Presentation Open Access

Boosting complex Systems Research through RSE Collaboration

Kelling, Jeffrey; Tripathi, Richa; Calabrese, Justin M.


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">performance</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">GPU</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">complex systems</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">computational science</subfield>
  </datafield>
  <controlfield tag="005">20230404140702.0</controlfield>
  <controlfield tag="001">7719360</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">20-22 February 2023</subfield>
    <subfield code="g">deRSE23</subfield>
    <subfield code="p">1</subfield>
    <subfield code="a">deRSE23 - Conference for Research Software Engineering in Germany</subfield>
    <subfield code="c">Paderborn, Germany</subfield>
    <subfield code="n">Challenges of Big Projects</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Center for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden-Rossendorf</subfield>
    <subfield code="0">(orcid)0000-0001-5349-6271</subfield>
    <subfield code="a">Tripathi, Richa</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Center for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden-Rossendorf</subfield>
    <subfield code="a">Calabrese, Justin M.</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">2365669</subfield>
    <subfield code="z">md5:71fb96905395706508ca16bb4da489e8</subfield>
    <subfield code="u">https://zenodo.org/record/7719360/files/Kelling-Jeffrey-Boosting Complex-Systems Research through RSE Collaboration.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">https://de-rse23.sciencesconf.org/</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2023-03-10</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-derse23</subfield>
    <subfield code="o">oai:zenodo.org:7719360</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Helmholtz-Zentrum Dresden - Rossendorf and Chemnitz University of Technology</subfield>
    <subfield code="0">(orcid)0000-0003-1761-2591</subfield>
    <subfield code="a">Kelling, Jeffrey</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Boosting complex Systems Research through RSE Collaboration</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-derse23</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Stochastic simulations of complex systems from domains including physics, biology, ecology or economics often require large system sizes, long time scales, and numerous replications to fully explore model behavior. The simple rules defining many models can lead researchers to prefer familiar but inefficient programming techniques, which severely hinder progress&lt;br&gt;
by creating computational bottlenecks. While such studies often benefit from combined domain-specific, statistical, and programming knowledge, few individual researchers span the full range of necessary skills. Here, we present a collaboration on the neutral model of biodiversity in dendritic river networks, where the goal is to analyze biodiversity data across the world&amp;rsquo;s major river systems. We show how we achieved large performance gains by engaging the problem at its foundations and thereby enabled research at a new scale.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.7719359</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.7719360</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">presentation</subfield>
  </datafield>
</record>
155
45
views
downloads
All versions This version
Views 155155
Downloads 4545
Data volume 106.5 MB106.5 MB
Unique views 132132
Unique downloads 4141

Share

Cite as