availability is a vital aspect of the hydrological cycle, it will be necessary to study the 
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climatic factors that influences the hydrological cycle particularly in Obubra so as to draw inferences on their effect on 
aquifer recharge. 

Groundwater recharge is an important component of the hydrological cycle in which surface water percolates into the 
subsurface adding to the existing groundwater, this process usually occurs in and around the vadose zone and is then 
expressed as a flux to the water table. 

Groundwater can be recharged artificially or naturally, but our interest is in the natural means of groundwater recharge, 
which is the replenishing of the subsurface water without human technology and occurs through sources like rainfall, 
rivers, lakes and streams. 

According to Roger and Alan (2009), variations in rainfall and evaporation have an impact on the amount of runoff and 
soil moisture in Africa. Rainfall plays a key role in groundwater recharge and aquifer recharge. Climate, geography, soil 
type and geology are examples of environmental factors that may have an impact on the rate of groundwater recharge. 
Aquifer or groundwater recharge is also impacted by human activities like farming, logging, pavement development, 
road construction and deforestation in the vadose and phreatic (water saturated) zones. 

Hydro Geophysicist, hydro Climatologist and hydro Geologist must have a thorough understanding of groundwater 
recharge and abstraction in other to plan and develop water resources in any region of the world. Three recharge zones 
In Africa have been documented using rainfall data. The first zone according to Eilers, et al, 2007, includes areas with 
annual rainfall below 200mm, where little or no current recharge is likely to occur, The second zone, according to 
Edmund (2009), includes regions with rainfall in the range of 200-500m per year contribute up to five percent (25mm) 
ground water recharge, although much will depend on the timing and intensity of rainfall, geology of the area and human 
activities. The third zone, according to (Edmund, 2009) includes areas where a more accurate projection of recharge 
over the research region will be possible with knowledge of the dynamics of groundwater recharge and aquifer 
reactions (Calow and MacDonald, 2009). 

The required information and knowledge shall be acquired based on the application of geophysical survey employing 
the vertical electrical sounding method and the analysis of climatic variables like rainfall and temperature over a period 
of thirty years. The common method for estimating recharge is based on monitoring water level fluctuation and specific 
yield of the aquifer, doing this will require the use of certain techniques like; Electrical Resistivity method, Water table 
Fluctuation method, Chaturvedi Empirical Method and Tritium Tagging Technique 

2. Hypotheses 

One hypothesis was formulated to guide the study, the hypothesis is;  

Mean annual rainfall, mean annual temperature and mean annual evaporation have significant effect on aquifer 
recharge  

2.1. Climate and geology of the study area 

The study area is situated in the savannah zone of South south Nigeria between latitude 5050’N and 6030’N and longitude 
8001’E and 9012’E. A variety of green plants, shrubs, grasses and trees makeup the vegetation. During the dry season, 
the daily temperature ranges from 32-36 ℃, and the average annual rainfall is more than 2,200mm. There are two 
seasons that peak twice a year, April to November (known as the rainy season) and November to April (Classify as the 
dry season). An average of 88 percent relative humidity prevails in the research area. The upper and lower limits of 
rainfall, temperature and humidity can all be seen to change 

Geologically, the region is separated into; Nkporo-Afikpo shale formation, (NASF), Awgu-Ndeaboh formation and Eze-
Aku group (EAG) of cretaceous sediments. The EAG is made up of thick flaky impervious non-calcareous to calcareous 
shales, sandy shally limestone. The EAG is covered by the post- santonian NASF which takes up the majority of the study 
area western part. According to NGS 2006; Odigi & Amajor, 2009 and illustrated in fig 1, the main lithologic units in the 
formation are Mudstone, sandstone and shale bed. The area is drained by a few streams, creeks and Cross River 
tributaries including Okiphe, Ovarr, Itie, Okang, ichora, Epangha, and Okwo (Obianwu et al 2015). 
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Source: Modified after Geological Map of Nigeria – NGSA, (2006). 

