
HBRP Publication Page 13-36 2023. All Rights Reserved Page 13

Towards Reliable Code Plagiarism Detection: A Survey on

Software Clone Detection

Sanjay B. Ankali

1
, Dr. S G Gollagi

2
, Dr. Bahubali M. Akiwate

3
,

1
Associate Professor, Department of Computer science & Engineering, KLE College of

Engineering and Technology, Chikodi-India
2
Professor, Department of Computer science & Engineering, KLE College of

Engineering and Technology, Chikodi-India
3
Associate Professor Department of Computer science & Engineering, KLE College of

Engineering and Technology, Chikodi-India

*Corresponding Author

E-mail Id:-sanjayankali123@gmail.com

ABSTRACT

Despite substantial study over the past three decades resulting in the development of more

than 250 clone detection technologies, there is no one framework that can accurately and

reliably identify all four major types of clones. The lack of comprehensive, reliable, and

language-neutral code clone detection has a significant negative influence on online learning

systems like Coursera, which are unable to assess the proficiency of students in coding

projects and assignments they submit to the online platforms. This survey paper can

contribute to building more reliable code plagiarism detection by presenting various tools

and techniques to find the same language and cross-language clone types with respect to the

clone types they detect and the languages they work on. The paper highlights 3 major issues

in terms of language agnostic nature and accuracy a) Most of the proposed techniques work

only on a specific language like C, CPP, Java, or Python for detecting clones. b) Only 8

proposed works accurately classify all 4 basic clone types. c) 98% of the clone detection in

the past is based on regular clones ignoring micro clones. The summary of the paper can

provide proper directions in building a more reliable code plagiarism detection tool.

Keywords:- Software clone detection, Code plagiarism, Clone types, Software Development

Life Cycle

INTRODUCTION

The practice of producing functionally

comparable codes with syntactic

alteration is known as software cloning or

code cloning. Alternately, it can be

described as pairs of semantically related

code fragments with or without

syntactical modification [1]. Numerous

academics use various words to refer to

this process, such as duplicate code [4,5],

similar code [2], same code [3]. Large

legacy systems have up to 30-50% of

duplicate code, respectively, according to

these two papers. According to the

milestone and works of literature like

[6,7,8,9], there are four different sorts of

code clones that fall under the syntactic

category:

Type 1 is commonly known as exact

clones

Type 2 is also known as renamed clones

Type 3 is known as near-miss clones.

Type 4 is functionally similar clones that

are implemented differently.

Different editing taxonomies provide the

foundation for syntactic clones. A

significant problem with earlier clone

detections is that Type 4 clone detection is

outside the capabilities of many

outstanding clone identification

techniques, like Siamese [12],

Journal of Advancement in Software Engineering and Testing

Volume 6 Issue 1

mailto:-sanjayankali123@gmail.com
mailto:-sanjayankali123@gmail.com

Journal of Advancement in Software Engineering and Testing

Volume 6 Issue 1

DOI: [To be assigned]

HBRP Publication Page 13-36 2023. All Rights Reserved Page 14

SourcererCC [11], and VUDDY [10].

These tools scale well on several MLOC

repositories with excellent precision and

recall. VUDDY is implemented to learn

how Github repositories operate. VUDDY

employs finger print matching of hash

functions, and its body solely depends on

its syntactic details. According to the

results, the tool has processed 133,812

susceptible functions for each project in a

second by processing 13.2 MLoC files of

Github projects. Only Type 1, 2 clones are

detected. The token-based clone detector

SourcerrerCC performs clone detection

and partial index construction in two

steps. To limit the amount of false-

positive clone pair filtering, it applies

token position filtering to the filtered

heuristics of sub-block overlaps. The tool

processes 250 MLOC of code to classify

upto nearmiss clone in a 4.5 days on a

single system.

For scalable code indexing and retrieval,

Siamese uses the high-performance text-

based search engine "Elasticsearch." It

works in two phases: the index phase and

the query phase and performs multiple

code representation, query reduction, and

ranking function to enhance the

performance of clone search. A corpus of

365 million lines of code yields several

type 3 clones using tools in less than 8

seconds.

Although it addresses the most crucial

aspect of scalability together with these

three tools [13,14], and [15]), it falls short

in terms of Type 4 clone identification.

One of these [13] required 80 pricey

student laboratories' expensive

workstations to evaluate 400MLoC in two

days. It is never easy to achieve recall,

precision, and scalability all at once [12].

Code cloning is done for a variety of

reasons, the main one being the

development approach of employing

strong system designs, code, and logic

over and again [6]. Software cloning

results from forking. Code must be copied

and pasted because inheritance and

polymorphism are not supported by the

language [16].

Software developers are encouraged to

look for code online by the abundance of

MLOC that is available on the Internet.

According to the poll of 72 developers

conducted by vaibhav saini [17], before

starting any coding task, 96% of

developers prefer searching for the

solution on internet and 33% of college

students nationwide look for online code

to complete programming tasks [18].

Current code plagiarism detection lacks in

relating the clones types to the level of

learning happens in submitting

programming assignments by finding The

good, the bad, and the ugly [19]. Code

cloning has the largest impact on the

Software Development Life Cycle many

advantages like reusing the reliable,

semantic, and syntactic constructs for

system design, detecting library

candidates, software maintenance through

refactoring, and helps academia to detect

code plagiarism [6]. Cloning supports

software forking to create a variety of

software products [4]. Despite debate

between researchers whether cloning is

harmful or not software cloning emerge

an as fast and immediate way to address

change requirement [8].

Code cloning has a bad impact on the

design, bug propagation [6] we find

evidence in [20] that around 75% of the

cases bug pattern of the original code is

duplicated “as-is” to the sibling that

mainly increases maintenance cost. Zijian

Jiang (2019) [21] in his previous research

defines software maintenance as a

complex process of editing different

entities of programs like renaming

identifiers, function name, class name to

fix the bugs. He mentioned a scenario

where 80% of multi edits are made by

developers to fix the bugs which cost 70%

Journal of Advancement in Software Engineering and Testing

Volume 6 Issue 1

DOI: [To be assigned]

HBRP Publication Page 13-36 2023. All Rights Reserved Page 15

of the developer’s time and resource.

Studies on the detection of clones in the

past have neglected micro clones. A

recent study comparing software bugs in

large and small clones [22] discovered

that micro clones have 80% consistent

update to the several files pervasively and

are more likely to have severe bugs than

large clones.

An effort to codify plagiarism detection

began in late 1976 in an effort to support

academic honesty. According to Chiver's

survey from 2020 [23], 3 different

techniques are used to identify code

plagiarism. A technique that is attribute-

based, structure-based or hybrid.

Ottenstein (1976) [24] conducted the first

attribute counting experiment. (Halstead,

1973)[25]

Investigation is based on the metrics

consisting of many tokens with distinct

operators and operands served as the

foundation. The current metrics of [24]

included conditional statements, looping

statements, and other tokens like white

space and lines. In the year 1981 (Grier,

1981),[26] added 16 more qualities.

Programming features like loops and

conditional statements are counted in a

study[27].

An empirical method for detecting code

similarity based on 24 metrics proposed

by Faidhi and Robinson (1987) [28].

These early investigations relied solely on

text or strings and tallied all of the

program's properties. In a comparative

research, (Whale., 1990) [29] debates that

the structural aspects of the code and

application specific metrics are to be

considered.

RESEARCH QUESTION

1. How many clone detection tools are

introduced in last 3 decades to find

same language and cross language

clone types?

2. Is there a reliable, complete and

language agnostic clone detector?

3. Do the existing tools find all four

types of clones?

4. Understand the more accurate clone

detection method for code

plagiarism detection.

Major contributions of the paper

 With regard to the detection of all

four clone types and the language they

work on, the paper highlights the most

significant contributions in same language

& cross language clone detections.

 The paper introduces the recent

cross language clone detection techniques.

 The paper gives insights about the

usage of clone detection approaches with

respect to the accuracy in finding the all

four clone types.

