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Taking account of genomics in quantitative microbial risk
assessment: what methods? what issues?
Laurent Guillier1, Federica Palma2 and Lena Fritsch3

The application of whole-genome sequencing (WGS) to the risk
assessment of foodborne pathogens is a key challenge. WGS
offers the highest level of strain discrimination for more precise
hazard identification, hazard characterization, and exposure
assessment, leading to deeper risk characterization. Genome-
wide association studies represent today powerful tools for the
identification of associations between genomic elements and
microbial phenotypic properties. Other cutting-edge tools
include machine learning or statistical methods to characterize
phenotype distribution on a phylogenetic tree. A panorama of
the available methods is presented as well as the specific
issues associated with the application of these methods to
phenotypes of interest for risk assessment.
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Introduction
By the late 1990s, concepts of risk and risk assessment
have been employed to inform decision-making for the
management of food-safety risks [1]. The framework for
carrying out risk assessments of foodborne pathogens is
well established and relies on four components, in-
cluding hazard identification, hazard characterization,
exposure assessment, and risk characterization [2].

A few years ago, novel scientific achievements demon-
strated increasing evidence that food- safety advances will

require improved implementation of precision food-safety
approaches [3–5]. EFSA (European Food Safety Au-
thority) recently explored the role of whole-genome se-
quencing and metagenomics to produce new information
for food/feed risk assessments and which can contribute
to better preparedness for risk management [6].

The characterization of uncertainty and variability is at
the heart of the concerns of risk assessors in micro-
biological food safety [7]. Indeed, risk situations are
often associated with strains presenting atypical char-
acteristics (the most virulent strains, the most thermo-
resistant strains, etc.). Understanding the processes by
which the foodborne pathogens adapt and evolve
leading to these different phenotypes is, therefore, of
major importance for establishing risk-based control
measures. Beyond foodborne pathogens, this point also
applies today to the attribution to antibiotic re-
sistance [8].

The genetic determinants of these particular behaviors
are often not identified. If these determinants are
known, a simple search for their presence in strains is
sufficient to predict their phenotype. If no markers are
known, the only solution is to characterize the pheno-
types of strains by experimentation.

Considering the need for an improved implementation
of precision food safety and the availability of genomes
and of the relevant methods for identifying markers of
variability in pathogen behavior, the stage is now set for
the incorporation of omics technologies into risk as-
sessment [9]. This review aims to present the latest
methodological advances for the identification of phe-
notype determinants and to identify the difficulties that
need to be overcome in order to routinely use genomics
in microbiological risk assessment of foods.

Methods for identifying markers of bacterial
phenotypes
Requirements to identify markers of interest
The data required to identify genomic or phylogenetic
markers for a qualitative or quantitative trait are the
same in the three presented categories of methods
(Figure 1a). The first step is to obtain a large collection
of isolates. Although techniques such as the Ewens
sampling formula [10] can be used to sample the di-
versity of a population, it is difficult to recommend a
unique sample size [11]. The power of a method to
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identify causal variants or phylogeny clade associated
with a phenotype is influenced by several other factors,
including effect sizes, population structure, phenotype
distribution, and recombination rate [12,13]. The di-
versity of the strains included in a study should be re-
presentative of the diversity of the pathogen or one of its
subtype of interest (e.g. Sequence Type, serovar) in the
foods considered by the risk assessment. Another cri-
terion to constitute the dataset is to consider the dis-
tribution of phenotypes for the trait of interest. The set

of strains may be chosen in order to have a balanced
distribution of phenotypes. This could improve the
statistical power of the applied method to identify the
markers. This criterion based on the balance of pheno-
types may be in contradiction with the criterion of the
representativeness of strains isolated from a food sector.
Several sets of strains can thus be considered for dif-
ferent objectives: marker determination, validation (for
these two sets, both genotypes and phenotypes will be
available), and prediction based on the Genome Wide

Figure 1
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Dataset preparation (A) and general approaches (B) for identifying markers of phenotypes by using GWAS, machine learning, or phylogenetic
approaches.
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Association Study (GWAS) results. For this last set of
strains, it is not necessary to have the phenotypes, only
the genomes of strains representative of the food sector
are necessary.