Figure 1 Geological map of the study area  

3. Material and methods 

3.1. Climatic and hydrologic data  

Data on Climatic variables like monthly and annual rainfall volume, temperature and evaporation for 31 years (1988-
2018) for Obubra were obtained from Nigeria meteorological station Calabar office at Margaret Ekpo International 
Airport as shown on table 2 

Static Groundwater level data was recorded base on observation made between January – December for 2016, 2017, 
and 2018 hydrological years by the application of graduated improvised water level recorder and corroborated with a 
dip meter. The groundwater recharge was deduced from the fluctuation of the water table using the water table 
fluctuation method which is an indirect model. In this method, the rise in water during the rainy season is used to 
estimate the recharge, provided that there is a distinct rainy season with the remainder of the year being relatively dry. 
The model is mathematically written as; 

R (t) = Syˣ DH (t1) 

Where;  

R (t1) = Recharge occurring between times t0 and t1, 
Sy =Specific yield (dimensionless) 
DH (t) = the peak water level rise attributed to the recharge period (Meinzer, 1923; Rasmussen and Andreasen, 1959; 
Crosole et al, 2005, Obianwu et al 2015). 

The water table fluctuation model (WTFN) as pioneered by Mienzer (1923) had some key assumptions which include; 

Rise and decline in level of the water table in shallow unconfined aquifer are solely due to recharge and discharge of 
groundwater. 
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The specific yield of aquifer is known and constant over a period of the water table fluctuation. 

The pre-recharge water level recession can be extrapolated to determine water level rise (Healy & Cock, 2002) 

These assumptions can be constrained by some factors like evapotranspiration, changes in atmospheric pressure, 
changes in stream stage in the case where the well is close to a stream. Because of the variation of specific yield with 
time for a large area it is difficult but not impossible to obtain specific yield that is representative of a large area (Loheide, 
Butter & Gorelick, 2005; Sopholeous & Schloss, 2000; & Obuobie, 2008) and depth to the water table as opposed to the 
assumption of a known and constant specific yield. 

Using a pumping (drawdown) test, specific yield can be determined using the formula 

Specific yield (Sy) 
D1 –  D2

𝑇
 

Where; 

D1= Initial depth,  
D2 = Depth after drawdown,  
T = time of Drawdown 

Specific yield for different soil texture have been documented (Johnson, 1967) in Obuobie et al, (2008) as shown in table 
1 

Table 1 Specific yield table for different soil textures 

Texture Average 
specific 
yield 

Coefficient of 
variation (%) 

Minimum 
specific yield 

Maximum 
specific yield 

Number of 
determinations 

Clay 0.02 59 0.0 0.05 15 

Silt 0.08 60 0.03 0.19 16 

Sandy clay 0.07 44 0.03 0.12 12 

Fine sand 0.21 32 0.10 0.28 17 

Medium sand 0.26 18 0.15 0.32 17 

Coarse sand 0.27 18 0.20 0.35 17 

Gravelly sand 0.25 21 0.20 0.35 17 

Fine gravel 0.25 18 0.21 0.35 17 

Medium gravel 0.23 14 0.13 0.26 14 

Coarse gravel 0.22 20 0.12 0.26 13 

Source: (After John 1967) in Obuobie 2008 

Groundwater recharge estimate data was generated using chaturvedi Empirical method (Chaturvedi, 1973) where 
monthly and annual rainfall amount in mm were analyzed using the mathematical relation 

R = 1.34 (P – 1.4) 0.5…………….. (2) 

Where;  

R=Recharge (mm),  
P = Precipitation (mm) 
(K) Elevation data of the wells were recorded with the Global positioning System (GPS) 
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Table 2 Climatic variables and groundwater recharge 

Year Annual rainfall (mm) Temperature (0c) Evaporation (mm) Recharge (mm) 