BACKGROUND

Clone detection in same language

In this section, we demonstrate our grasp

of clone types with examples based on

[6]. There are nine different sorts of

clones, says [8]. On the basis of the

taxonomy of editing, we describe 4

fundamental categories of clones.

Comparative analysis [7] has shown

numerous editing scenarios for each

categories of clone. Few sample cloned

codes from our case studies are presented

below.

Type-1 clone: Similar codes (semantic & syntax) with change in comments and spaces [1].

main() // summing code
{

int p=21,q=25, r;

r=p+q; //logic
printf("addition is=%d",r);

main()
{ // addition code

int p=21,q=25, r;

r=p+q; //main code

printf("addition is=%d",r);

Journal of Advancement in Software Engineering and Testing

Volume 6 Issue 1

DOI: [To be assigned]

HBRP Publication Page 13-36 2023. All Rights Reserved Page 16

}

}

Code-1 Code-2

Type 1 clones include such like Code-1 and 2. These are also known as copy/paste clones or

exact clones. To prohibit students from engaging in distasteful learning habits and to prevent

breaches in software integrity in the business world.

Type-2: Syntactically similar code created by multiple entity edits such as change in the

variable name, function name, and class name.

main()
{

int f=1,index=1,number;

printf("Enter the +ve integer number");

scanf("%d",&number);

while(index<=number)

{
f=f*index;

index++;

}

printf(" factorial of a number is=%d", f);
}

main()
{

int result=1,i=1,num;

printf("Enter the number");

scanf("%d",&num);

while(i<=num)

{
result=result*i;

i++;

}

printf("factorial is=%d", result);
}

Code-3 Code-4

Type 2 clones include those of codes 3 and 4. Renamed clones are another term for type 2

clones. This terrible practice of renaming the various code entities, such as identifier, method

name, and class name, still violates academic integrity.

Type 3: types-3 clones are the subset of type 2 codes that are created by addition or deletion

of lines. Following code-1 and code-5 snippets are the example for type-3 clone

main() // addition program
{

int m=22, n=32, sum:

sum= m+n;

printf("Hello everyone sum is=%d”,

sum);

}

main() // addition program
{

int m=22, n=32, sum:

sum= m+n;

printf(“here we add two values”);

printf("Hello everyone sum is=%d”,

sum);
}

Code-1 Code-5

Generating the type-3 clones are treated as a bad coding practice in academia and are matter

of interest to the clone detection research [7].

Type 4: codes that behave similarly and implemented differently (recursion & iteration) are

called as type-4 clones or functional clones.

int func(int n)
{

if (n==0)

return 1;
else

main()
{

int index=1,f=1,num;

printf("Enter the + ve integer
number");

Journal of Advancement in Software Engineering and Testing

Volume 6 Issue 1

DOI: [To be assigned]

HBRP Publication Page 13-36 2023. All Rights Reserved Page 17

return (n* func(n-1));

}

Code-6

scanf("%d",&num);

while(index<=num)

{

f=f*index;

index++;

}printf("factorial of number

is=%d",f);
} Code-7

Code-6 and Code-7 are semantic clones,

sometimes known as type 4 clones. Both

business and academia are interested in

type 4 clones. These kinds of clones were

not picked up by any of the text-based,

token-based, or tree-based detection

approaches discussed in the [7]. Excellent

scalable clone detection technologies

weren't included in the study's scope

despite being introduced in section 1. The

main problem with current code

plagiarism detection technologies is that

they label these codes as clones, although

from an academic standpoint, these

techniques raise students' levels of

learning.

Following section introduces the cross

language code clones with .c and .cpp

code snippets and present the most

significant detection techniques in cross

clone detection [7].

Cross Language Clone Detection

Definition: According to the definition of

clones, two or more codes that provide the

same output but are implemented in

different languages with various four sorts

of differences are referred to as cross-

language clones. For a instance the C

program that find factorials of numbers is

referred to as cross clones of C++ code

that do find factorial of a number [30].

following C and CPP code snippets were

used as case studies for the demonstration.

1. main()
2. {

3. float p=11,q=22,r;

4. r=p+q;

5. printf("sum of two numbers=%d", r);

6. }
C-code-1

1. main()
2. {

3. float p=11,q=22,r;

4. r=p+q;

5. cout<<"sum of two numbers ="<<r;

6. }
CPP-code-1

The above snippets are the gem examples of cross language type-1 clone

1. main()
2. {

3. int r=7,s=77,t;

4. t=s+t;

5. printf("sum of two numbers=%d",t);

6. }
C-code-2

1. main()
2. {

3. int x=7,y=77,z;

4. z=x+y;

5. cout<<"sum of two numbers is

="<<z;
6. } CPP-code-2

The above CPP example is the copied C code with the change in the variable names.

1. main() 1. main()

Journal of Advancement in Software Engineering and Testing

Volume 6 Issue 1

DOI: [To be assigned]

HBRP Publication Page 13-36 2023. All Rights Reserved Page 18

2. {

3. int index,f=1,num;

4. printf("Enter the number");

5. scanf("%d",&num);

6. for(index=1; index<=num; index++)

7. f=f*index;

8. printf("factorial of number

is=%d",f);

9. } C-code-3

2. {

3. int index=1,f=1,num;

4. cout<<" Enter the number";

5. cin>>num;

6. while(index<=num)

7. {

8. f=f*index;

9. index++;

10. }

11. cout<<"Factorial of Given Number

is ="<<f;

12. }
CPP-code-3

In spite of similar semantics, above C and

CPP implementations of factorial finding

codes generate different pare tree

structures and are most challenging to

detect.

RELATED WORK

SAME LANGUAGE CLONED CODE

DETECTION

Software clone detection has been the

subject of extensive research. We

categorise all the tools and techniques

under five classes based on detection

techniques, including text-based, token-

based, tree-based, PDG-based, and

metric-based, and we briefly discuss the

problems these tools face as mentioned in

[7]. This is based on the seminal literature

works of [7], [8]. We summarize clone

detection techniques/methodologies and

divide the chronology into two time

periods: before 2010 and after 2010.

Clone detection research till 2010

Clone detection based on text similarity:

The tools like simian [32], EqMiner[33],

Duploc[5], (Johnson, 1994) [31], NICAD

[34], DuDe [35] have efficiently present

the text similarity of two code fragments.

These great tools limit in their capabilities

to detect type 3 clones (except NICAD).

The tools [31],[5],[35] perform better in

detecting type 1 clone and most of the

text based tools were good in detecting
type 1 and 2 clones.

Token-based Techniques: To extract the

tokens from the source code, lexical

analysis is used. The suffix tree or suffix

array is created using these extracted

tokens for matching. D-CCFinder, CP-

Miner, iClones, Dup, and CCFinder are

the few examples of such tools [36, 37].

These tools have successfully identified

types 1 and 2, and the tool CP-Miner

made a modest effort to identify type 3.

Tree-based Techniques: work by parsing

the source code to parse tree or abstract

syntax tree. These approaches perform

better in case of code refactoring and

proved to be better with precision of clone

detection [39]. Many approaches/tools

like CloneDigger [43], Deckard [40],

CloneDR [41], simScan[32] , Asta [42],

sim [44], ClemanX [45], cpdetector [48] ,

JCCD API [46], CloneDetection [47].

PDG-based Techniques: the control and

data flow of source code is converted to

get PDG and similarity metrics are

applied to find the clone pairs. These

techniques have proved to be the most

suitable candidates to detect type 4 clones.

Tools like Scorpio [35], PDG-DUP[49],

Duplix[2], and Choi[50] have detected the

functional similarities between the 2

codes.

Journal of Advancement in Software Engineering and Testing

Volume 6 Issue 1

DOI: [To be assigned]

HBRP Publication Page 13-36 2023. All Rights Reserved Page 19

Metrics-based Techniques like

CLAN/Covet [51], Antoniol[52], and

Dagenias [53] work by counting the

number of different token classes and

stores them in a matrix/ tables and apply

similarity matching on the matrices to get

the clones pairs. Metric based techniques

are proved to be the false positives in

detecting type 3 and 4 clones.