Then, the acquisition of the genomic data using the
recent developments in high-throughput sequencing
technology and the phenotypic data of the whole set of
bacterial isolates has to be carried out [14•]. The genetic
features that will be used by the marker-identification
methods must be determined. Four main types of ge-
netic features have been used so far. A first type is any
single-nucleotide variant (SNV) or small insertion/dele-
tion found in the alignment of the set of genomes. Since
this alignment usually focuses on the core regions shared
by all genomes, testing only SNVs misses the identifi-
cation of noncore markers. The second type of genomic
feature that could be tested is therefore the matrix of
the presence or absence of the accessory genes [15].
Accessory genes are often acquired by lateral transfer
between strains through mobile genetic elements
bringing new trait combinations [16]. A different ap-
proach is to use the presence or absence in each of the
genomes of short sequences of DNA also called k-mers.
For each genome, the presence or absence of each un-
ique k-mer is recorded. As this approach does not re-
quire an alignment, k-mers capture both core and
accessory genome events. More recently, the concept of
unitigs, which are compacted De Bruijn graphs of k-
mers, has been proposed as the genetic feature for
marker search items [17,18]. As a unitig sequence is
longer than a k-mer, its use in GWAS presents the ad-
vantage to reduce the redundancy present in k-mer
counts and to generally easier interpretation of results
[18]. MLST types, which are the consequence of the 4
mutations mentioned above, can also be used. Finally, a
phylogeny that accounts for recombination can be de-
termined generally based on of the alignment of core
genome determinants.

The input data used by the three methods differ. In case
of the GWAS approach, the input data include (con-
tinuous or binary) phenotypes, genetic determinants,
and recombination-aware phylogenies (Figure 1b).
Methods based on machine learning (ML) require ge-
netic determinants and phenotypes. Phylogenetic
methods for marker identification rely on phenotypes
and population-structure-controlled phylogeny [14•].

Genome-Wide Association Studies
GWAS is based on a simple principle: a genome-wide set
of genetic variants in different individuals is statistically
observed to see if any variant is causally associated with a
trait. The phenotypic traits and the genomic sequences
of a strain collection are therefore necessary to assess
genetic variant candidates explaining the phenotypic
trait of interest. Statistical tests can thus assess whether

certain genetic elements are more frequent in strains
with a specific trait than in those without [19]. GWAS
can be made at different genomic levels. Most of the
applications of bacterial GWAS have been carried out
with SNVs, small insertions and deletions, k-mers, or
differences in presence/absence of genes. More recently,
unitigs have been proposed as the genetic feature for
marker search items for the GWAS [17,18].

An important challenge using GWAS is to take into ac-
count multiple statistical testing. To avoid high false-
positive rates, a test correction must be performed con-
sidering the large number of tests being performed and
to distinguish the significant results from those that will
be observed by chance. Additional factors negatively
affecting the performance of bacterial GWAS [20••] are
linkage disequilibrium (i.e. the nonrandom association of
genetic alleles) and bacterial-population structure (i.e.
the presence of subpopulations that present large dif-
ferences in the prevalence of both the allelic and phe-
notype frequencies). Feeding GWAS with a
recombination-aware phylogenetic tree of the observed
dataset helps to account for the population structure.

Nowadays, a multiplicity of methods and complete pi-
pelines, for example, Scoary or pyseer, to conduct mi-
crobial GWAS, are freely accessible. Two recently
published reviews [20••,21••] present in detail the
specificity of these tools based on their ability to con-
sider categorical and continuous phenotypes, the core
and accessory genomic features, and their strategy to
handle issues related to multiple testing, linkage dis-
equilibrium, and population structure.