1988 1965.7 32.6 37.9 138.0 

1989 1616.5 32.7 61.3 116.4 

1990 2499.9 32.2 43.8 158.1 

1991 2963.9 32.0 41.3 200.5 

1992 2610.5 31.2 38.9 194.2 

1993 3008.6 31.0 40.8 224.5 

1994 2723.2 30.3 37.5 209.5 

1995 2197.6 32.6 45.0 146.4 

1996 2254.5 32.8 42.5 159.8 

1997 1947.9 32.5 35.2 133.6 

1998 1594.6 32.4 44.7 120.0 

1999 1597.2 32.7 43.3 146.5 

2000 1706.5 32.9 40.3 116.8 

2001 2180.5 33.1 39.8 163.6 

2002 1532.5 33.2 36.3 116.0 

2003 2339.8 32.8 39.7 160.4 

2004 2150.4 32.9 50.1 129.1 

2005 1698.6 32.8 44.7 154.8 

2006 1712.7 33.1 59.2 116.4 

2007 1251.4 33.4 77.6 98.9 

2008 2220.7 33.4 47.1 150.7 

2009 1815.8 33.7 45.3 136.8 

2010 1523.9 33.6 45.5 91.3 

2011 1781.6 33.6 48.4 147.3 

2012 1816.3 33.8 45.8 140.7 

2013 2373.1 33.4 46.6 165.1 

2014 2354.7 33.5 46.3 173.1 

2015 2737.9 33.7 46.4 183.7 

2016 2398.7 34.2 42.9 159.6 

2017 2640.2 33.4 44.0 169.7 

2018 3347.5 33.3 42.1 201.4 

3.2. Vertical electrical sounding (ves) data  

The Schlumberger array was deployed in the resistivity survey (Keller, 1966). The instrument used for the vertical 
electrical sounding was the IGIS resistivity meter model SSR-MP-ATS. Four electrodes which comprises of two potential 
electrodes and two current electrodes were chosen at any particular time for the measurement of resistance. Current 
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was introduced into the ground through the two current electrodes, while the potential difference developed was 
measured; the resistance of the ground was recorded. 

The resistivity and geometric factor (k) were calculated using the equation (3) below 

      …………..(3) 

Where; 

……………….(4) 

Where;  

ρa is apparent resistivity (Ωm),  
V is Voltage (volt),  
I is current in (Ampere),  
K is the geometric factor,  
AB is spacing between current electrodes 
MN is the spacing between the potential electrodes.  

The midpoint of the electrode array remained fixed while the inter electrode spacing was expanded systematically. 

 
(Source:Author’s field work, 2018). 

Figure 2 Apparent Resistivity model curve of OHANA (VES 10) in the study area 

Maximum electrode spread of 500m was achieved during field measurement. The field measurements for AB and MN 
were used in calculating the geometric factor base on equation (4), Apparent resistivity values (ρa) were calculated by 
multiplying the geometric factor with the resistivity data (Arshad et al, 2007) and recorded in table 3 below, the 
resulting values of ρa were plotted on the horizontal axis while half the current electrode spacing (AB/2) is plotted on 
the vertical axis of a log-log graph as shown in fig 2 -4 
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(Source:Author’s field work, 2018). 

Figure 3 Apparent Resistivity model curve of ONYADAMA (VES 1) in the study area 

 

 

(Source: Author’s field work, 2018). 

Figure 4 Apparent Resistivity model curve of OVOKWA (VES 4) in the study area 
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Table 3 Summary of results of Geoelectric parameters 

VES 

No. 

Elevation 

Above 
sealevel (m) 

Location 
Number of 

Layer 

Geo-electric layers Resistivity (Ohm-m) 
Geo-electric Layers 

Thickness (m) 
Depth to bottom of Geoelectric 

layers (m) 

𝜌1 𝜌2 𝜌3 𝜌4 𝜌5 𝜌6 𝑑1 𝑑2 𝑑3 𝑑4 𝑑5 𝑑6 ℎ1 ℎ2 ℎ3 ℎ4 ℎ5 

1 53 Onyadama 1 4 360.6. 206.8 57.3 194.5 _ – 2.9 2.5 72.9 - – – 2.9 5.4 78.5 - – 