Clone detection research after timeline

2010

Detecting software clones or code

plagiarism is not an easy task. All the

mentioned tools in this section do

excellently well in detecting clone types

they are aimed to and in terms of

scalability to the large repositories. In

table 1 presents text based clone detection

tools/techniques in terms of types of

clones they detect and language they work

on based on the literature survey of

[1],[9].

Table 1:-Text based tools/techniques

Sl.No Tool/Author/Citation Language

Supporte
d

Clone Type

detection

1 (Ragkhitwetsagul C. a.,
2017) [54]

Java 1,2,3

2 (Kim S. a., 2018) [55] C/C++ 1,2

3 (Jadon, 2016) [56] C 3

4 (D Yu, 2017) [57] Java 1,2,3

5 VUDDY (Kim S. S.,
2017) [10]

C/C++ 1,2

6 (Y Nakamura, 2016) [58] HTML,
Javascript

3

7 (Lyu, 2016) [59] Layout XML
Files

1,2,3

8 (Xue et al., 2020) [60] Assembly 1,2,3

9 (Chen, 2015) [61] Java 1,2,3

10 (Thaller, 2017) [62] C/C++, ST 1,2

11 (Newman, 2016) [63] C/C++ 1,2

12 vfdtect (Liu, 2017) [64] C/C++ 1,2

13 (E. Kodhai, 2010) [65] C 1,2

14 (Maeda, 2010) [66] Java 1

15 CCCD (Shihab, 2013)
[67]

C 3,4

16 (A. Cuomo, 2012) [18] Java 2

17 SimCad(M. S. Uddin,
2013) [68]

Java 1,2,3

18 (S. Park, 2013) [69] C Product
similarity

19 (J.-S. Lim, 2011) [70] C No classification

20 (B. Lesner, 2010) [71] Any No classification

21 (Yadav, 2013) [72] Java 1,2,3

Journal of Advancement in Software Engineering and Testing

Volume 6 Issue 1

DOI: [To be assigned]

HBRP Publication Page 13-36 2023. All Rights Reserved Page 20

Table 2 presents’ token based clone

detection tools/techniques. Detecting

clones up to type 3 and tools like

SourcereCC, Saimese, ScaleClone, Li,

and Nishi scale well on large data sets like

IJaDataSet which is the major

contributions to clone detection research.

Table 2:-Token based tools/techniques

Sl.No Author/Citation Language
Supported

Clone Type
detection

1 (Nishi, 2018) [73] IJaDataset 2.0
i

(Java)
1,2,3

2 Saimese (Ragkhitwetsagul et
al., 2019) [12]

Java 1,2,3

3 (Tekchandani, 2017) [74] N/A 1,2

4 ScaleClone(Farhadi, 2015)
[75]

Assembly 1,2,3

5 CCAligner (Wang P. J.,
2018) [76]

C, Java 1,2,3

6 (Yuki, 2017) [77] Java files 1,2,3

7 SourcererCC (Sajnani, 2016)
[11]

IJaDataset(Java) 1,2,3

8 (Semura, 2017)[78] From Rosetta
Code

ii

1,2

9 (Li L. H., 2017) [79] IJaDataset
i
 (Java) 1,2,3

10 (J. Y. Poon, 2010)[80] Java No type
classification

11 (Toomey, 2012)[81] Unspecified 1,2

12 (Roy J. S., 2017)[82] Java Near miss

13 SHINOBI(S. Kawaguchi,
2009) [83]

C,C++, C# 1,2,3

14 CodeEase(S. Abid,
2017)[84]

Java structural

15 SaCD(Qing Qing Shi,
2013)[85]

Java/C/C++ 1,2

16 Boreas(Guo, 2012)[86] Java 1,2

18 (Y. Semura N. Y., 2018)[87] Any 1,2,3

19 (Merlo, 2012)[88] Java 1,2,3

20 (Koschke, 2009) [38] Java/C 1,2,3

21 (M. Elsabagh, 2018)[89] Java 1,2

22 (B. Hummel, 2010) [15] C 1,2

23 (M. Dong, 2012)[90] Binary No
classification

24 CCfindersw(Y. Semura N.
Y., 2017)[78]

Any 1,2

25 NICAD (Roy J. R.,
2011)[91]

C/C#/Java/
Python/WSDL

Near Miss

27 (Bharti, 2014)[92] C/C++ 1,2,3

28 (Rilling, 2013)[93] Any 1,2,3

Journal of Advancement in Software Engineering and Testing

Volume 6 Issue 1

DOI: [To be assigned]

HBRP Publication Page 13-36 2023. All Rights Reserved Page 21

Table 3 presents a tree based clone detection tools/techniques. These tools are designed

mainly for the refactoring purpose and to achieve high precision.

Table 3:-Tree based tools/techniques

Sl.No Author/Citation Language

Supported

Clone Type

detection

1 (Yang, 2018) [94] Java Function

2 (Pati, 2017) [95] ArgoUML 1,3

3 (Lavoie, 2019) [96] Java 3,4

5 Clonemerge
(Narasimhan, 2015)[97]

C/C++ Near miss

6 (Y. Yang, 2018) [98] Java 1,2,3

7 (J. Zeng, 2019) [99] Java 1,2,3,4

8 OOP (D. Li, 2014) [100] Java/PHP 1,2

9 (Thompson, 2011) [101] Erlang Structural

Table 4 presents clone detection based on the metric. The main objectives is to detect all 4

clone types. We did not find the results to prove the proper classification of tools.

Table 4:-Metric based tools/techniques

Sl.N
o

Author/Citation Language Supported
/ Dataset

Clone Type
detection

2 (Svajlenko, 2017) [102] IJaDataset
i
 (Java) 1,2,3

3 (Sudhamani, 2016) [103] C,CPP,Java 1,2,3,4

4 (Haque et al., 2016) [104] N/A 1,2,3,4

5 Vincent (Ragkhitwetsagul et
al.,2018) [105]

Java 1,2,3

8 (Y. Fukushima, 2009) [106] Java Structural

9 (Kusumoto, 2011) [107] Java 1,2,3,4

10 (Singh R. a., 2017) [108] Java 1,2,3,4

Table 5 presents the clone detection using semantic/PDG approach. These studies aim at

finding the clone types that was not handled by text, token, and tree based techniques.

Table 5:-Semantic/PDG based tools/techniques

Sl.No Author/Citation Language

Supported/Dataset

Clone Type

detection

1 (Wang M. P., 2017)
[109]

C 4

2 (Sabi, 2017) [110] Java 1,2

3 (Crussell, 2015) [111] Java N/A

4 (Sargsyan, 2016)[112] C 4

5 (Hu Y. Y., 2017)[113] Assembly 4

6 (Kamalpriya,
2017)[114]

Java 4

7 (Avetisyan, 2015)[115] C 1,2,3,4

Journal of Advancement in Software Engineering and Testing

Volume 6 Issue 1

DOI: [To be assigned]

HBRP Publication Page 13-36 2023. All Rights Reserved Page 22

8 (Leavens, 2012)[116] Java 3,4

9 (Deepika, 2013)[117] C# File similarity

10 (R. Tekchandani,
2013)[118]

Any Semantic

11 Agec (Kamiya T. ,
2013)[119]

Java Semantic

12 SeByte(I. Keivanloo,
2012)[120]

Java 1,2,3,4

13 (D. Yu, 2019)[121] Java No classification

14 (Kamiya et al., 2012)
[37]

C Structural

15 (Singh C. M.,
2017)[122]

Java/C 1,2,3

16 (M. Wang, 2017)[123] Java 1,2,3

17 (Y. Higo U. Y.,
2011)[124]

Java 1,2,3

18 (Z. Xing, 2011)[125] Java 1,2,3

Table 6 shows the hybrid clone detection tools that combine the key usage from subset of

previous detection techniques. These involve complex computational tasks to achieve the

completeness to clone detection process.