Machine-learning methods
By definition, machine-learning methods rely on com-
puter systems that are able to learn and adapt, by using
algorithms and statistical methods to analyze and draw
inferences from patterns in data. Numerous algorithms
have been trained to recognize patterns in bacterial
genomic data [22]. The general process of the identifi-
cation of genomic markers is presented in Figure 1b.
The dataset is split in a training and a testing dataset.
The training is usually carried out with different algo-
rithms that are then sorted based on their performance
on the testing dataset [23]. After sufficient repetitions
and selection of the algorithm, the trained machine can
take as input the genome features of other strains to
predict their phenotype.

The genomic features used in machine-learning
methods are the same as applied in GWAS to predict
bacterial phenotypes. The k-mers-based approaches are
often preferred [24,25]. But genes' presence/absence
could be used as well [26]. Recently, as for GWAS,
unitigs have been used for machine-learning identifica-
tion of phenotype markers [22]. An advantage of these
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methods is that they allow the relative importance of
each input variable to be specified and thus reduce the
size of the data to be considered. Moreover, they allow to
predict the phenotype of strains for which only the
genome is known. The combination of ML methods
with GWAS has also been shown by several authors to
be promising for prioritizing loci, though this application
is still in its infancy [27,28].

Contrary to GWAS, few dedicated software tools are
available [22,24]. Most ML methods rely on generic ML
Python libraries or R packages and user-defined scripts
[23,29–31].

Phylogenetic methods
Phylogenetic methods do not account directly on
genomic data but only through the phylogenetic trees
derived from genomic data. Two classes of modeling
approaches are using phylogeny. In the first, the evolu-
tion of the phenotype over time is modeled. In the
second, the evolution of the phenotype distribution
along the phylogenetic branches is modeled.

The first approach using phylogenies is to study the
evolution of the phenotype with time. A researcher may
be interested in whether a bacterial phenotypic trait (e.g.
lower temperature limit for growth) has evolved in as-
sociation with environmental conditions (e.g. tempera-
ture) or in association with other traits (e.g. minimal pH
limit). For solving this issue, Phylogenetic Comparative
Methods are an active field that has shown many de-
velopments in the last few years [32]. Several methods
have been specifically developed to study adaptive
evolution. They rely on different models, such as
Brownian motion or Ornstein–Uhlenbeck models that
are implemented in R packages (see, e.g. phy-
tools [33] or PhylogeneticEM [32]). All these modeling
approaches have been mainly applied to eukaryotic or-
ganisms [34], and only a few articles described their
application to prokaryotes yet [35].

In the second class of phylogenetic approach, statistical
methods are proposed to test for the association between
the phenotypic trait and a fixed-tree structure across all
levels of the tree hierarchy. Two R packages have been
developed, treeBreaker [36] and treeSeg [37]. Contrary
to the first category of phylogenetic method, they con-
sider the evolution of the phenotypic distribution itself
rather than the phenotype.

The challenge of applying genomics in risk
assessment
How to deal with continuous phenotypes in Genome
Wide Association Study
The input parameters used for risk assessment present
some particularities. They do not usually correspond
with the single measurement of a simple phenotype

under a single set of in vitro experimental conditions.
The parameters of interest are more complex and re-
quire extensive data acquisition and a modeling step
(see, e.g. [38]). An illustrative example is the minimum
growth temperature that is used in secondary models for
assessing the growth of the pathogen in the exposure-
assessment step. About ten kinetics with about ten
points per kinetic must be collected. Then, models have
to be fitted to kinetics in order to retrieve the growth
rate. Finally, another model has to be fitted in order to
determine the minimum growth temperature. It thus
requires a lot of experimental work and the estimated
parameter used as the phenotypic trait is prone to un-
certainty. So far, very few studies have attempted to
address the issue of performing marker searches on such
parameters [39]. Most of the current applications of
marker-research methods are applied to simple pheno-
types (e.g. minimum inhibitory concentration) of food-
pathogen behavior directly derived from experiments
[40–42]. The same can be established for the char-
acterization of the hazard. The parameters of the do-
se–response relationship are not easily accessible. Their
estimation is complex and may involve epidemiological
data and exposure assessment [26,43].