2 54 Onyadama 2 5 400 700 250 27 60 – 1.0 1.50 4.5 36 – – 1.0 1.5 6.0 42.0 – 

3 50 Onyadama 3 5 230 260 70 17 65- - 1.0 0.5 3.5 15- - - 1.0 1.5 34.0 - - 

4 45 Ovokwa 1 5 72.4 228.3 15.8 755.1 48.3 - 0.6 0.5 2.4 10.5 - - 0.6 1.1 3.5 14.0 - 

5 47 Ovokwa 2 6 50 20 50 65 70 35- 1.0 0.7 2.1 6.4 8.8 - 1.0 1.7 3.8 10.2 19 

6 89 Okumuruktet 3 160 170 120 _ _ – 3.0 47    – 3.0 50   - 

7 61 
Okumuruktet 

2 
5 50 49 40 80 150 – 1.00 0.5 3.5 13 – – 1.0 1.5 5.0 18.0 – 

8 63 Okorokpana 1 6 130 150 125 18 34 – 1.0 1.0 6.0 22 – – 1.0 2.0 8.0 30 – 

9 64 Okorokpana 2 6 60 25 35 70 25 150 1.0 1.3 2.5 8.5 37 – 1.0 2.3 4.8 13 50 

10 51 Okorokpana 3 6 50 55 50 30 65 30 1.0 0.8 4.2 14.0 30 – 1.0 1.8 6.0 20 50 

11 57 Owakande 1 4 200 500 1200 500  – 1.2 13.8 135  – – 1.2 15 150  – 

12 76 Edondon 1 5 218 254 291 265 38 – 1.5 5.3 24.8 53.6 – – 1.5 6.8 31.3 84.9 – 

13 78 Edondon 2 6 143 106 236 88 132 99 1.3 4.06 12.8 40.6 59.6 – 1.3 5.3 18,2 58.8 118.3 

14 104 Iyamoyoung 1 5 95.5 216.8 1063 116 129  .0.7 5.0 33.8 49.6  – 0.7 5.7 39.5 89.2 _ 

15 107 Iyamoyoung 2 5 491 1540 522 – – – 3.07 14.3 45.2 66 – – 3.07 17.37 62.49 128.7 – 

16 48 OHANA 5 172.4 30.9 167.1 10.6 2477.3 – 1.4 13.5 13.1 37 - – 1.4 14.9 28.1 65.1 - 
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Table 4 Hydrologic data from hydrogeophysical activities 

VES Station 

 No. 

Location Pumping rate (L/S) Discharge Draw  

down (m) 

