

Электронная структура и оптические свойства твердого раствора (Ge₂)_{1-x}(InP)_x

Ш.К. Исмаилов¹, А. С.Саидов², С. Каражанов², Д.М. Сапаева¹

Ургенчский государственный Университет¹ Физико-технический институт АН РУз²

Ранее нами был получен твердый раствор $(Ge_2)_{1-x}(InP)_x$ из класса $(C_2^N)_{1-x}(A^3B^5)_x[1,2]$ методом жидкофазной эпитаксии. В данной работе приведены результаты теоретических исследований зонной структуры и оптических свойств твердого раствора $(Ge_2)_{1-x}(InP)_x$ методом самосогласованного псевдопотенциала с помощью теории функционала плотности в рамках локальной плотности заряда для твердых растворов $(Ge_2)_1$ (InP)₀, $(Ge_2)_{0,5}(InP)_{0,5}$, $(Ge_2)_{0,25}(InP)_{0,75}$ и $(Ge_2)_0$ (InP)₁. Результаты расчетов зонной структуры твердого раствора $(Ge_2)_{1-x}(InP)_x$ для этих составов приведен на рис 1. Аналогичное исследование проведено в [3] для твердого раствора $(Ge_2)_{1-x}(AsGa)_x$ методом линейная комбинация атомных орбиталей.

Как отмечалось в работе [2] твердый раствор $(Ge_2)_x(InP)_{1-x}$ кристаллизуется в решетку цинковой обманки (типа сфарелита). Параметр решетки (а) завесит от состава х. В данной работе мы рассматривали компонентные составы x=0.25 и x=0.5 с параметрами решетки a=5.743 A и a=5.673 A соответственно. Для этой цели рассмотрена элементарная ячейка, состоящая из восьми атомов, из которых один атом In в точке (0,0,0) и один атом P в (a/4,a/4,a/4) заменены атомом Ge. Другие же атомы In и P расположены в точках (a/2,a/2,0.0) (a/2,0.0,a/2) (0.0,a/2,a/2) и (3a/4,3a/4,a/4) (3a/4,a/4,3a/4) (a/4,3a/4,3a/4), соответственно. Процесс роста такого кристалла начинается от поверхности Ge.

Для тестирования использованной в данной работе компьютерной программы проведен расчет зонной структуры полупроводников Ge и InP. Сравнение результатов расчета зонной структуры этих полупроводников и приведенных в литературе показывает, что основные свойства этих кристаллов отражены правильно. Однако ширина запрещенной зоны рассчитывается неправильно, что связано с широко известным в научной литературе недостатком теории функционала плотности (см например [4]).

На рис. 1 (а) и (b) приведены зонные структуры $(Ge_2)_x(InP)_{1-x}$ для (a) x=0,25 и (b) x=0.50. Точками нарисована энергия Ферми, ниже которой все уровни заполнены электронами. Все уровни выше энергии Ферми – пустые, т.е. в равновесных условиях на них нет электронов.

При x=0,25 вблизи уровня Ферми E_F является похожей по форме на зонную структуру Ge. Верхний край валентной зоны приходится на $\vec{k} = 0$, а нижний край зоны проводимости не соответствует точке $\vec{k} = 0$, т.е. твердый раствор этого состава является не прямозонной. При x=0.5 верхний край валентной зоны и нижний край зоны проводимости расположены вдали центральной точки $\vec{k} = 0$ зоны Бриллюэна.

Для выяснения роли d-электронов атомов Ge и In проведено исследование зонной структуры включая d-электроны в остов и в валентный комплекс. Показано, что энергетический уровень d-электронов находятся намного ниже по сравнению с s-зоной. Это означает, что включение d-электронов в рассмотрение не вносит существенную коррективу в электронные свойства твердых растворов $(Ge_2)_x(InP)_{1-x}$

Проведено сравнение дисперсии для случаев, когда спин-орбитальное взаимодействие включено в рассмотрение и когда оно пренебрегается. Показано, что спин-орбитальное взаимодействие в данном случае не играет существенную роль в электронных свойствах исследуемых твердых растворов.

