Developing Object Detection Models for Camera
Applications in Smart Poultry Farms

Stevan Caki¢
DigitalSmart
Podgorica, Montenegro
stevan.cakic@digitalsmart.me

Daliborka Nedi¢
DunavNET
Novi Sad, Serbia
daliborka.nedic@dunavnet.eu

Abstract—This paper proposes the use of high-performance
computing and deep learning to create prediction models that
can be deployed as a part of smart agriculture solutions in the
poultry sector. The idea is to create object detection models that
can be ported onto edge devices equipped with camera sensors
for the use in Internet of Things systems for poultry farms. The
object detection prediction models could be used to create smart
camera sensors that could evolve into sensors for counting
chickens or detecting dead ones. Such camera sensor Kkits could
become a part of digital poultry farm management systems in
shortly. The paper discusses the approach to the development
and selection of machine learning and computational tools
needed for this process. Initial results, based on the use of Faster
R-CNN network and high-performance computing are
presented together with the metrics used in the evaluation
process. The achieved accuracy is satisfactory and allows for
easy counting of chickens. More experimentation is needed with
network model selection and training configurations to increase
the accuracy and make the prediction useful for developing a
dead chicken detector.

Keywords—convolutional neural networks, deep learning,
digital farm management, high-performance computing, object
detection, poultry farms

I. INTRODUCTION

We are witnessing dramatic growth in food demand
around the globe, which is reflected in the increase in demand
for animal protein. This contributes to the growth in the
poultry feed market resulting in the increased global annual
production that even surpassed pork production in 2020
(Foreign Agriculture Service/USDA, Livestock and Poultry:
World Markets and Trade report) [1]. With these large and
increasing numbers in the poultry sector, there is a
requirement to continuously optimize and streamline the
production process, while simultaneously limiting effects on
the environment and improving the well-being of the animals
during their short lifespan. Poultry farms, similarly to other
livestock farms, are facing consistent and unavoidable
challenges such as disease outbreaks, disposal of deceased
animals, controlling all the basics of life (food, water, light,
air), sanitation, cleaning, etc. We are witnessing the
introduction of various digital or smart solutions to address
these challenges. For example, using Internet of Things (IoT)
sensors and data collection to measure air temperature, air

Tomo Popovic¢
DigitalSmart
Podgorica, Montenegro
tomo.popovic@digitalsmart.me

This research was funded by the FF4EuroHPC project under the Horizon
2020 Framework of the European Union. FF4EuroHPC project has received
funding from the European High-Performance Computing Joint Undertaking
(JU) under grant agreement No 951745.

978-1-6654-8356-8/22/$31.00 ©2022 IEEE

Srdjan Krco
DunavNET
Novi Sad, Serbia
srdjan.krco@dunavnet.eu

Dejan Babi¢
University of Donja Gorica
Podgorica, Montenegro
dejan.babic@udg.edu.me

humidity, CO,, and ammonia levels are required as a basis for
a successful production. With the latest developments in IoT
and artificial intelligence (Al), it is possible to create even
more advanced sensors that could help to reduce the losses,
cut down on manual labor, and many other benefits. For
example, using Al based prediction models can be used to
count animals, detect dead animals, assess growth and
homogeneity of animals during the growing cycle. Timely
detection of dead animals and/or uneven growth could help
early detection of disease and prevent outbreaks and losses.

This paper describes a research study in which high-
performance computing (HPC) is used to experiment with
deep neural networks (DNN) to create prediction models for
object/chicken detection in digital images collected using
camera loT nodes installed in poultry farms. Fig. 1 illustrates
the conceptual approach of this study. A dataset containing
images extracted from video materials recorded in poultry
farms was used. These images were annotated for object
detection.

Detectron2

. Faster R-CNN
8—? Preprocessing | |} aster _C
Training o)

The Dataset ML Inference
Model
Cloud Server/
LiLl /. Farm Management
A

Digital Platform

— LJ
L)