The most commonly studied phenotypes in risk as-
sessment are quantitative, such as the probability of ill-
ness for one cell, the maximal growth rate, or the cardinal
values. The first software used in bacterial GWAS or for
phylogenetic methods concentrates on qualitative phe-
notypes. Dividing the continuous phenotypes of strains
into well-defined categories is often tricky, even in a
priori discriminatory conditions close to growth limits,
due to minor differences between strains and experi-
mental uncertainty [44]. In such a situation, a solution is
to carry out the analysis on the most extreme phenotypes
and to proceed with the identification of markers ex-
cluding strains that present phenotypes around the
median, for example, by excluding values between plus
or minus one standard deviation around the median [42].
If the whole dataset is kept, hierarchical clustering could
help to objectively define the phenotypic groups [40].
Software able to overcome issues are now available for
taking into account the continuous nature of some
phenotypes [18,45].

Drawbacks associated with the nature of the phenotypic
trait of interest
The phenotypes of interest for risk assessment in foods
(e.g. temperature adaptation, ability to induce infection
or to colonize animal reservoirs…) have a complex
multifactorial nature as the adaptation of bacterial strains
may involve different genes or metabolic functions. The
experience shows that GWAS and ML methods could
return several hundred to thousands of genetic elements
associated with complex traits [46,47]. Recent genome-
wide association studies focusing on risk-assessment

4 Food Microbiology

www.sciencedirect.comCurrent Opinion in Food Science 48 (2022) 100922



phenotypes showed a higher number of candidate mar-
kers and lower statistical association values than asso-
ciation studies on microbial phenotypes of medical
interest such as antibiotic resistance [40,41]. This re-
presents a challenge for GWAS methods, as it makes
it difficult to detect less-prevalent adaptation mechan-
isms through simple statistical associations. Thus, it is
complicated to identify the role of individual genes and
look for (epistatic) interactions between them. While
most applications of GWAS to date have used the single-
locus testing framework, recent innovations seek to ex-
pand upon this paradigm to elucidate more complex
genotype–phenotype associations. The introduction of
the concept of unitigs in ML and GWAS methods may
help to decipher complex association as unitigs con-
siderably reduce the number of potential causal markers
and improve interpretability. Even though the use of
unitigs has practical implications for Quantitative Mi-
crobial Risk Assessment (QMRA), two main issues to be
solved for the deployment of GWAS are anchoring and
integration of results into biological-system approach for
translating molecular studies into risk [48]. Taking into
account the homoplasy (the occurrence of multiple in-
dependent mutations at the same site) in the identifi-
cation of mutations is also expected to improve the
association [49].

From identification of markers to their use in
quantitative microbial risk assessment
The question of validation of the markers of the phe-
notypic traits is crucial for their use in risk-assessment
models. Meanwhile, the approach could be different
according to the scientific fields [46]. For data analysts,
markers are considered validated if robust statistical as-
sociations are proven. For laboratory-based researchers,
validation is only considered valid when effects can be
reproduced using complementary experimental ap-
proaches (see, e.g. [50]). Experimental validation by re-
verse genetics of the many markers associated with
phenotypes of interest for microbial risk assessment is
probably not feasible, at least in the short term. It is
likely that risk assessors will be satisfied with a statistical
validation (a p-value below the corrected significance
threshold) of markers. Validation of phenotype predic-
tions on strains other than those used for marker iden-
tification also remains an achievable goal, even if it does
not provide functional genomics justifications to scien-
tists.