Рис.1. зонная структура твердого раствора $(Ge_2)_{1-x}(InP)_x$ для составов (a) x=0,5u (b) x=0,75 соответственно.

Как известно, фотоны обладающие достаточной энергией, могут возбуждать электроны из валентной зоны в зону проводимости. Вследствие этого оптические спектры полупроводников является источником богатой информации об их электронных свойствах. Во многих полупроводниках фотоны также могут взаимодействовать с колебаниями решетки и электронами в дефектах.

Поэтому мы исследовали некоторых оптических свойств твердых растворов $(Ge_2)_{1-x}(InP)_x$ в рамках приближения локальной плотности заряда.

Для тестирования метода нами был получен спектральные зависимости оптических констант: ε_1 , ε_2 , n(w), n(w), k(w), R, α для Ge и InP в интервале энергий от 0 до 20 эВ. Полученные результаты вычислений сопоставлялись с экспериментальными данными [5] соответствующих величин. Результаты сопоставления диэлектрических функций (ε_1 , ε_2) для Ge и InP приведена в рис.2.

Рис. 2 Сравнение экспериментальной и расчетной диэлектрических функций (ε_1 – реальной часть, ε_2 – мнимая часть) Ge (a, b) и InP(c, d) Сплашная иния - теория, пунктир - эксперимент (2)

Как видена из рис. 2 во всех случаях наблюдается вполне хорошее согласие между теорией и экспериментом. В форме мнимой части иаэлектрическах функций имеется много общего. Как известно, подъём ε_2 связан переходами между абсолютным максимумом валентной зоны и минимумом зоны проводимости. В полупроводниках цинковой обманки эти переходы обычно происходит между валентной зоной Г₄₀ и зоной проводимости Г_{1с} и обозначаются как E₀.За E₀ следует пик E₁ связанный с переходами происходящий вдоль направления <111>. ε_2 достигает абсолютного максимума за счет переходов приходящих в широком области зоны Бриллюэна вблизи границ в направления <100> и <110>.

Подобный сходства экспериментальных и расчетных оптических констант G_e и InP наблюдались не только для ε_{1} , ε_{2} а также для $n(\omega)$, $l(\omega) n(\omega)$ и $\kappa(\omega)$

Приведенные выше результаты показывает, что метод ПЛП довольно хорошо описывает спектральные зависимости оптических констант Ge и InP

Затем мы вычислили спектральные зависимости оптических констант твердого раствора (Ge₂)_{1-х} (InP)х для составов х =0,25 и х =0,5 в интервале энергий от 0 до 20 эВ результаты вычислений диэлектрических ункций даны в рис.3

Рис 3. Спектральные зависимости диэлектрических функций ($\varepsilon_1 \varepsilon_2$) твердого раствора (Ge_2)_{1-x} (In P)_x для составов x=0,25 (a,b) x=0,5 (c,d)

По этим данным можно судит о возможных переходах из валентной оны в зону проводимости (Ge $_2)_{1\text{-}x}\,(InP)_x$

Литература:

1. А. С.Саидов, Э А.Кошчанов Ш.К. Исмаилов А Ш Раззаков. Письма в ТФ, 1999, том 25, вып.24 стр. 37-40.

2. А. С.Саидов, Э А. Кошчанов, Ш.К. Исмаилов, А Ш Раззаков. Труды международной конференции, посвященной 90-летию С.А.Азимова. стр.353-355.Ташкен-2004г.

- 3. А.И Губанов, А.М.Полубатко. Физика полупроводников. вып.4, 1982г. стр.753-754
- 4. Питер Ю, М.Кардона Физика полупроводников. Москва. Наука. 2003 г. стр. 71.
- 5. Гавриленко В. и др. "Оптические свойства полупроводников" Справочник, Киев, 1987г. стр. 243-250.