Other Open Access
Ángela Justamante;
Alexis Joly;
Jean-Christophe Lombardo;
Fabian Robert;
Mathias Chouet;
Sonia Liñán;
karen Soacha;
Jaume Piera
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.7657640</identifier> <creators> <creator> <creatorName>Ángela Justamante</creatorName> <affiliation>CREAF</affiliation> </creator> <creator> <creatorName>Alexis Joly</creatorName> <affiliation>Inria</affiliation> </creator> <creator> <creatorName>Jean-Christophe Lombardo</creatorName> <affiliation>Inria</affiliation> </creator> <creator> <creatorName>Fabian Robert</creatorName> <affiliation>Inria</affiliation> </creator> <creator> <creatorName>Mathias Chouet</creatorName> <affiliation>Inria</affiliation> </creator> <creator> <creatorName>Sonia Liñán</creatorName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-0431-4683</nameIdentifier> <affiliation>ICM-CSIC</affiliation> </creator> <creator> <creatorName>karen Soacha</creatorName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-4287-1256</nameIdentifier> <affiliation>ICM-CSIC</affiliation> </creator> <creator> <creatorName>Jaume Piera</creatorName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-5818-9836</nameIdentifier> <affiliation>ICM-CSIC</affiliation> </creator> </creators> <titles> <title>GBIF-DL: Create a training set on a particular group of living organisms for machine learning applications</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2023</publicationYear> <subjects> <subject>citizen science</subject> <subject>deep learning</subject> <subject>AI</subject> <subject>artificial intelligence</subject> <subject>citizen observatories</subject> <subject>training set</subject> <subject>automatic species recognition</subject> <subject>biodiversity</subject> </subjects> <dates> <date dateType="Issued">2023-02-20</date> </dates> <language>en</language> <resourceType resourceTypeGeneral="Other"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/7657640</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.7657639</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/h2020-cos4cloud</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>GBIF-DL is a service that allows users to create a&nbsp;training set on a particular group of living organisms on-demand, i.e. allowing them to solicit specific data, such as images of specific species and/or specific platforms, or images with a sufficient quality of expert validation. For example:&nbsp;A data scientist or a developer who wants to train an&nbsp;artificial intelligence&nbsp;model on a particular group of species using pytorch software will be able to do it very easily. <strong>More information:</strong>&nbsp;<a href="https://cos4cloud-eosc.eu/services/gbif-dl/">https://cos4cloud-eosc.eu/services/gbif-dl/</a></p> <p>This service has been developed by Inria in the Cos4Cloud project framework.&nbsp;</p> <p>Infographic&#39;s designer: Lucas Wainer.&nbsp;</p> <p>&nbsp;</p></description> </descriptions> <fundingReferences> <fundingReference> <funderName>European Commission</funderName> <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier> <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/863463/">863463</awardNumber> <awardTitle>Co-designed Citizen Observatories Services for the EOS-Cloud</awardTitle> </fundingReference> </fundingReferences> </resource>
All versions | This version | |
---|---|---|
Views | 44 | 44 |
Downloads | 31 | 31 |
Data volume | 8.1 MB | 8.1 MB |
Unique views | 40 | 40 |
Unique downloads | 28 | 28 |