Transmissibility SWL (m) Specific capacity m3/day/m 

1 Onyadama 1 10.4m2/day 0.9 0.25 4452 11.80 m2/day 

1.02x10-3 

6.50 5.61x10-3 

2 Onyadama 2 3.47m2/day 0.3 8.3x10-2 39.88 3.8x104 13.11 2.08x10-3 

3 Onyadama 3 23.1m2/day 2.0 5.5x10-1 32.68 3.11x10-3 10.70 1.68x10-2 

4 Ovokwa 1 57.6m2/day 0.05 2.7m 24.52m2/day 40.3 1.85x10-2 

5 Ovokwa 2 86.4m2/day 6.11 x 10-2 14.0 14.0m2/day 53 4.3x10-3 

6 Okwurumetete 1 23.m2/day 2.0 5.5 x 10-1 22.97 4.48 x 10-3 21.6 2.3x10-2 

7 Okumurutete 2 23.1m2/day 2.0 5.5 x 10-1 14.65 6.9x10-3 13.46 3.75x10-2 

8 Okorokpama 1 9.25m2/day 0.8 2.22x10-1 39.38 1.03x10-3 4.19 5.63x10-3 

9 Okorokpama 2 76.3m3/day 1.99x10-2 14.5 17.4m2/day 54.5 1.37x10-3 

10 Okorokpama 3 57.6m3/day 3.01x10-1 5.0 18.8m2/day 8.0 6.0x10-2 

11 Owakande 1 32.98m2/day 2.85 7.93x10-1 1.8 8.06x10-2 3.49 4.4x10-1 

12 Edondon 1 37.03m2/day 3.2 8.8x10-1 2.1 7.74x10-2 3.5 4.19x10-1 

13 Edondon 2 113.7m3/day 4.18x10-1 1.6 35.8m2/day 6.4 2.6x10-1 

14 Iyamoyong 34.2m2/day 2.96 8.22x10-1 0.9 1.67x10-1 3.0 9.1x10-1 

15  113.7m3/day 3.41x10-1 2.5 4.98m2/day 5.4 1.3x10-1 

16 Ohanna 67.12m2/day 5.8 1.6x10-1 2.4 1.22x10-1 4.0 6.6x10-1, 18.12 
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Both forward and inverse modeling methods were used in computer programme software RESIST to generate layer 
parameter (layer resistivity and layer thickness). 

The data acquired from the resistivity survey was used to establish the existence of aquifers and their respective depths. 
In another consideration soundings were conducted near existing boreholes and pumping test data were collected from 
the Cross River State water Board Limited (CRSWL) Calabar for boreholes within the study area. The pumping test was 
repeated on the boreholes after one year on the same months during the dry seasons and the rainy season when the 
previous measurement was made and the results were compared with the VES results. 

The pumping test was carried out in motorized boreholes drilled by CRSWBL & Rural Water Sanitation and Agency 
(RUWASAN). The test was conducted in two stages namely; the constant rate test and the recovery test. During and after 
the pumping test, data were collected, analyzed and interpreted so as to determine the following hydrologic parameters; 
(i) specific capacity, transmissivity, drawdown, specific yield and storativity as recorded in table 4. The equipment used 
in carrying out the pumping test include; 

1.5Hp submersible pump and cable, a calibrated 20 litre container, a Dip meter, a Generator, a Stopwatch, Riser pipes 
and Clamps. The Jacob’s no formula was used to determine the transmissivity and storativity of borehole. 

 

Figure 5 Movement of tritium peak and soil moisture at Ohana 

Sixteen sites participated in tritium tagging research as elucidated by Bhishm and Nachiappan (1995). The sites were 
chosen based on the resistivity values and degree of saturation of the soil layers in the specific study area. In the chosen 
sites various soil types were recorded. 

By keeping an eye on the tritium injection’s downward vertical trajectory, groundwater recharge was estimated. A peak 
in the tritium activity versus depth plot indicates the tracer’s position. Six holes with circular geometries were 
simultaneously injected with a 40µcurie/Cm3 tritium from the University of Calabar’s nuclear laboratory at a depth of 
70cm below the surface. At time the tritium was injected before the wet season and after 5 months later during the wet 
season, soil samples were taken (July 2017). The samples were taken with a hand auger at depths ranging from 10cm 
to 2m. In the laboratory of Cross River Water Board Limited standard gravimetric techniques were used to calculate the 
volumetric moisture content of each soil sample. According to fig 5 the volumetric moisture content was plotted against 
depth and ranged from 0.05 to 0.24. The amount of soil moisture extracted from each soil sample was measured using 
a liquid scintillation counter (L.SC) from the nuclear laboratory of physics department of the University of Calabar was 
used to measure the tritium activity of soil moisture extracted from respective soil sample. To calculate the shift in the 
injected tritium the centre of gravity (C.G) of the tritium activity peak was identified. Because of the effect of diffusion, 
hydraulic pressure, osmotic pressure and dispersion processes the tritium activity peak could not spike. For each site, 
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Plots of count rates versus depth were created. Fig 6 illustrate a plot of count rate, centre of gravity of tritium and 
volumetric moisture content for one of the selected locations in the Eze Aku group. The depth of tritium injection and 
the peak’s centre of gravity, were taken into account to determine the shift in the tritium peak, the shift position varied 
between19.5 to 138. 6cm for all sixteen sites. 

