Other Open Access
Ángela Justamante;
Alexis Joly;
Jean-Christophe Lombardo;
Fabian Robert;
Mathias Chouet;
Sonia Liñán;
karen Soacha;
Jaume Piera
<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> <dc:creator>Ángela Justamante</dc:creator> <dc:creator>Alexis Joly</dc:creator> <dc:creator>Jean-Christophe Lombardo</dc:creator> <dc:creator>Fabian Robert</dc:creator> <dc:creator>Mathias Chouet</dc:creator> <dc:creator>Sonia Liñán</dc:creator> <dc:creator>karen Soacha</dc:creator> <dc:creator>Jaume Piera</dc:creator> <dc:date>2023-02-20</dc:date> <dc:description>GBIF-DL is a service that allows users to create a training set on a particular group of living organisms on-demand, i.e. allowing them to solicit specific data, such as images of specific species and/or specific platforms, or images with a sufficient quality of expert validation. For example: A data scientist or a developer who wants to train an artificial intelligence model on a particular group of species using pytorch software will be able to do it very easily. More information: https://cos4cloud-eosc.eu/services/gbif-dl/ This service has been developed by Inria in the Cos4Cloud project framework. Infographic's designer: Lucas Wainer. </dc:description> <dc:identifier>https://zenodo.org/record/7657640</dc:identifier> <dc:identifier>10.5281/zenodo.7657640</dc:identifier> <dc:identifier>oai:zenodo.org:7657640</dc:identifier> <dc:language>eng</dc:language> <dc:relation>info:eu-repo/grantAgreement/EC/H2020/863463/</dc:relation> <dc:relation>doi:10.5281/zenodo.7657639</dc:relation> <dc:relation>url:https://zenodo.org/communities/h2020-cos4cloud</dc:relation> <dc:rights>info:eu-repo/semantics/openAccess</dc:rights> <dc:rights>https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights> <dc:subject>citizen science</dc:subject> <dc:subject>deep learning</dc:subject> <dc:subject>AI</dc:subject> <dc:subject>artificial intelligence</dc:subject> <dc:subject>citizen observatories</dc:subject> <dc:subject>training set</dc:subject> <dc:subject>automatic species recognition</dc:subject> <dc:subject>biodiversity</dc:subject> <dc:title>GBIF-DL: Create a training set on a particular group of living organisms for machine learning applications</dc:title> <dc:type>info:eu-repo/semantics/other</dc:type> <dc:type>other</dc:type> </oai_dc:dc>
All versions | This version | |
---|---|---|
Views | 44 | 44 |
Downloads | 31 | 31 |
Data volume | 8.1 MB | 8.1 MB |
Unique views | 40 | 40 |
Unique downloads | 28 | 28 |