Poultry Farm Camera Sensor foT Edge
Device

Fig. 1. The context: developing object detection models for chicken farms

The dataset is further enhanced using the pre-processing
and augmentation and then utilized to run deep learning
algorithms, in this case the Faster R-CNN network from
Detectron2 library, to create inference models for detecting
chickens in images. There are various ways to utilize these
trained prediction models. We envisioned the use of the
prediction model in an edge Al setting, where the model is
ported onto an inexpensive IoT edge device equipped with
the camera sensor. Every time a digital image is taken on the
poultry farm, the pre-processing and prediction model is run
to detect all the chickens in the image. The resulting number
can then be utilized to implement functions such as counting
the chickens, detecting dead chickens, etc. The use of
inexpensive edge Al devices allows a dramatic reduction of

data transfer, i.e. we are sending only a number dead chickens
instead of sending a whole digital image, turning the IoT
camera into a sensor for counting chickens, detecting dead
ones, etc. Such a solution could be scaled by using several
camera nodes running these models and providing the
extracted knowledge, the number of dead chickens, to a
digital farming platform in the cloud. An ongoing research in
this domain as discussed in [2]. An example of the use of
camera in poultry farm is given in [3]. In this study, we focus
on development of prediction models that can be deployed in
edge Al device equipped with an IoT camera sensor.

The rest of the paper is organized as follows. Section II
discusses details of the data set collection, annotation, image
pre-processing and augmentation, software and hardware
tools selection, and setup. Section III provides results and
discussion related to the performance metrics, the training
process considerations, and an evaluation of the obtained
prediction models. Section IV summarizes the findings of this
study and discusses the next steps.

II. MATERIALS AND METHODS

A. Dataset Collection and Annotation

The significance that represents data in machine learning
is very high. Data collection, labeling, and processing are
some of the key operations performed in the preparation phase
for processing by DNN algorithms. For this process, the
images are used as data. All images are separated from
recorded videos collected from the chicken farms. The main
functionality of the system that is described in this paper is
object detection, which is in this case recognition of chickens
on the obtained images. This is a task that initially first refers
to computer vision with automatic independent recognition,
thus it is clear that some algorithm of Al could be used for
this process. To achieve a good performance, that algorithm
needs a substantial amount of data. For this purpose, we
collected and annotated 4000 images with chickens. Computer
Vision Annotation Tool (CVAT) was used for the annotation
of the objects in these images [4]. The CVAT provides tools
for management and manual image labeling. A team of four
people participated in the process of image annotation and
labeling. The annotation process assumed drawing rectangles
around the chickens manually. With the CVAT, the images in
the dataset were organized into tasks, each containing a set of
20 images that need to be annotated. After the annotation,
each set of the annotated images was reviewed for quality of
annotations. Fig. 2 illustrates an example of an image during
the annotation process in CVAT. The quality of the model
depends on the quality of the dataset, and the annotation
process was a very important part of this effort.

oo

0 o+ ¥

B EQ 0QO fc

Fig. 2. Using the CVAT tool for annotation

All the annotations that were performed needed to be
saved in an appropriate file format for later visualization and
the training process to create the prediction models. The
CVAT platform supports multiple formats for storing
annotations. In this case, we opted for the Common Objects
in Context (COCO) format [5]. This format is suitable for the
selected software tools used in the development of models
and experimentation with DNN. In the COCO format, for
each set of annotated images, there is a corresponding JSON
file that has a structure for storing the object category and
position of each annotation from the image. The COCO
standard also provides the key metrics needed for model
precision assessment as discussed later in the results section.

B. Dataset Preprocessing and Augmentation

In this section, the main focus is on the steps needed to be
implemented to ensure that the data is adequate for model
training. Pre-processing, organization, and augmentation of
the data were achieved using the RoboFlow tool [6]. Fig. 3
shows a screenshot from RoboFlow with a summary of the
dataset and preprocessing that took place in this study.

] i
| Ml

View All Images »

9000 images

TRAIN / TEST SPLIT

Training Set 4%

7.5K images

Testing Set 8%

725 images

PREPROCESSING

AUGMENTATIONS

DETAILS

[=

Fig. 3. The dataset preprocessing and augmentation with RoboFlow

The RoboFlow platform provides a large number of data
operations: pre-processing, augmentation, annotation,
organization, model training, and model deploying. In this
study, the only transformation of the original dataset images
for the pre-processing step was fixing the dimensions of the
source images to the same size. As for the augmentation
process, we used image rotation, lightness change from -15%
to +15%, saturation from -10% to 10%, and crop maximum
of 10%. After the augmentation process, we ended up with
the data set that contains 9000 images, created from the initial
4000. Please note that the size of the dataset after
augmentation is limited in the free version of RoboFlow, but
9000 images ended up being a decent number of images in
the data set. It is worth mentioning here, that RoboFlow is
suitable for the organization of annotated images and it has
good interoperability with the CVAT tool that we used for
annotation. RoboFlow was used to manage images from the
CVAT platform where they were organized into smaller
groups and create a data set containing a single large group of
annotated and augmented images that were easy to manage.
RoboFlow was also used to split the dataset into training,
validation, and test data sets as required for the machine
learning process. Fig. 3 shows a screenshot from the
RoboFlow with a summary of the dataset and pre-processing

that took place in this study. Once collecting, annotating, pre-
processing, and augmentation are completed, the data set is
ready to be used for machine learning experiments and the
creation of prediction models for object detection.