By taking into account the product of tritium peak shift and effective mean volumetric moisture content in the tritium 
peak shift, the size of the recharge throughout the time interval of tritium injection (before the rainy season) and 
sampling (during the rainy season) was calculated (Zimmerman et al, 1967a, 1967b) 

 

Figure 6 Tritium Peak Shift measured at one Station in the study area 

Table 5 Tritium activity and depth 

Tritium activity (cpm) Depth (cm) 

20 0 

45 -10 

50 -20 

48 -30 

100 -40 

50 -50 

250 -60 

255 -70 

350 -80 

500 -90 

850 -100 

12,500 -110 

1,700 -120 

2,150 -130 

1,200 -140 

400 -150 

200 -160 

100 -170 

300 -180 



World Journal of Advanced Research and Reviews, 2022, 16(02), 1134–1151 

1145 

Equation (1) below can be used to mathematically determine the proportion of groundwater recharge  

R=ṽ *ΔS (100/p) 

Where; 

R is the percentage recharge to groundwater,  
Ѷ is the effective mean volumetric moisture content in the tritium peak shift region,  
ΔS is the shift in tritium peak in cm 
P is rainfall in cm. 

Rainfall data was collected from NIMET Calabar. water table depths and elevation values were determined for the 
chosen sixteen sites and nearby VES sounding stations during the time of tritium injection (before the rainy season) and 
at three months after the rainy season the depth of water table was plotted alongside surface elevation (relief) in fig 7. 
There were also plots of water table fluctuation versus recharge percent. 

 

Figure 7 Plots of water table fluctuation versus recharge percent 

4. Results and Discussion  

Using the tritium tagging tracing technique the groundwater recharge in the study area was estimated to range from 6 
to 19 percent. Correspondingly, the downward vertical recharge depends on the infiltration characteristics of the 
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unsaturated topsoil layer. As it is common knowledge in ground resistivity studies, resistivity of a soil depends on the 
type of soil, the degree of saturation, the age of the rock types, degree of cementation, and infiltration characteristics, 
low permeability soils produce low resistivity values and high permeability soils produce high resistivity values ( Israil 
M et al 2006).  

 

Figure 8 Correlation of Recharge Percent Estimated from Tritium Tagging Technique and resistivity of the layers of 
the soil 

Table 6 Correlation results between recharge, rainfall, temperature and evaporation 

 Recharge   Rainfall    EVAPO  

Recharge      1.000    0.905 -0.522 -0.429 

Rainfall      0.905 1.000 -.325 -0.380 

TEMPMAX     -0.522 -0.325 1.00 -0.53 

EVAPO 0.429 -0.380 0.353 1.00 

 Sig. (1-tailed) Recharge   0.000 0.001 0.008  

Rainfall      000 - 0.327 0.017 

TEMPMAX      0.001 0.0327 0 0.26 

EVAPO      0.008 0.017 0.026 - 

NRecharge     31 31 31 31 

Rainfall      31 31 31 31 

TEMPMAX      31 31 31 31 

EVAPO      31 31 31 31 

 

From the interpreted resistivity gathered from the study region at and around the chosen sites, the resistivities of the 
non-aquiferous upper layers was determine. The resistivity of non-aquiferous top layers and the predicated recharge 
per cent were shown to be linearly related (Fig 8). For the study area, this empirical relationship is known as the as the 
recharge model for the study area. Other empirical relationship between resistivity and hydraulic characteristics have 
also been studied and are referred to as model relationships in the hydrogeology field (Mazac eta al 1985). On the other 
hand evaporation, mean annual temperature and annual rainfall totals all have a major impact n groundwater recharge. 
Data from table 2 were used to assess the study’s sole hypothesis. Multiple regression and correlation were used. 
According to table 6’s multiple correlation matrix, the correlation coefficients for mean annual rainfall, mean annual 
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temperature and evaporation are 0.90, -0.52 and -0,42 respectively. This demonstrates that while temperature and 
evaporation have negative high correlations with recharge (-0.52 and -0.42) respectively, rainfall has a high positive 
correlation with recharge (0.90). This supported earlier research done by Idowu and Martin (2007), groundwater 
recharge was measured as being between 3 percent and 20 percent of total annual precipitation in the phreatic 
basement aquifer of okpeki Drainage basin, South-Western Nigeria. According to their research, precipitation has a 
beneficial impact on groundwater recharge. High correlation coefficient of 0.7 was obtained the correlation analysis 
technique. 