An important issue for the application of genomics to
describe phenotype variability in risk- assessment
models is also the ability of the methods to predict the
phenotype of sequenced uncharacterized strains.
Indeed, the collection of strains used to identify markers
may represent either a fraction or a totally different set of
strains for which prediction is needed. Here, ML
methods present a clear advantage compared with most

of GWAS or phylogenetic methods. The objective of
these methods is to predict after the model is trained.
The advantage of ML methods is that the uncertainty in
their predictions can be easily incorporated into the
uncertainty dimension of the QMRA models. Most
GWAS and phylogenetic methods usually have a dif-
ferent objective, the central objective is mainly to es-
tablish an association between genomic features or
clades in the phylogeny and the phenotype rather than
to predict the unknown phenotype of a strain. Relative
to that drawback, recent development in GWAS was
proposed by [18] where a penalized regression model
completes the approach to predict the phenotype from
the presence/absence of significant markers identified by
GWAS. In their original phylogenetic approach, treeSeg,
[37] proposes to predict the phenotype of a branch of the
phylogeny.

Regarding QMRA models, a high number of sources of
variability are modeled. Not all these sources have the
same importance concerning the outcome of QMRA
models [51], thus, the implementation of biomarkers is
only meaningful for the highest-priority sources of mi-
crobiological variability according to uncertainty or sen-
sitivity-analysis methods. It is worth to mention that
hazard characterization for strain virulence is usually an
important source of variability [44] and that there are
high expectations for the application of these methods to
improve the performance of risk assessments [5].

What can we expect in the coming years?
There are various strategies for the application of
genomics in quantitative risk assessment in the longer
and shorter term. In the short term, genomics can be
used to remove the source of uncertainty in risk assess-
ment. Strains’ variability will be better grasped and
modeled by identifying molecular markers of adaptation
(in connection with predictive microbiology) or viru-
lence markers (for the parameters of the dose–response
relationship) and their identification in a collection of
strains representative of a food sector. This better un-
derstanding of the intraspecific variability of the strains
will, in particular, make it possible to test the commonly
used hypothesis that the variability observed in labora-
tory strains is the same as that one of strains present in
the food-production chain. In addition to reducing un-
certainty, the use of genomics paves the way for easier
validation of QMRA models by comparing the genomic
diversity in patients predicted by the model with that
observed by the epidemiologists. In the longer term, it is
conceivable that genomic markers could be used to es-
tablish management measures better adapted to the
different potentials of the strains [48]. But this im-
plementation requires the development of rapid micro-
biological methods for the identification of markers on
isolated clones or the systematic sequencing of strains.
The standardization and the validation of
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microbiological method is a lengthy process and sys-
tematic sequencing of strains is difficult to envisage,
given that many labs cannot afford the costs and time
required to obtain genomic sequence information yet.

Conclusion
The application of GWAS, machine-learning, and phy-
logenetic methods will probably considerably improve
the identification of relevant markers of phenotypes of
interest for foodborne pathogens in the next few years.
Despite further efforts of biologists and computer sci-
entists being needed to improve and validate compara-
tive genomic methods, several publications have
successfully used genomics in risk assessment [52,53•].

Although the degree of correlation between genotypic
and phenotypic profiles still shows some uncertainty,
genomics has a clear potential to improve model pre-
dictions, allow a link between QMRA and epidemiolo-
gical observations, and pave the way for precision food
safety. The application of the three methods here pre-
sented is straightforward and easy when considering a
phenotypic trait measured in a specific condition.
Beyond the tools, the sharing of genomic data by risk-
assessment bodies is being achieved [54,55]. In this
context, the bottleneck in the application of genomics
for microbiological risk assessment is no longer the ac-
quisition of genomic data or their analysis. Today, the
difficulty lies more in acquiring the parameters of risk-
assessment models on a large number of strains than in
sequencing or determining phenotype markers. One
solution would be to set up ambitious research projects
that would allow the characterization of these pheno-
types at high throughput. Another possible solution is
data sharing between the scientific actors of the pre-
dictive microbiology community. The application of
standardized methods for experimental data acquisition
and model fitting would be essential for a full exploita-
tion of phenotype and identification of shared markers.
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