C. Selection of Machine Learning Tools

This section provides considerations related to the tools
used to create adequate prediction models. The Python
programming language was used. Python is recognized as
one of the most popular programming languages for machine
learning. The key reasons for this are Python simplicity,
availability of a large number of packages for effective work
with different problems, and a large community of developers
[7]. Choosing Python for development opens access to a wide
range of packages that can be used for deep neural network
development. In this study, the main focus is on the object
detection problem, namely the detection of chickens. There
are a few good Python libraries that could be used for this
purpose. We selected Detectron2 which mostly relies on the
PyTorch library. The PyTorch library is used for a wider
range of problems for machine learning and it is very popular
in the research community [8]. Some of its advantages are
simplicity and flexibility. PyTorch is often compared to other
packages that have a similar role, mostly with TensorFlow.
There is no way to determine which of the two is better, hence
both are widely used for implementing Al solutions [9]. The
Detectron2 library is composed of state-of-the-art algorithms
for object detection and segmentation [10]. Depending on the
environment, the installation and configuration of the
Detectron2 package are not straightforward. In our
experience, the Google Colab environment is a good choice
for initial experiments and research [11]. Google Colab
provides means to accelerate and facilitate the package
installation and configuration processes. There are free and
paid/pro versions of Google Colab and a large number of
researchers in Al are using it. This platform is based on
allowing the users to use virtual machines for a certain time.
In the free version, this time is varying and developers are not
informed in advance about the duration that their virtual
machine will remain active before disconnection. In the pro
version, this time is extended. It is possible that the session
gets terminated during model training and that the results are
not preserved. Using some additional code, it is possible to
solve this, by storing model checkpoints during different
training phases. Another disadvantage is that the data gets
deleted when a developer is disconnected from Google Colab
virtual machine. One approach to solve this issue is to store
data on Google Drive. The drawback of this approach is that
whenever you connect with the virtual machine, you need to
restore the data from your Google Drive, which can be
extremely time-consuming. To conclude, the free version of
Google Colab is a very useful platform as long as we are
aware of potential disadvantages.

D. High-Performance Computing Support

HPC systems are usually defined as a cluster of computers
with higher performances than typical personal computers.
Such computers come with much more processing power,
which is defined by the number of installed processing units
(CPU cores), optionally equipped with graphical processing
units (GPUs). HPC systems often come with plenty of
operating (RAM) memory and more storage capacity when
compared to an ordinary PC.

In this study, HPC system resources were managed using
a Linux utility for resource management (SLURM)

architecture. SLURM is an open-source, fault-tolerant, and
highly scalable cluster management and job scheduling
system for large and small Linux clusters [12]. The system
used for experiments contained computing nodes organized
into two groups, also called partitions: a) compute nodes, and
b) gpu nodes. The compute partition is made up of 14 nodes,
with the names node01 to node14. This is the default partition
and the computing jobs will run on this partition unless
specified otherwise. Each of these nodes is equipped with 2
Intel Xeon E5-2690v4 processors having 28 cores. Every
node also has 512 gigabytes (GB) of fast DDR4 RAM. The
gpu partition consists of 8 nodes (gpuOl1 to gpu08). The only
difference with compute nodes is that they each have 4
NVIDIA Tesla M60 GPUs. A Tesla M60 card is made out of
two physical NVIDIA Maxwell GPUs with a combined 16
GB of memory. Many applications perceive the card as two
separate GPUs, appearing as 8 GPUs per node [13].

III. RESULTS AND DISCUSSION

The experimentation in this study was focused on object
recognition using DNN to solve computer vision problems
[14]. Initial experiments were performed on the Google Colab
platform, but the final experimentation was done using a HPC
system. The training and evaluation of all cases were done
using the GPU nodes.

