Combinatorial Geometric Series: Infinite Series with Binomial Coefficients

Chinnaraji Annamalai School of Management, Indian Institute of Technology, Kharagpur, India Email: <u>anna@iitkgp.ac.in</u> <u>https://orcid.org/0000-0002-0992-2584</u>

Abstract: This paper discusses the finite and infinite geometric series with binomial coefficients. This idea can enable the scientific researchers to solve the real-world problems.

MSC Classification codes: 05A10, 40A05 (65B10)

Keywords: computation, binomial coefficient, geometric series

1. Introduction

When the author of this article was trying to compute the multiple summations of a geometric series [1-12], a new idea stimulated his mind to create a new type of geometric series. As a result, a combinatorial geometric series [11-20] was developed with new idea of binomial coefficients.

2. Geometric Series with Binomial Coefficients

The combinatorial geometric series is derived from the multiple summations of a geometric series. The coefficient of each term in the combinatorial geometric series [17-33] refers to the binomial coefficient [29-42].

$$\sum_{i_1=0}^n \sum_{i_2=i_1}^n \sum_{i_3=i_2}^n \cdots \sum_{i_r=i_{r-1}}^n x^{i_r} = \sum_{i=0}^n V_i^r x^i \text{ and } V_n^r = \frac{(n+1)(n+2)(n+3)\cdots(n+r)}{r!},$$

where r is a positive integer, n is a non-negative integer, and V_n^r is a binomial coefficient.

Note that
$$V_n^0 = V_0^0 = 0! = 1$$
 and $V_0^r = \frac{(0+1)(0+2)(0+3)\cdots(0+r)}{r!} = \frac{r!}{r!} = 1$.
So, $V_n^0 = V_0^r = V_0^0 = 1$.
$$\sum_{i_1=0}^n \sum_{i_2=i_1}^n \sum_{i_3=i_2}^n \cdots \sum_{i_r=i_{r-1}}^n x^{i_r} \text{ is the } (r+1) \text{ summations of geometric series for } r = 0, 1, 2, 3, \cdots$$
and $\sum_{i=0}^n V_i^r x^i$ is the finite geometric series with binomial coefficients.
$$\lim_{n\to\infty} \sum_{i=0}^n V_i^r x^i = \sum_{i=0}^\infty V_i^r x^i \text{ is an infinte geometric series with binomial coefficients.}$$
If $|x| < 1$, then $\lim_{n\to\infty} \sum_{i=0}^n x^i = \sum_{i=0}^\infty x^i = \frac{1}{1-x}$ and $\lim_{n\to\infty} \sum_{i=0}^n V_i^r x^i = \sum_{i=0}^\infty V_i^r x^i = \frac{1}{(1-x)^{r+1}}$.

3. Conclusion

In this article, the finite and infinite geometric series with binomial coefficients have been discussed and this information can enable the scientific researchers to solve the real life problems.

