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1.  Introduction 

When the author of this article was trying to compute the multiple summations of a geometric 

series [1-12], a new idea stimulated his mind to create a new type of geometric series. As a 

result, a combinatorial geometric series [11-20] was developed with new idea of binomial 

coefficients.  

 

2. Geometric Series with Binomial Coefficients     
The combinatorial geometric series is derived from the multiple summations of a geometric 

series. The coefficient of each term in the combinatorial geometric series [17-33] refers to the 

binomial coefficient [29-42]. 
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where 𝑟 is a positive integer, 𝑛 is a non-negative integer, and 𝑉𝑛

𝑟 is a binomial coefficient. 
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 is an infinte geometric series with binomial coefficients.  
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3. Conclusion  
In this article, the finite and infinite geometric series with binomial coefficients have been 

discussed and this information can enable the scientific researchers to solve the real life 

problems.  
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