Prior to applying the multiple regression analysis, a linear regression analysis was conducted to determine the extent 
to which each climatic component affected groundwater recharge in the research area. The coefficient of Determination 
(R2) for the simple linear regression model of rainfall 0.821 or 82.1 per cent. This suggests that annual rainfall amounts 
in Obubra as shown in table 7, account for about 82.1 percent of groundwater recharge. 

Based on table 8, the regression model can be expressed mathematically as written based on table 8 as  

Y = 23.021 + 0.07x1 + e 

Where; 

Y = Groundwater recharge 

X1 = Amount of annual rainfall in millimeter (mm) 

e = Stochastic error term which suggests that groundwater recharge will rise by 0.070mm for every unit 
increase in yearly precipitation. 

Following mathematical calculation was done to test for significance 

t = 0.82 [√31- 2/1 – (0.82)2] 

t = 0.82 √29/0.3276 = 0.82 x 9.4 

t = calculated = 7.70 

df = N-2, 31 – 2 = 29 at 0.05 confidence level 

t = tabulated = 2.04 

Since the t-calculated value of 7.70 is greater than the t-tabulated of 2.04, the null hypothesis is rejected in favor of the 
research hypothesis. The groundwater recharge in the research area is strongly influenced by rainfall, according to table 
8’ 

 From table 8 it is further deduced that the t-value is 11.46 at 0.05 significant level, this implies that rainfall is significant 
and  

Table 7 Model Summary of Rainfall and Recharge 

Change Statistics 

Adjusted R  Std. Error of the R Square   R Square 

Model  R Square   Estimate   Change   Sig. F Change 

1 0.905a   0.821    0.810 13.9246 0.821 0.000 

a. Predictors: (Constant), Rainfall 

 

 



World Journal of Advanced Research and Reviews, 2022, 16(02), 1134–1151 

1148 

Table 8 Results of correlation coefficientsa 

standardized  Unstandardized Coefficients coefficients 

Model   B Std. Error Beta t Sig. 

1 Constant 23.021 12.121 2.170 0.046 

Rainfall 0. 070 0.005 0.905 12.010 0.000 

a. Dependent Variable: Recharge 

A basic linear model with the following formula takes temperature and groundwater recharge into account. 

Y = 780.56 – 21.56 x1 + e 

Where; 
Y = groundwater recharge 
X1 = annual temperature (oC) 
e = stochastic error term 

According to the model, groundwater depletes by 21.56 units whenever the temperature rises and the opposite is 
equally true. This shows that groundwater recharge and temperature are inversely related; hence, a low temperature 
will lead to a high groundwater recharge or the reverse. Using the Coefficient of multiple determination (R2) = 26.4 
percent it can be concluded that temperature influences groundwater recharge by roughly 26.4 (table 9); the remaining 
73.6 percent influence of groundwater recharge’s influence comes from the other elements. Additionally a test of 
significant was run on the outcome, demonstrating that the t-value of -3.349 is below 0.05 significance threshold set for 
this investigation (table 10). Therefore, the null hypothesis is accepted that there is no significant effect of temperature 
on groundwater recharge 

t = 0.26 [ √31- 2/1 – (0.26)2] 

t = 0.26 √29/0.970  

t = 0.26 x 5.46 = 1.47 

t- calculated = 1.47 

df = N-2, 31 – 2 = 29 at 0.05 confidence level 

t = tabulated = 2.04 

since the t-calculated value of 1.47 is less than the t-tabulated value of 2.04, the null hypothesis is accepted. 