A. Network Selection and Training Parameters

The considerations provided here are relevant only for
experiments conducted on HPC systems. Detectron2 supports
different types of deep neural networks for object detection,
object segmentation, detecting key points of an object, etc.
[15]. The main type of neural network used by Detectron2 to
solve object detection problems is Faster R-CNN [16]. For all
deep neural networks, it is known how much the choice of
specific parameters affects the accuracy of the model. The
parameters that are tested with these experiments are gamma
parameter, num_iters parameter, parameter steps, and
ims_per batch. In addition to these parameters, each of the
experiments can be executed with a different number of
GPUs: one, two, four, or eight. All experiments are tested on
several types of neural networks supported by the Detectron2
package [15]. The idea of these experiments is to detect the
appropriate neural network with the appropriate parameters.
In addition, by testing model training on different numbers of
GPUs, we tried to get some sense of how these changes affect
the model accuracy, training time, and parameters selection.
As an important parameter for experiments, model prediction
time is analyzed with caution. The prediction speed is very
important because the final models need to be integrated with
IoT devices whose performance is quite limited [17].

Before discussing the results, the meaning of individual
parameters needs to be explained. Parameters gamma,
num_iters, and steps can be considered as a group of
parameters strongly connected with parameters base Ir,
Ir_policy, max_iter, and warmup _iters. For the experiments
in this study, the parameters base Ir, Ir policy, and
warmup_iters have fixed values:

e base Ir=10.001,

e [r policy ="steps_with_decay',

o warmup_iters =20.

The base_Ir parameter indicates the initial value for the

learning rate, warmup_iters is the number of iterations for
updating the learning rate from zero up to the value of base_Ir,

while /r_policy represents the update strategy for the learning
rate [17]. Parameter max_iter represents the maximum
number of epochs for model training. For the selected strategy,
Ir_policy = ‘steps_with_decay’, the learning rate is updated
according to (1):
learning_rate = base_lr * gammaSter-ndex €))
For example, if parameters values are base [r=0.001,
warmup_iters=20, max_iter=500, gamma=0.1,
num_iters=500 and steps=(20, 350, 450), the learning rate
change values as follows:

e from 0 to 20" iteration learning rate is changed from
0 to0 0.001 (warming up);

e from the 20™ to 350™ iteration the new value for the
learning rate is learning rate = 0.001 * 0.1° = 0.001;

e from the 350" to 450™ iteration the new value for the
learning rate is learning rate = 0.001 * 0.1'= 0.0001;

e from 450" until the end (max_iter = 500) value for
learning rate = 0.001 * 0.22 = 0.00001.

This update strategy allows us to reduce the learning rate
value during the training process. The learning rate parameter
in neural networks is very important when it comes to training
efficiency. If the learning rate is too high, the function
minimum (when the loss is minimal) can be missed. If the
learning rate is too low, it can take a long time to reach the
function minimum, thus, the trade-off is important. More
information regarding the learning rate and strategies for
updating is provided in [18].

Another very important parameter is ims_per batch. This
parameter defines the batch size. In this case, it is the number
of images per batch for the DNN that will be loaded into the
GPU on the HPC system. Depending on this parameter, the
number of graphic cards used for model training was updated.
Table 1. shows the analysis of the training duration of the
mentioned neural network according to the defined
parameters. The table shows the achieved accuracy of the
model, as well as the acceleration of the training when a
different number of GPUs was selected. To understand the
quality of the neural network models, the accuracy parameters
need to be explained. These parameters are used for assessing
the quality of the accuracy of the neural network. When
focusing on object detection, specifically when machine
learning is based on the COCO format, the main parameters
provided by Detectron2 during the evaluation of the model
are BBox_ap, BBox_ap50, BBox_ap75, also known as AP,
AP50, and AP75, respectively [19]. The AP metric represents
an average precision for intersection over union (IoU)
between objects from value 0.5 to 0.95 with a 0.05 step. The
IoU itself is calculated in (2) [20]:

__ Areaof overlap
IoU = Area of union (2)

This metric is best explained with an example. If DNN uses
100 annotated images so that the IoU for 98 of them is at least
0.5 that means that AP50 is 0.98. For the area of overlapping,
when a rectangle is used for annotation, the IoU value
represents the intersection of the rectangle around the
manually annotated object and the rectangle that is generated
by the prediction model. With every increase in IoU value,
there is a decrease in accuracy. For example, AP75<AP50
because AP75 IoU must be at least 0.75. BBox_ap or short
AP represents the average precision or the sum of all values
for APs from AP50 to AP95 with step 5 (3):

Zilzlo BBox_ap(5*i)

To obtain optimal values of output metrics for the selected
input parameters, dozens of experiments with different
combinations of parameters were executed. In addition, we
observed how model training on different numbers of GPUs
affected the training acceleration. One such combination of
parameters is given as an example:

BBox_ap =

e gamma=0.5;

o steps =20, 450, 850;
® max_iters = 1000;

e warmup_iters =20;

® jims_per batch =256.