Table 6:-Hybrid clone detection tools/techniques

Sl.No Author/Citation Language

Supported/Dataset

Clone Type

detection

1 (Misu M. R., 2017)
[126]

IJadataset2.0
i
 (Java) 1,2,3

2 (Sheneamer A. a.,
2016)[127]

IJadataset2.0
i
 (Java) 1,2,3,4

3 (Vislavski, 2018)[128] Java,JavaScript,C,modula-
2,scheme

1,2,3

4 (Ghofrani, 2017)[129] Any 4

5 (Akram, 2018)[130] Java 1,2,3

6 (Sheneamer A. S.,
2018)[131]

Java 1,2,3,4

7 (Matsushita, 2017)[132] ML Programs 1,2,3

8 (Kodhai, 2014)[133] C, Java 1,2,3,4

9 (Uemura, 2017)[134] HDL Code 1,2

10 (Nasirloo, 2018)[135] C 4

11 (Singh M. a.,
2015)[136]

C,C#,Java,Text files Structural

12 (White, 2016)[137] Java 3

In addition to the works described up until

2019, we also introduce two new works

that were released in 2020. Twin-Finder

[138] is a revolutionary method that

combines symbolical execution of the

methodology and machine learning-based

clone verification method to attain

precision. Step 1 of the strategy involves

three steps. It uses static analysis to do

domain-specific program slicing, which

Journal of Advancement in Software Engineering and Testing

Volume 6 Issue 1

DOI: [To be assigned]

HBRP Publication Page 13-36 2023. All Rights Reserved Page 23

includes isolating code using forward-

backward slicing on each variable,

dependency analysis, and pointer

selection. In the next step the technique

applies DECKARD for comparing

weighted similarities of AST consisting of

the most important feature vectors. The

model uses recursive sampling for

verification in order to validate the

accuracy of the clones found.

Studies on the detection of tree-based

clones in the past did not scale to huge

repositories. Wang's [1] highly scalable

tree-based clone detection works in two

stages. In 1
st
 stage, it builds flow

augmented-AST by adding edges to

indicate control flow and data flow. 2.

Converts the AST into vector

representation using the GNN and GMN

(graph matching network). 3. Performs

clone classification using similarity

metrics. The technique is limited to the 1)

semantic clone detection for Java code. 2)

The flow-augmented AST has the limited

AST information declaration and

definition of methods and classes.

Cross Language Software Clone

Detection

Compared to the similar language clone

detection, we find very few significant

works in finding cross language clone

detection. The below section presents the

most significant contributions.

3.2.1 Cross language clone detection has

the major application in open source

software categorization. The work

CroLSim [139] detects the cross language

software similarity in four phases.

A. Finding correlation between API and

library methods through the continuous

bag of words.

B. Filtering commonly used methods

through SVD (singular value

decomposition).

C. Determining semantic similarity

between cross language software

application using Doc2Vec model and

cosine similarity.

D. Use of KNN algorithm to perform

clustering to group similar applications.

Issues: Searches functionally similar code

from the repository with only 28%

precision.

3.2.2 Cross language clone identification

is presented by the semantic cross clone

detection program SLACC[140] that

works on the input / output behavior of

code. The SLACC finds duplicate code in

a dynamically typed languages Java and

python. The method works in the ways

that follow.

A. The target code base chunked into

smaller code snippets. B. Formation of

blocks from the snippet functions grouped

into declaration, assignment, blocks,

loops, return value. C. generation of

inputs for primitive objects, arrays, files

using grey box testing. D. execution of

functions on the generated input sets to

store return values. E. measuring

similarities of executed functions using

jaccard similarity. E. clustering to group

functions into clones.

Issues A. Do not support complex and

long types of python

B. Works fine for semantic similarities.

C. Do not support more granular cross

language clone types classification.

D. Dead code elimination

3.2.3 The tool [141] works in 4 steps. A.

tokenization of source code using

ANTLR. B. Application of Karp-Rabin

algorithm to find the vector similarity. C.

Creating language specific indexes by

application of TF-IDF weighting. And

finally D. Displaying the ranking based on

similarity.

Issues A. Do not detect type 2 clones.

B. Computationally complex

because of intermediate code generation.

Journal of Advancement in Software Engineering and Testing

Volume 6 Issue 1

DOI: [To be assigned]

HBRP Publication Page 13-36 2023. All Rights Reserved Page 24

3.2.4 (Perez, 2019) [142] proposed the

cross-language clone detection approach

based on the AST. The method is the

semi-supervised machine learning model

which uses the tree-based skip grammar

algorithm and a token level vector

generation to detect cross-clones. The

method operates in three steps. A.

Generation of token level vectors.

Training the data sets, then, is step B. C.

Siamese architecture-based clone

detection stage.

Issues A. Shows only 75% confidence in

detecting cross clones of Java and Python.

B. Do not perform clone type

classification.

3.2.5 (K. W. Nafi, 2019) [143] proposed

the tool CLCDSA which is more scalable

and works with the action filters to filter

out non-probable clones. It works in

following steps.

A. Feature selection for selecting 9

features out of 24 presented by (Saini,

2018) [144] that are applicable to cross

language clone detection.

B. Preprocessing to remove tokens,

strings literals, and comments generated

by ANTLR.

C. Finding similarity of API call.

D. feature metric extraction and similarity

detection based on neural network model

based on Siamese architecture.

Issues: Do not perform clone type

classification.

3.2.6 BiNN’s based technique was

proposed by (Nghi D. Q. Bui, 2017)

[145] which finds similarity in the

structure based AST Using BTBCNN. It

is based on 3 major constructs i. BiNN’s

using softmax for classification of

structures. ii. Variation of tree based

convolution neural network to encode

each AST. iii. Unicode AST in multiple

programming languages. The method has

got 80% precision in program

classification

Issues: A. The large codebase will slow

down the training process.

B. Do not perform type

classification.

3.2.7 Hu Y. a. (2017) [146] suggests a

binary instruction-based method to

identify semantically related functions.

The technique works as follows

A. function argument reorganization using

no. of arguments, return value.

B. Switch index branch target detection.

C. Semantic signature generation.
D. Signature comparison using Jaccard

Similarity.

Issues: A. Works well only to detect type

4 clones (functional clones).

B. unreliable to code obfuscation.

3.2.8 LICCA [147] is an integrated tool

that works by modified longest common

subsequence algorithm on an enhanced

concrete syntax tree (eCST) of source

code.

Issues: limited to semantic clone detection

3.2.9 The first method for cross-clone

detection for the Java & C# languages

without intermediate code was proposed

by (Cheng X. P., 2017) [148]. The method

involves employing four stages to take

revision histories that capture diffs that

show changes in the software system

through file differences. Technique works

in the manner

A. Performs Log parsing to extract diffs

from the version control system to find

software evolution and their attributes

from revision logs.

B. Performs Normalization where diffs are

normalized to remove comments,

punctuations so that the resulting text is

ready for string matching next step.

C. Performs matching using “Bag of

Words” to find the nearest file.

Journal of Advancement in Software Engineering and Testing

Volume 6 Issue 1

DOI: [To be assigned]

HBRP Publication Page 13-36 2023. All Rights Reserved Page 25

D. Reports cross language clones diffs

similarity level.

Issues

A. Precision is less because of the

weak correlation between attributes and

diffs.

B. Performs well only with latest

revision.

C. Not a language agnostic.

3.2.10 Al-Omari (2012) proposed the idea

of clone detection within the.NET

language family [149]. The process works

by converting the .NET code into

common intermediate language (CIL). It

uses eight distinct filtering techniques in

the second stage to lessen the noise in the

CIL instructions and boost recall. The

Common Intermediate Language of the

.NET framework is then used to detect

clone pairs by application of SimCad,

NICAD, or Levenshtein Distance.