Table 9 Model Summary of Temperature and Recharge 

Change Statistics 

Adjusted R  Std. Error of the R Square   R Square 

Model  R Square   Estimate   Change   Sig. F Change 

1 0.522 0. 264   0.253 28.7590 0.264 0.003 

a. Predictors: (Constant), TEMP 
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Table 10 coefficientsa 

standardized  Unstandardized Coefficients coefficients 

Model   B Std. Error Beta t Sig. 

1 Constant 780.567 200.456   4.148 0.000 

 TEMP -21.561 5.972 -3.349 0.003 

a. Dependent Variable: Recharge 

A simple linear regression model between evaporation and groundwater recharge is expressed below as: 

Y = 247.142 – 1.94 x1 +e 

Where: 

Y = groundwater recharge 

X1 = annual evaporation amount (mm) e = stochastic error term 

From the model, a given rise in evaporation, groundwater recharge will decrease by 

1.94 units. In contrast, groundwater recharge will rise by 1.94 units for every unit decrease in evaporation, this suggests 
that evaporation and groundwater recharge have a negative relationship. 

Additionally, the Coefficient of Multiple Determination of (R2) = 19.6 percent indicates that evaporation is responsible 
for around 19.6 percent of the influence on groundwater recharge in the region (Table 11). The remaining 90.4 percent 
is the consequence of additional factors. The t- value of -2.56 (Table 12) was found to be less than 0.05 significance level 
chosen for this study when the significance of this study was tested. As a result it is considered that evaporation has no 
discernible impact on groundwater recharge. Similarly, the following mathematical computations revealed thus: 

t= 0.19[√31-2/l - (.019)2] 

t = 0.19 √29/0.963) 

t=0.19 x 5.49 

t= calculated = 1.04 

df = N-2, 31-2 =29 at 0.05 confidence level 

t-tabulated value =2.04. 

Since the t-calculated value of 1.04 is less than the t-tabulated value of 2.04, the null hypothesis is accepted and the 
alternative hypothesis rejected that there is no significant effect of evaporation on groundwater recharge. 

Table 11 Model Summary of Evaporation and Recharge 

Model Summary of Temperature and Recharge 

Change Statistics 

Adjusted R  Std. Error of the R Square   R Square 

Model  R Square   Estimate   Change   Sig. F Change 

1   .429a .196 0. 156 31.43571 0. 196 0.016 

a. Predictors: (Constant), EVAPO 
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Table 12 Coefficients a 

standardized  Unstandardized Coefficients coefficients 

Model   B Std. Error Beta t Sig. 

1 Constant 247.142 247.142 7.072 0.000 

EVAPO -1.946  0.741 -0.4297  -2.560 0. 16 

a. Dependent Variable: Recharge 

4.1. Recommended aquifer management practices  

The following aquifer management practices have been recommended to sustain groundwater recharge all year round 
in the area. 1. There should be adequate legislation to protect watersheds around the low-lying northern zones. There 
should be standard measure in abating groundwater excessive abstraction in such shallow aquifer areas Chemicals 
should not be dumped on drains or on the ground. Environmentally friendly methods of waste management, such as 
waste recycling, should be adopted to reduce the impact of industrial wastes on the environment. 

5. Conclusion 

This study entailed the deployment of Geophysical, hydrological and geological techniques in the estimation of 
groundwater potentials, recharge, and productivity in a known geological formation. The results present here are based 
on extensive studies using surface electrical resistivity method, tritium tagging technique, groundwater monitoring and 
analysis of climatic factors. The result obtained shows a relationship which is extremely useful for groundwater 
resources evaluation and recharges estimation in a particular area of interest and is valid for an area of similar geology. 
When this kind of relationship or model is developed for a given area, the determination of groundwater recharge will 
be easier, economical and less time-consuming when using electrical resistivity measurement. It is deduced from the 
study that there were variations in the aquifer recharge, this was on account of various hydro, metrological, geophysical 
and geological factors in addition to experimental uncertainty. This variation is reflective of the inherent variability 
phenomenon of groundwater recharge in the study area.  
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