References

- [1] Annamalai, C. (2022) Computation and Calculus for Combinatorial Geometric Series and Binomial Identities and Expansions. *The Journal of Engineering and Exact Sciences*, 8(7), 14648–01i. https://doi.org/10.18540/jcecvl8iss7pp14648-01i.
- [2] Annamalai, C. (2022) Application of Factorial and Binomial identities in Information, Cybersecurity and Machine Learning. *International Journal of Advanced Networking and Applications*, 14(1), 5258-5260. <u>https://doi.org/10.33774/coe-2022-pnx53-v21</u>.
- [3] Annamalai, C. (2022) Algorithmic Approach for Computation of Binomial Expansions. *SSRN Electronic Journal*. <u>https://dx.doi.org/10.2139/ssrn.4260689</u>.
- [4] Annamalai, C. (2022) Construction of Novel Binomial Expansion. SSRN Electronic Journal. <u>https://dx.doi.org/10.2139/ssrn.4269024</u>.
- [5] Annamalai, C. (2022) Novel Multinomial Expansion and Theorem. *SSRN Electronic Journal*. <u>https://dx.doi.org/10.2139/ssrn.4275263</u>.
- [6] Annamalai, C. (2022) A Theorem on Binomial Series. *SSRN Electronic Journal*. <u>https://dx.doi.org/10.2139/ssrn.4275263</u>.
- [7] Annamalai, C. (2022) Factorials, Integers and Mathematical and Binomial Techniques for Machine Learning and Cybersecurity. SSRN Electronic Journal. <u>https://dx.doi.org/10.2139/ssrn.4174357</u>.
- [8] Annamalai, C. (2022) Combinatorial and Multinomial Coefficients and its Computing Techniques for Machine Learning and Cybersecurity. *The Journal of Engineering and Exact Sciences*, 8(8), 14713–01i. <u>https://doi.org/10.18540/jcecvl8iss8pp14713-01i</u>.
- [9] Annamalai, C. (2022) Computation and Analysis of Combinatorial Geometric Series and Binomial Series. *SSRN Electronic Journal*. <u>https://dx.doi.org/10.2139/ssrn.4253238</u>.
- [10] Annamalai, C. (2022) Two Different and Equal Coefficients of Combinatorial Geometric Series. *SSRN Electronic Journal*. <u>https://dx.doi.org/10.2139/ssrn.4250564</u>.
- [11] Annamalai, C. (2022) Lemma on the Binomial Coefficients of Combinatorial Geometric Series. *The Journal of Engineering and Exact Sciences*, 8(9), 14760-01i. https://doi.org/10.18540/jcecv18iss9pp14760-01i.
- [12] Annamalai, C. (2022) A Theorem on Successive Partitions of Binomial Coefficient. SSRN Electronic Journal. <u>http://dx.doi.org/10.2139/ssrn.4228510</u>.

- [13] Annamalai, C. (2022) Sum of Successive Partitions of Binomial Coefficient. SSRN Electronic Journal. http://dx.doi.org/10.2139/ssrn.4226966.
- [14] Annamalai, C. (2022) Skew Field on the Binomial Coefficients in Combinatorial Geometric Series. *The Journal of Engineering and Exact Sciences*, 8(11), 14859-01i. https://doi.org/10.18540/jcecvl8iss11pp14859-01i.
- [15] Annamalai, C. (2022) Scalar and Vector Space of Combinatorial Geometric Series. *SSRN Electronic Journal*. <u>http://dx.doi.org/10.2139/ssrn.4225265</u>.
- [16] Annamalai, C. (2022) Construction and Analysis of Binomial Coefficients. SSRN Electronic Journal. http://dx.doi.org/10.2139/ssrn.4223597.
- [17] Annamalai, C. (2022) Series and Summations on Binomial Coefficients of Optimized Combination. *The Journal of Engineering and Exact Sciences*, 8(3), 14123-01e. https://doi.org/10.18540/jcecvl8iss3pp14123-01e.
- [18] Annamalai, C. (2022) Fourier Series with Binomial Coefficients of Combinatorial Geometric Series. *SSRN Electronic Journal*. <u>http://dx.doi.org/10.2139/ssrn.4345854</u>.
- [19] Annamalai, C. (2022) Ascending and Descending Orders of Annamalai's Binomial Coefficient. *SSRN Electronic Journal*. <u>http://dx.doi.org/10.2139/ssrn.4109710</u>.
- [20] Annamalai, C. (2022) A Binomial Expansion Equal to Multiple of 2 with Non-Negative Exponents, *SSRN Electronic Journal*. <u>http://dx.doi.org/10.2139/ssrn.4116671.</u>
- [21] Annamalai, C. (2022) Alternative to the Binomial Series or Binomial Theorem, *SSRN Electronic Journal*. <u>https://ssrn.com/abstract=4228921</u>.
- [22] Annamalai, C. (2022) Real and Complex Numbers of Binomial Coefficients in Combinatorial Geometric Series. SSRN Electronic Journal. <u>http://dx.doi.org/10.2139/ssrn.4222236</u>.
- [23] Annamalai, C. (2022) Annamalai's Binomial Expansion, *SSRN Electronic Journal*. http://dx.doi.org/10.2139/ssrn.4262282.
- [24] Annamalai, C. (2017) Analysis and Modelling of Annamalai Computing Geometric Series and Summability. *Mathematical Journal of Interdisciplinary Sciences*, 6(1), 11-15. https://doi.org/10.15415/mjis.2017.61002.
- [25] Annamalai, C. (2017) Annamalai Computing Method for Formation of Geometric Series using in Science and Technology. *International Journal for Science and Advance Research In Technology*, 3(8), 187-289. <u>http://ijsart.com/Home/IssueDetail/17257</u>.
- [26] Annamalai, C. (2017) Computational modelling for the formation of geometric series using Annamalai computing method. *Jñānābha*, 47(2), 327-330.