Issues.

A. No proper results to prove

efficiency.

B. Works only for .NET family code.

3.2.11 The research by Lawton Nichols

(2019) [30] extends earlier work [148]

that identifies syntactic similarity using

structural and nominal similarities. The

approach now supports (C++, Java, and

JavaScript) and operates on functions

rather than VCS diffs. The procedure

functions as shown below.

A. Generate parse tree using ANTLR

grammar.

B. Normalize the parse tree to remove

unnecessary length.

C. Map the different parse tree to find

matching.

D. Apply preorder traversal to obtain

linearity to matching result;

E. Apply “Smith Waterman local

sequence alignment algorithm” on

literalized functions.

F. Present the amount of matching in

terms of clones.

Issues

A. Works well on small code

repository.

B. Preprocessing hampers the time

complexity.

C. Designed for object oriented

programming languages.

SUMMARY

The below table 7 summarizes the number

of clone detection tools developed to

work on the coding language to find

various clone types.

Table 7:- Clone types and techniques

Clone
type

Number of
Tool/Techniques

Type-1 71

Type-2 71

Type-3 55

Type- 4 19

All 4 types 12

Function
clones

3

File clone 1

There are just 12 ways that can identify

all four types of clones, and a maximum

of 68 tools can detect clones in Java, C, or

C++ code.

Despite the enormous number of studies

that have been done on clone detection,

we still do not have a complete and

accurate method for detecting clones in

Journal of Advancement in Software Engineering and Testing

Volume 6 Issue 1

DOI: [To be assigned]

HBRP Publication Page 13-36 2023. All Rights Reserved Page 26

submitted coding assignments and

projects.

CONCLUSION

In this study, we present a survey of

software clone detection tools and

methods proposed in last 4 decades for

identifying different sorts of code clones

across all four clone categories and

programming languages. We discover a

serious lack of complete and language

clone detection techniques that can

significantly contribute in building

reliable code plagiarism detection tools,

despite significant research that happened

in the last three decades introducing many

scalable and reliable software clone

detection tools and techniques. This study

shows that AST-based tools are more

accurate at detecting all four types of

clones than text- and token-based

methods. The capabilities of the ANTLR

parser has created new opportunities for

more accurate, thorough (identify all four

types of clones), and language-neutral

(any programming language) software.

1. Dr. Sanjay Ankali is currently

working as an Associate Professor in

the Department of CSE at KLECET,

Chikodi, India-591201 having 12

years of teaching and 7 years of

research experience. He obtained his

Bachelor Degree in Computer Science

& Engineering, M.Tech in Computer

Networking & Ph.D. in Computer/

Information Science from VTU,

Belagavi. His research interest is in the

field of Software Engineering,

Software clone detection and code

plagiarism detection.

2. Dr. Bahubali M. Akiwate is an

Associate Professor in the department

of Computer Science and Engineering

at KLE College of Engineering and

Technology, Chikodi, Karnataka,

India with more than 11 years of

experience in teaching and research.

Research areas of interest include

Cryptography, Information Security

& Privacy, and Networking. He

received a Bachelor of Engineering

degree in Computer Science and

Engineering from Bahubali College of

Engineering, Shravanabelagola,

affiliated to VTU, Belagavi, during the

year 2009. He completed M.Tech

Degree in Digital Communication and

Networking from Gogte Institute of

Technology, Belagavi, affiliated to

VTU, Belagavi during the year 2011.

He completed Ph.D in Computer

Science and Engineering from

Visvesvaraya Technological

University, Belagavi, Karnataka,

India in the year 2022.

Journal of Advancement in Software Engineering and Testing

Volume 6 Issue 1

DOI: [To be assigned]

HBRP Publication Page 13-36 2023. All Rights Reserved Page 27

3. Dr. Shantappa G. Gollagi is

currently working as a Professor in the

Department of CSE at KLECET,

Chikodi, India-591201 having 24

years of teaching and 7 years of

research experience. He obtained his

Bachelor Degree in Computer Science

& Engineering from BVB College of

Engineering & Technology, Hubli

M.Tech. in Computer Engineering

from College of Engineering, Pune &

Ph.D. in Computer/ Information

Science from VTU, Belagavi. His

research interest is in the field of

software Engineering, Image

processing and Pervasive Computing

REFERENCES

1. Wang, W. L. (2020). Detecting Code

Clones with Graph Neural Network

and Flow-Augmented Abstract

Syntax Tree. 27th International

Conference on Software Analysis,

Evolution and Reengineering

(SANER) (pp. 261-271). IEEE.

2. Krinke, J. (2001). Identifying similar

code with program dependence

graphs. Proceedings of the 8th

Working Conference on Reverse

Engineering (WCRE’01), , (pp. 301–

309). Stuttgart, Germany.

3. I. D. Baxter, A. Y. (1998). Clone

detection using abstract syntax trees.

Proceedings of the 14th International

Conference on Software Maintenance

(ICSM ’98), , (pp. Bethesda,

Maryland, USA, 1998, pp. 368–).

Bethesda, Maryland, USA.

4. Godfrey, C. K. (2006). clones

considered harmful. Reverse

Engineering(WCRE’06) (pp. 19-28).

Benevento, Italy: IEEE.

5. Ducasse, S. R. (1999). A language

independent approach for detecting

duplicated code. International

Conference on Software

Maintenance-1999 (ICSM'99) (pp.

109-118). IEEE.

6. Chanchal Kumar Roy, J. R. (2007). A

survey on software clone detection

research. Queen’s School of

Computing TR , 64-68.

7. Chanchal K. Roy, J. R. (2009).

Comparison and evaluation of code

clone detection techniques and tools:

A qualitative approach. Science of

Computer Programming , 470-495.

8. Dhavleesh Rattan, R. B. (2013).

Software clone detection: A

systematic review. Information and

Software Technology , 1165-1199.

9. Ain, Q. U. (2019). A systematic

review on code clone detection. .

IEEE access , 86121-86144.

10. Kim, S. S. (2017). VUDDY: a

scalable approach for vulnerable code

clone discovery. In Security and

Privacy (SP), 2017 IEEE Symposium

(pp. 595-614). San Jose, CA, USA:

IEEE.

11. Sajnani, H. V. (2016). SourcererCC:

scaling code clone detection to big-

code. Software Engineering (ICSE),

2016 IEEE/ACM 38th International

Conference (pp. 1157-1168). Austin

Texas: IEEE/ACM.

12. Ragkhitwetsagul, C. K. (2019).

Siamese: scalable and incremental

code clone search via multiple code

Journal of Advancement in Software Engineering and Testing

Volume 6 Issue 1

DOI: [To be assigned]

HBRP Publication Page 13-36 2023. All Rights Reserved Page 28

representations. Empir Software Eng.

, 2236–2284.

13. S. Livieri, Y. H. (2007). Very-Large

Scale Code Clone Analysis and

Visualization of Open Source

Programs Using Distributed

CCFinder: D-CCFinder. 29th

International Conference on Software

Engineering (ICSE'07) (pp. 106-115).

Minneapolis, MN: IEEE.

14. Koschke. (2014). Large-scale inter-

system clone detection using suffix

trees and hashing. Journal of

Software: Evolution and Process, ,

747–769.

15. B. Hummel, E. J. (2010). Index-based

code clone detection: incremental,

distributed, scalable. IEEE

International Conference on Software

Maintenance (pp. 1-9). Timisoara,

Romania: IEEE.

16. Kim, M. B. (2004). An ethnographic

study of copy and paste programming

practices in OOPL.. International

Symposium on Empirical Software

Engineering, 2004. ISESE '04. (pp.

83-92). Redondo beach, CA, USA:

IEEE.

17. Vaibhav Saini, H. S. (2015). Instant

Clone Finder: Detecting Clones

During SoftwareDevelopment.