The neural network architecture used for this specific
experiment is faster rcnn_R_101_C4 3x[15].

TABLE 1. ACCURACY AND TRAINING TIMES

Number Training
of GPUs Ap AP30 AP75 time [min]

1 50:55

2 32:32

~0.83 ~0.97 ~0.94
4 30:00
8 28.53

One of the conclusions that can be singled out is that every
increase in the number of GPUs used for training accelerates
the training time of the model. This is also the key advantage
of increasing the batch size parameter. For a larger batch size,
the advantage of parallelization is more obvious. However,
for larger batch sizes, the training takes longer and the
accuracy is lower. This phenomenon is also noted and
described in [21]. During experimentation with model
training, another problem can occur: by increasing the value
of batch size, the experiment takes more memory, and the
training process may be interrupted due to the load on the
GPU memory. This happens when there is not enough
memory to load the data and send it for processing. Therefore,
increasing the batch size needs to be done with caution. On
the other hand, by increasing the batch size, it may not be
necessary to update the learning rate during the training as
discussed in [22]. Our initial experiments without updating
the learning rate showed a similar trend with the batch size
vs. acceleration, but more testing with the batch sizes will
need to be done soon.

B. Prediction Model Evaluation

As mentioned before, the functional requirements for the
camera sensor equipped with an object detection prediction
model include counting the chickens captured in the image
and possibly detecting dead ones. It is necessary to count how
many annotation rectangles are drawn for a given image,
while the actual location of the rectangle is not as critical. In
other words, achieving high numbers for AP75 or AP50 may
be sufficient. The challenge here is that sometimes the
chickens are very close to one another, which is why AP75
and the overall AP should be as high as possible. The same
goes for detection of the dead animals, where the detection
depends on running the prediction model on several
successive images over time to identify the rectangles that did
not move for a longer period. If we have an inaccurate

detection with a low AP and AP75, it may appear that the
animal is moving while it should have been detected in the
same position every time. To obtain better accuracy,
additional experiments with a variety of network model
selection and configuration parameters will be done shortly.
Please note that we discuss only counting the number of
chickens or detecting the dead ones as seen in the image.

An illustration of the utilization of the prediction model in
real life is illustrated in Fig. 4. This image shows chickens
marked by the prediction model. This functionality was
successfully integrated into the digital farming platform
already collecting the environmental measurements from IoT
sensors. The prediction model was ported from the HPC
system onto the edge IoT/Al device called NVIDIA Jetson,
with Linux, Python and PyTorch/Detectron2 installed. The
execution time of the prediction model was around 10
seconds, which makes the whole edge setup acceptable as a
camera-based IoT sensor node for counting chickens. It is
important to note the prices of camera sensors and edge Al
devices are becoming lower and more affordable.

Fig. 4. Evaluating the prediction model with the test dataset

IV. CONCLUSION

This paper discusses the development of object detection
prediction models for use in smart solutions for poultry farms.
The inference model of interest is to be used for the detection
of chickens in digital images obtained from the camera IoT
devices deployed on the farm. This model can be utilized to
implement camera sensors for counting chickens and/or
detecting dead ones. The developed model can be installed in
an edge Al device to reduce the need for uploading large
image files, but it could also be integrated into the digital
farming platform as a cloud service.

The paper provides considerations for the development
approach, data set preparation, software, and hardware tools
selection. The results section provides details on the metrics
used for evaluation of the training process and selection of
configuration parameters, such as the batch size and number
of GPUs used. It is shown that when using a Faster R-CNN
network, a fairly accurate prediction model for chicken
detection can be developed, AP=0.83, AP75=0.94, and
AP50=0.97, which would allow for practical use of such a
model for counting chickens using camera sensors in an actual
poultry farm setting. Further research steps include additional
experimentation with different network models and parameter
settings, but also additional software development aimed at
the integration of developed prediction models into the edge
[oT camera devices and/or digital farming solutions for the
poultry sector. Further research could include the validation

of the solution in actual farms in order to collect metrics
needed to estimate benefits of such technology.