- [27] Annamalai, C. (2018) Novel Computation of Algorithmic Geometric Series and Summability. *Journal of Algorithms and Computation*, 50(1), 151-153. https://www.doi.org/10.22059/JAC.2018.68866.
- [28] Annamalai, C. (2018) Computing for Development of A New Summability on Multiple Geometric Series. *International Journal of Mathematics, Game Theory and Algebra*, 27(4), 511-513.
- [29] Annamalai, C. (2020) Combinatorial Technique for Optimizing the Combination. *The Journal of Engineering and Exact Sciences*, 6(2), 0189-0192. https://doi.org/10.18540/jcecvl6iss2pp0189-0192.
- [30] Annamalai, C. (2018) Annamalai's Computing Model for Algorithmic Geometric Series and Its Mathematical Structures. *Journal of Mathematics and Computer Science*, 3(1),1-6 <u>https://doi.org/10.11648/j.mcs.20180301.11</u>.
- [31] Annamalai, C. (2022) Partition of Multinomial Coefficient, *SSRN Electronic Journal*. http://dx.doi.org/10.2139/ssrn.4213629.
- [32] Annamalai, C. (2022) My New Idea for Optimized Combinatorial Techniques, *SSRN Electronic Journal*. <u>http://dx.doi.org/10.2139/ssrn.4131592.</u>
- [33] Annamalai, C. (2018) Algorithmic Computation of Annamalai's Geometric Series and Summability. *Journal of Mathematics and Computer Science*, 3(5),100-101. https://doi.org/10.11648/j.mcs.20180305.11.
- [34] Annamalai, C. (2019) Recursive Computations and Differential and Integral Equations for Summability of Binomial Coefficients with Combinatorial Expressions. International Journal of Scientific Research in Mechanical and Materials Engineering, 4(1), 6-10. https://ijsrmme.com/IJSRMME19362.
- [35] Annamalai, C. (2022) Extension of Binomial Series with Optimized Binomial Coefficient, *SSRN Electronic Journal*. <u>http://dx.doi.org/10.2139/ssrn.4129875.</u>
- [36] Annamalai, C. (2022) Summation of Series of Binomial Coefficients, *SSRN Electronic Journal*. <u>http://dx.doi.org/10.2139/ssrn.4215918.</u>
- [37] Annamalai, C. (2022) Multinomial-based Factorial Theorem on the Binomial Coefficients for Combinatorial Geometric Series, *SSRN Electronic Journal*. http://dx.doi.org/10.2139/ssrn.4203744.
- [38] Annamalai, C. (2022) Differentiation and Integration of Annamalai's Binomial Expansion, *SSRN Electronic Journal*. <u>http://dx.doi.org/10.2139/ssrn.4110255.</u>
- [39] Annamalai, C. (2022) Annamalai Series, OSF Preprints. http://dx.doi.org/10.31219/osf.io/s5byq.

- [40] Annamalai, C. (2022) Computation of Binomial Coefficient with Real Number, OSF Preprints. <u>http://dx.doi.org/10.31219/osf.io/7udrq.</u>
- [41] Annamalai, C. (2022) A Generalized Method for Proving the Theorem derived from the Binomial Coefficients in Combinatorial Geometric Series, *SSRN Electronic Journal*. http://dx.doi.org/10.2139/ssrn.4209479.
- [42] Annamalai, C. (2020) Abelian Group on the Binomial Coefficients in Combinatorial Geometric Series. *The Journal of Engineering and Exact Sciences*, 8(10), 14799–01i. https://doi.org/10.18540/jcecv18iss10pp14799-01i.