Retrieved April 12, 2020, from

https://aftabhussain.github.io:

https://aftabhussain.github.io/docume

nts/pubs/tech-report15-instacf.pdf

18. A. Cuomo, A. S. (2012). A novel

approach based on formal methods

for clone detection. 2012 6th

International Workshop on Software

Clones (IWSC) (pp. 8-14). Zurich:

IEEE.

19. [19] Ossher, J. &. (2011). (2011). File

cloning in open source Java projects:

The good, the bad, and the ugly..

IEEE 27th International Conference

on Software Maintenance, ICSM

2011 (pp. 283-292). Williamsburg,

VA, USA: IEEE.

20. Lopes, H. S. (2013). A parallel and

efficient approach to large scale clone

detection. International Workshop on

Software Clones (IWSC), (pp. 46-52).

San Francisco: IEEE.

21. Zijian Jiang, Y. W. (2019).

Automatic method change suggestion

to complement multi-entity edits.

Journal of Systems and Software .

22. J. F. Islam, M. M. (2019). A

Comparative Study of Software Bugs

in Micro-clones and Regular Code

Clones. ," 2019 IEEE 26th

International Conference on Software

Analysis, Evolution and

Reengineering (SANER) (pp. 73-83).

Hangzhou, China: IEEE.

23. Chivers, K. a. (n.d.).

https://www.researchgate.net/publica

tion/337953514. Retrieved April

2020, from researchgate:

https://www.researchgate.net/publicat

ion/337953514

24. Ottenstein, K. J. (1976.). An

algorithmic approach to the detection

and prevention of plagiarism. ACM

SIGCSE Bulletin , 30–41.

25. Halstead., M. H. (1973). An

experimental determination of the

“purity” of a trivial algorithm. ACM

SIGMETRICS Performance

Evaluation Review , 10–15.

26. the Twelfth SIGCSE Technical

Symposium on Computer Science

Education. New York, NY, USA:

Association for Computing

Machinery.

27. J. L. Donaldson, M. P. (1981). A

plagiarism detection system. ACM

SIGCSE Bulletin , 21-25.

28. Robinson, J. A. (1987). An empirical

approach for detecting program

similarity and plagiarism within a

university programming environment.

Computers & Education, , 1–19.

29. Whale., G. (1990). Software metrics

and plagiarism detection. Journal of

Systems and Software , 131–138.

https://aftabhussain.github.io/documents/pubs/tech-report15-instacf.pdf
https://aftabhussain.github.io/documents/pubs/tech-report15-instacf.pdf
http://www.researchgate.net/publica
http://www.researchgate.net/publica
http://www.researchgate.net/publica
http://www.researchgate.net/publica
http://www.researchgate.net/publicat
http://www.researchgate.net/publicat

Journal of Advancement in Software Engineering and Testing

Volume 6 Issue 1

DOI: [To be assigned]

HBRP Publication Page 13-36 2023. All Rights Reserved Page 29

30. Lawton Nichols, M. E. (2019).

Structural and Nominal Cross-

Language. Clone Detection In: ,

LNCS 11424. FASE 2019 (pp. 247–

263). Prague: Springer.

31. Johnson. (1994). Substring matching

for clone detection and change

tracking. International Conference on

Software Maintenance (ICSM) (pp.

120-126,). Victoria, BC, Canada:

IEEE.

32. L. Barbour, H. Y. (2010). A

technique for just-in time clone

detection. Proceedings of the 18th

IEEE International Conference on

Program Comprehension (ICPC’10),

, (pp. 76–79.). Washington DC, USA.
33. S. Ducasse, O. N. (2006). On the

effectiveness of clone detection by

string matching, . Journal on

Software Maintenance and Evolution:

Research and Practice , 37-58.

34. Cordy, C. K. (2008). NICAD:

Accurate Detection of Near-Miss

Intentional Clones Using Flexible

Pretty-Printing and Code

Normalization. 16th IEEE

International Conference on Program

Comprehension, (pp. 172-181).

Amsterdam: IEEE.

35. Y. Higo, U. Y. (2011). Incremental

code clone detection: A pdg-based

approach. 18th Working Conference

on Reverse Engineering (pp. 3-12).

NW Washington, DCUnited States:

IEEE.

36. Baker, B. S. (2007). Finding clones

with dup: Analysis of an experiment.

IEEE Transactions on Software

Engineering, 33(9), , 608-621.

37. Kamiya, T. (2013). Agec: An

execution-semantic clone detection

tool. 21st International Conference

on Program Comprehension (ICPC)

(pp. 227-229). San Francisco, CA,

USA: IEEE.

38. Koschke, N. G. (2009). Incremental

clone detection. 13th European

Conference on Software Maintenance

and Reengineering (pp. 219-228).

Kaiserslautern, Germany: IEEE.

39. Li, Z. a. (2004). CP-Miner: A Tool

for Finding Copy-Paste and Related

Bugs in Operating System Code.

Proceedings of the 6th Conference on

Symposium on Operating Systems

Design & Implementation - Volume 6

(p. 20). San Francisco, CA: USENIX

Association.

40. L. Jiang, G. M. (2007). DECKARD:

Scalable and accurate tree based

detection of code clones. Proceedings

of 29th International Conference on

Software Engineering (ICSE’07), (pp.

96-105). Minneapolis, MN, USA.

41. I. D. Baxter, A. Y. (1998). Clone

detection using abstract syntax trees.

Proceedings of the 14th International

Conference on Software Maintenance

(ICSM ’98), , (pp. Bethesda,

Maryland, USA, 1998, pp. 368–).

Bethesda, Maryland, USA.

42. W.S. Evans, C. F. (2009). Clone

detection via structural abstraction,.

Software Quality Journal , 309–330.

43. A. Corazza, S. D. (2010). A tree

kernel based approach for clone

detection. Proceedings of the 26th

IEEE International Conference on

Software Maintenance (ICSM’10)

(pp. 1-5). Timisoara, Romania: IEEE.

44. D. Gitchell, N. T. (1999). Sim: a

utility for detecting similarity in

computer programs, . ACM SIGCSE

Bulletin 31 (1) , 266–270.

45. T.T. Nguyen, H. N.-K. (2009).

ClemanX:Incremental clone detection

tool for evolving software.

Proceedings of 31st International

Conference on Software Engineering

(ICSE’09), , (pp. 437–438).

Vancouver,Canada.

46. B. Biegel, S. D. (2010). Highly

configurable and extensible code

clone detection. Proceedings of the

17th Working Conference on Reverse

Engineering (WCRE’10), (pp. 237–

241). Beverly, MA, USA.

Journal of Advancement in Software Engineering and Testing

Volume 6 Issue 1

DOI: [To be assigned]

HBRP Publication Page 13-36 2023. All Rights Reserved Page 30

47. V. Wahler, D. S. (2004). Clone

detection in source code by frequent

itemset techniques,. Proceedings of

the 4th IEEE International Workshop

Source Code Analysis and

Manipulation (SCAM’04), (pp. 128–

135.). Chicago, IL, USA: IEEE.

48. R. Koschke, R. F. (2006). Clone

detection using abstract syntax suffix

trees. Proceedings of the 13th

Working Conference on Reverse

Engineering (WCRE’06), (pp. 253–

262.). Benevento, Italy.

49. R. Komondoor, S. H. (2001). Using

slicing to identify duplication in

source code. Proceedings of the 8th

International Symposium on Static

Analysis (SAS’01), (pp. 40–56). Paris,

France.

50. S. Choi, H. P. (2009). A static API

birthmark for windows binary

executables. The Journal of Systems

and software , 862–873.

51. Elizabeth Burd, J. B. (2002).

"Evaluating Clone Detection Tools

for Use during Preventative

Maintenance," . 2nd IEEE

International Workshop on Source

Code Analysis and Manipulation

(SCAM) (pp. 36-43). Montreal,

Canada: IEEE.

52. G. Antoniol, U. V. (2002). Analyzing

cloning evolution in the Linux

kernel,. Information and Software

Technology , 755-765.

