PREDICT:6G

A quick overview

Antonio de la Oliva (aoliva@it.uc3m.es)

Funded by the European Union

This project was awarded funding by the European Union's Horizon Europe Research and Innovation programme under grant agreement N° 1101095890.

What is deterministic?

Reliable

- Availability
- Low packet low
- Failure resilient

Time sensitive

- Bounded latency
- Low jitter

Predictable

- Use AI for predicting events, states, demand, resources
- Autonomous pro-active actions based on predictions

Project mission

- Design, create and validate e2e 6G solutions providing deterministic services over multiple inter-connected domains and technologies (incl. wired and wireless)
 - integration, abstraction and programmable exposure of multiple U-plane mechanisms (with different levels of intrinsic deterministic capabilities)
 - AI/DT based C/M-plane mechanisms (autonomous orchestration and assurance of e2e deterministic services)
- Output
 - Reference architecture
 - Protocols, APIs (U/C-plane)
 - Management and automation techniques
 - PoC
 - Standard contributions and publications

High-level project objectives

- Define a deterministic (reliable, time sensitive, and predictable) multitechnology, multi-stakeholder network. Provide the PREDICT-6G network architecture based on the analysis of relevant use cases, evaluating its potential business impact (WP1)
- Design the PREDICT-6G Multi-technology, multi-domain Data-Plane (MDP) (WP2)
- Provide a novel AI-based control-plane framework (AICP) to enable determinism in multi-stakeholder multi-technology 6G environments (WP3)
- Integration, experimentation and use case verification (WP4)
- Disseminate and communicate project results to the broadest audience using Open Science practices, impact standards and European ecosystem, and exploit project outcomes (WP5)

Overview of the technology domains and the environment targeted by PREDICT-6G – high-level MDP architecture

- 3GPP TSC Rel19
- Wi-Fi 7/8
- IEEE 802.1 TSN
- DetNet, RAW

MF – Management Function (e.g., network/domain controller)

- Systems/Domains with different deterministic networking capabilities
- AI/Application Function (e.g., data analyzer, robot controller, X-as-a-Service)

AF

SNS Lunch Webinar

Deployment of PREDICT-6G over the edge-cloud continuum supporting legacy devices with no deterministic capabilities

Cloud continuum

DetNet Adaptor

- Implements interfaces (APIs) to Management Functions (E2E MF, domain/system specific MF)
- Implements user plane DetNet capabilities (packet scheduling, pacing, segmentation, etc.)

The high-level AICP architecture of PREDICT-6G

Integration example between the MDP and AICP

Multi-technology multi-domain Data-Plane (MDP),

CNC: Central Network Controller - Domain specific MF NW-TT: Network Side TSN Translator DS-TT: Device Side TSN Translator CUC: Central User Control UNI: User-Network Interface PCE: Path Computation Entity PSE: Path Selection Engine

Ambitions

Innovation areas

Topic 1: Cross-domain E2E deterministic service management automation.

- Vertical integration: programmability and observability by a service layer
- Horizontal integration: how to e2e with other domains (especially using both wired and wireless segments)

Topic 2: Emulate deterministic network capabilities on top of non-deterministic network segments

• All based profiling and prediction of network events, states, demand, available resources and impact of actions in the context of deterministic services

Topic 3: Predictability through Network Digital Twinning

- Accurate DT for wireless and wired network segments and their interactions
- DT for modelling determinism

Ambitions – cont'd

Innovation areas

Topic 4: User, resource, and function mobility under deterministic constraints

- Types of mobility: (i) device/user; (ii) resource/service function chaining; (iii) VNF migration
- Specific challenges in deterministic network context

Topic 5: Highly configurable monitoring platform for multi-technology deterministic networks

- Data collection (scalable, flexible, efficient, extendible, etc.)
- Support AI/ML integration

Topic 6: Improvement of L2 deterministic capabilities of IEEE 802.11 and 3GPP

• Adopt technologies from IEEE 801.1AS and apply them on the radio L2 of IEEE and 3GPP

Topic 7: Data-plane integration of multiple deterministic and non-deterministic domains

Extend the RAW and DetNet efforts to multiple deterministic domains

Use case 1: Smart manufacturing

Figure 1-17: Current network architecture in manufacturing plants

Use case 2: Large-scale multi-domain deterministic network

Use case 3: Critical communications

PREDICT 06G

Thank you!

predict-6g.eu

in <u>PREDICT-6G Project</u>

Funded by the European Union

This project was awarded funding by the European Union's Horizon Europe Research and Innovation programme under grant agreement N° 1101095890.