REFERENCES

[1] USDA, “Livestock and Poultry: World Markets and Trade”, United
States Department of Agriculture, Foreign Agriculture Service, April
8, 2022, Available online: https://www.fas.usda.gov/data/livestock-
and-poultry-world-markets-and-trade, last accessed: 7 June 2022.

[2] S. Neethirajan, “Automated Tracking Systems for the Assessment of
Farmed Poultry”, Animals, January 2022.

[3] L. Cao, Z. Xiao, X. Liao, Y. Yao, K. Wu, J. Mu, J. Li, H. Pu,
“Automated Chicken Counting in Surveillance Camera Environments
Based on the Point Supervision Algorithm: LC-DenseFCN”,
Agriculture, 2021

[4] C. Sager, C. Janiesch, P. Zschech, “A survey of image labelling for
computer vision applications”, Journal of Business Analytics, 4:2, 91-
110, 2021

[5] T.Y.Li et al, “Microsoft COCO: Common Objects in Context”,
arXiv, 2014

[6] Roboflow platform, Available online: https://universe.roboflow.com/,
last accessed: 19 April 2022.

[7]1 S.Raschka, J. Patterson, C. Nolet, “Machine Learning in Python: Main
Developments and Technology Trends in Data Science, Machine
Learning, and Artificial Intelligence”, Information, vol. 11, pp. 193,
2020

[8] A. Paszke, et al, “PyTorch: an imperative style, high-performance
deep learning library”, 33rd International Conference on Neural
Information Processing Systems. Curran Associates Inc., Red Hook,
NY, USA, A721, 8026-8037, 2019

[9] F. Florencio, T. Silva, E. Ordonez, M. Junior, “Performance Analysis
of Deep Learning Libraries: TensorFlow and PyTorch”, Journal of
Computer Science, vol. 15,2019

[10] H. Wen, C. Huang, S. Guo, “The Application of Convolutional Neural
Networks (CNNs) to Recognize Defects in 3D-Printed Parts”,
Materials, vol. 14, pp. 2575, 2021

[11] T. Pessoa, et al, “Performance Analysis of Google Colaboratory as a
Tool for Accelerating Deep Learning Applications”, IEEE Access,
2018

[12] A. B. Yoo, M.A Jette, M. Grondona, “SLURM: Simple Linux Utility
for Resource Management”,Job Scheduling Strategies for Parallel
Processing. JSSPP, vol 2862. Springer, Berlin, Heidelberg, 2003

[13] Yotta advanced computing, Available online: https://www.yac.hr/, last
accessed: 19. April 2022.

[14] Z, Zhao, P. Zhengg, S. Xu, X. Wu, “Object Detection with Deep
Learning: A Review”, IEEE Transactions on Neural Networks and
Learning Systems, 2019

[15] Detectron2 Facebook Al library for object detection and segmentation,
Available online: https://github.com/facebookresearch/detectron2, last
access: 19. April 2022.

[16] S. Ren, K. He, R. Girshick, J. Sun, “Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks”, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2015

[17] L. Jovovic, et al, “Face Mask Detection Based on Machine Learning
and Edge Computing”, 21th International Symposium INFOTEH-
JAHORINA, 2022

[18] Y. Wu, et al, “Demystifying Learning Rate Policies for High Accuracy
Training of Deep Neural Networks”, IEEE International Conference
on Big Data, 2019

[19] Y. He, C. Zhu, J. Wang, M. Savvides, X. Zhang, "Bounding Box
Regression with Uncertainty for Accurate Object Detection,"
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2019, pp. 2883-2892, 2019

[20] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, S. Savarese,
“Generalized Intersection over Union: A Metric and A Loss for
Bounding Box Regression”, arXiv, 2019

[21] N.S. Keskar, J. Nocedal, P. T. P. Tang, D. Mudigere, M. Smelyanskiy,
“On large-batch training for deep learning: Generalization gap and
sharp minima”, 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, 2017

[22] S. Smith, P. Kindermans, C. Ying, Q. Le, “Don't Decay the Learning
Rate, Increase the Batch Size”, arXiv, 2017