53. M. Balazinska, E. M. (1999).

Measuring clone based reengineering

opportunities. Proceedings of the 6th

International Software Metrics

Symposium (METRICS’99), , (pp.

292–303). Boca Raton,Florida, USA.

54. Ragkhitwetsagul, C. a. (2017). Using

compilation/decompilation to

enhance clone detection. 11th

International Workshop on Software

Clone (IWSC'17) (pp. 8-14).

Klagenfurt, Austria: IEEE.

55. Kim, S. a. (2018). Software systems

at risk: An empirical study of cloned

vulnerabilities in practice. Computers

& Security , 720-736.

56. Jadon, S. (2016). Code clones

detection using machine learning

technique: Support vector machine.

In Computing, Communication and

Automation (ICCCA), 2016

International Conference (pp. 399-

303). Noida: IEEE.

57. D Yu, D. J. (2017). Detecting Java

Code Clone swith Multi-granularities

Based on Bytecode. 2017 IEEE 41st

Annual Computer Software and

Applications Conference

(COMPSAC) (pp. 317-326). Torino ·

Italy: IEEE.

58. Y Nakamura, Y. E. (2016). Towards

detection and analysis of

interlanguage clones for multilingual

web applications. Software Analysis,

Evolution, and Reengineering

(SANER), 2016 IEEE 23rd

International Conference (pp. 17-18).

United States : IEEE.

59. Lyu, F. Y. (2016). SUIDroid: An

Efficient Hardening-Resilient

Approach to Android App Clone

Detection. In Trustcom/BigDataSE/I

SPA, 2016 IEEE , 511-518.

60. H. Xue, Y. M. (2020). Twin-Finder:

Integrated Reasoning Engine for

Pointer-Related Code Clone

Detection. 14th International

Workshop on Software Clones

(IWSC) (pp. 1-7). London, ON,

Canada: IEEE.

61. Chen, J. M. (2015). Detecting android

malware using clone detection.

Journal of Computer Science and

Technology 30, no. 5 (2015) , 942-

956.

62. Thaller, H. R. (2017). Exploring code

clones in programmable logic

controller software. arXiv preprint

arXiv:1706.03934 (2017) .

63. Newman, C. D. (2016). srcSlice: a

tool for efficient static forward

slicing. Software Engineering

Companion (ICSE-C), IEEE/ACM

Journal of Advancement in Software Engineering and Testing

Volume 6 Issue 1

DOI: [To be assigned]

HBRP Publication Page 13-36 2023. All Rights Reserved Page 31

International Conference (pp. 621-

624). Austin, TX, USA: IEEE/ACM.

64. Liu, Z. Q. (2017). VFDETECT: A

vulnerable code clone detection

system based on vulnerability

fingerprint. Information Technology

and Mechatronics Engineering

Conference (ITOEC) (pp. 548-553).

Chongqing: IEEE.

65. E. Kodhai, S. K. (2010). Detection of

type-1 and type-2 using textual

analysis and metrics. 2010

International Conference on Recent

Trends in Information,

Telecommunication and Computing

(pp. 241-243). NW Washington,

DCUnited States: IEEE.

66. Maeda, K. (2010). An extended line-

based approach to detect code clones

using syntactic and lexical

information. 2010 Seventh

International Conference on

Information Technology: New

Generations (pp. 1237-1240). Las

Vegas, Nevada, USA: IEEE.

67. Shihab, D. E. (2013). Cccd: Concolic

code clone detection. 2013 20th

Working Conference on Reverse

Engineering (WCRE) (pp. 489-490).

Koblenz, Germany: IEEE.

68. M. S. Uddin, C. K. (2013). An

extensible and faster clone detection

tool for large scale software systems.

2013 21st International Conference

on Program Comprehension (ICPC)

(pp. 236-238). San Francisco, CA,

USA: IEEE.

69. S. Park, S. K.-J. (2013). Detecting

source code similarity using code

abstraction. 7th International

Conference on Ubiquitous

Information Management and

Communication, ICUIMC (pp. 74:1-

74:9). New York, NY, USA: ACM.

70. J.-S. Lim, J.-H. J.-G. (2011).

Plagiarism detection among source

codes using adaptive local alignment

of keywords. 5th International

Conference on Ubiquitous

Information Management and

Communication, ICUIMC (pp. 24:1-

24:10). New York, NY, USA: ACM.

71. B. Lesner, R. B. (2010). A novel

framework to detect source code

plagiarism: Now, students have to

work for real! 2010 ACM Symposium

on Applied Computing, SAC (pp. 57-

58). New York, NY, USA: ACM.

72. Yadav, A. A. (2013). A hybrid-token

and textual based approach to find

similar code segments. 2013 Fourth

International Conference on

Computing, Communications and

Networking Technologies (ICCCNT)

(pp. 1-4). Tiruchengode, India: IEEE.

73. Nishi, M. A. (2018). Scalable code

clone detection and search based on

adaptive prefix filtering. Journal of

Systems and Software 137 (2018) ,

130-142.

74. Tekchandani, R. R. (2017). Code

clone genealogy detection on e-health

system using Hadoop. Computers &

Electrical Engineering 61 (2017) ,

15-30.

75. Farhadi, M. R. (2015). Scalable code

clone search for malware analysis.

Digital Investigation 15 (2015) , 46-

60.

76. Wang, P. J. (2018). CCAligner: a

token based large-gap clone detector.

Proceedings of the 40th International

Conference on Software Engineering

(pp. 1066-1077). Gothenburg

Sweden: ACM.

77. Yuki, Y. Y. (2017). A technique to

detect multi-grained code clones.

Software Clones (IWSC), 2017 IEEE

11th International Workshop (pp. 1-

7). Klagenfurt, Austria: IEEE.

78. Y. Semura, N. Y. (2017).

Ccfindersw:Clone detection tool with

exible multilingual tokeniz[80] ation.

24th Asia-Pacific Software

Engineering Conference (pp. 654-

659). Nanjing, Jiangsu, China: A

PSEC.

Journal of Advancement in Software Engineering and Testing

Volume 6 Issue 1

DOI: [To be assigned]

HBRP Publication Page 13-36 2023. All Rights Reserved Page 32

79.] Li, L. H. (2017). CCLearner: A

Deep Learning-Based Clone

Detection Approach. Software

Maintenance and Evolution (ICSME),

2017 IEEE International Conference

(pp. 249-260). Shanghai, China:

IEEE.

80. J. Y. Poon, K. S.-Y. (2010).

Instructor-centric source code

plagiarism detection and plagiarism

corpus. 17th ACM Annual

Conference on Innovation and

Technology in Computer Science

Education, ITiCSE (pp. 122-127).

New York, NY, USA: ACM.

81. Toomey, W. (2012). Ctcompare:

Code clone detection using hashed

token sequences. 2012 6th

International Workshop on Software

Clones (IWSC) (pp. 92-93). Zurich:

IEEE.

82. Roy, J. S. (2017). Cloneworks: A fast

and exible large-scale near-miss

clone detection tool. 2017 IEEE/ACM

39th International Conference on

Software Engineering Companion

(ICSE-C) (pp. 177-179). Buenos

Aires, Argentina: IEEE.

83. S. Kawaguchi, T. Y. (2009). Shinobi:

A tool for automatic code clone

detection in the ide. 2009 16th

Working Conference on Reverse

Engineering (pp. 313-314). Lille:

IEEE.

84. S. Abid, S. J. (2017). Codeease:

harnessing method clone structures

for reuse. 2017 IEEE 11th

International Workshop on Software

Clones (IWSC) (pp. 1-7). Klagenfurt,

Austria: IEEE.

85. Qing Qing Shi, L. P. (2013). A novel

detection approach for statement

clones. 2013 IEEE 4th International

Conference on Software Engineering

and Service Science (pp. 27-30).

Beijing, China: IEEE.

86. Guo, Y. Y. (2012). Boreas: an

accurate and scalable token-based

approach to code clone detection.

2012 Proceedings of the 27th

IEEE/ACM International Conference

on Automated Software Engineering

(pp. 286-289). Essen, Germany:

IEEE/ACM.

87. Y. Semura, N. Y. (2018).

Multilingual detection of code clones

using antlr grammar definitions. 25th

Asia-Pacific Software Engineering

Conference(A PSEC) (pp. 673-677).

Nara, Japan: A PSEC.

88. Merlo, T. L. (2012). An accurate

estimation of the levenshtein distance

using metric trees and manhattan

distance. 6th International Workshop

on Software Clones (IWSC) (pp. 1-7).

Zurich: IEEE.

89. M. Elsabagh, R. J. (2018). Resilient

and scalable cloned app detection

using forced execution and

compression trees. IEEE Conference

on Dependable and Secure

Computing (DSC) (pp. 1-8).

Kaohsiung, Taiwan: IEEE.

90. M. Dong, H. Z. (2012). A new

method of software clone detection

based on binary instruction structure

analysis. 8th International

Conference on Wireless

Communications, Networking and

Mobile Computing (pp. 1-4).

Shanghai, China: IEEE.

91. Roy, J. R. (2011). The nicad clone

detector. IEEE 19th International

Conference on Program

Comprehension (pp. 219-220).

Ontario, Canada: IEEE.

92. Bharti, G. M. (2014). Implementing a

3-way approach of clone detection

and removal using pc detector tool.

IEEE International Advance

Computing Conference (IACC) (pp.

1435-1441). Haryana · India: IEEE.

93. Rilling, I. K. (2013). Semantic-

enabled clone detection. IEEE 37th

Annual Computer Software and

Applications Conference (pp. 393-

Journal of Advancement in Software Engineering and Testing

Volume 6 Issue 1

DOI: [To be assigned]

HBRP Publication Page 13-36 2023. All Rights Reserved Page 33

398). NW Washington, DCUnited

States: IEEE.

94. Yang, Y. Z. (2018). Structural

Function Based Code Clone

Detection Using a New Hybrid

Technique. IEEE 42nd Annual

Computer Software and Applications

Conference (COMPSAC) (pp. 286-

291). Tokyo, Japan: IEEE.

95. Pati, J. B. (2017). A Comparison

Among ARIMA, BP-NN, and

MOGA-NN for Software Clone

Evolution Prediction. IEEE Access 5 ,

11841-11851.

96. Lavoie, E. M. (2019). Computing

structural types of clone syntactic

blocks. 16th Working Conference on

Reverse Engineering (pp. 274-278).

Lille: IEEE.

97. Narasimhan, K. (2015). Clone merge
- an eclipse plugin to abstract near-

clone c++ methods. 30th IEEE/ACM

International Conference on

Automated Software Engineering

(ASE) (pp. 819-823). NW

Washington, DCUnited States: IEEE.

98. Y. Yang, Z. R. (2018). Structural

function based code clone detection

using a new hybrid technique. IEEE

42nd Annual Computer Software and

Applications Conference

(COMPSAC) (pp. 286-291).

Tokyo,Japan: IEEE.

99. J. Zeng, K. B. (2019). Fast code clone

detection based on weighted

recursive autoencoders. IEEE Access,

7 , 125062-125078.

100. D. Li, M. P. (2014). One pass

preprocessing for token-based source

code clone detection. IEEE 6th

International Conference on

Awareness Science and Technology

(iCAST) (pp. 1-6). Paris, France:

IEEE.

101. Thompson, H. L. (2011).

Incremental clone detection and

elimination for erlang programs.

Fundamental Approaches to Software

Engineering,Springer , 356-370.

102. Svajlenko, J. a. (2017). Fast and

flexible large-scale clone detection

with CloneWorks. Software

Engineering Companion (ICSE-C),

2017 IEEE/ACM 39th International

Conference (pp. 27-30). Buenos

Aires, Argentina: IEEE.

103. [103] Sudhamani, M. a. (2016).

Code clone detection based on order

and content of control statements.

Contemporary Computing and

Informatics (IC3I), 2016 2nd

International Conference (pp. 59-64).

Noida (UP) India: IEEE.

104. Haque, S. M. (2016). Generic code

Cloning method for detection of

Clone code in software Development.

Data Mining and Advanced

Computing (SAPIENCE),

International Conference (pp. 335-

339). Ernakulam, India: IEEE.

105. Ragkhitwetsagul, C. J. (2018). A

picture is worth a thousand words:

Code clone detection based on image

similarity. Software Clones(IWSC),

2018 IEEE 12th International

Workshop (pp. 44-50). Campobasso,

Italy: IEEE.

106. Y. Fukushima, R. K. (2009). Code

clone graph metrics for detecting

diffused code clones. 16th Asia-

Pacific Software Engineering

Conference (pp. 373-380). NW

Washington, DCUnited States: IEEE.

107. Kusumoto, Y. H. (2011). Code

clone detection on specialized pdgs

with heuristics. 15th European

Conference on Software Maintenance

and Reengineering (pp. 75-84).

Oldenburg, Germany: IEEE.

108. Singh, R. a. (2017). To enhance

the code clone detection algorithm by

using hybrid approach for detection

of code clones. 2017 International

Conference on Intelligent Computing

and Control Systems (ICICCS) (pp.

192-198). Madurai · Tamil Nadu ·

India: IEEE.

Journal of Advancement in Software Engineering and Testing

Volume 6 Issue 1

DOI: [To be assigned]

HBRP Publication Page 13-36 2023. All Rights Reserved Page 34

109. Wang, M. P. (2017). CCSharp: An

Efficient Three-Phase Code Clone

Detector Using Modified PDGs. Asia-

Pacific Software Engineering

Conference (APSEC), 2017 24th (pp.

100-109). Nanjing, Jiangsu, China:

IEEE.

110. Sabi, Y. Y. (2017). Rearranging

the order of program statements for

code clone detection. Software

Clones (IWSC), 2017 IEEE 11th

International Workshop (pp. 1-7).

Klagenfurt, Austria: IEEE.

111. Crussell, J. C. (2015). Andarwin:

Scalable detection of android

application clones based on

semantics. IEEE Transactions on

Mobile Computing 14, no. 10 , 2007-

2019.

112. Sargsyan, S. S. (2016). Scalable

and accurate detection of code clones.

Programming and Computer

Software 42, no. 1 , 27-33.

113. Hu, Y. Y. (2017). Binary code

clone detection across architectures

and compiling configurations. 25th

International Conference on Program

Comprehension (pp. 88-98). Buenos

Aires Argentina: IEEE.

114. Kamalpriya, C. M. (2017).

Enhancing program dependency

graph based clone detection using

approximate subgraph matching.

oftware Clones (IWSC), 2017 IEEE

11th International Workshop (pp. 1-

7). Klagenfurt, Austria: IEEE.

115. Avetisyan, A. S. (2015). LLVM-

based code clone detection

framework. Computer Science and

Information Technologies (CSIT) ,

100-104.

116. Leavens, R. E. (2012). Semantic

clone detection using method ioe-

behavior. 6th International Workshop

on Software Clones (IWSC) (pp. 80-

81). Zurich: IEEE.

117. Deepika, S. S. (2013). Unifying

clone analysis and refactoring activity

advancement towards C#

applications. Fourth International

Conference on Computing,

Communications and Networking

Technologies (ICCCNT) (pp. 1-5).

Tiruchengode, Tamil Nadu, India:

IEEE.

118. R. Tekchandani, R. K. (2013).

Semantic code clone detection using

parse trees and grammar recovery.

The Next Generation Information

Technology Summit (4th

International Conference) (pp. 41-

46). Uttar Pradesh, India: IEEE.

119. Kamiya, T. K. (2002). CCFinder:

a multilinguistic token-based code

clone detection system for large scale

source code. IEEE Transaction on

Software Engineering , 54–67.

120. I. Keivanloo, C. K. (2012).

Sebyte: A semantic clone detection

tool for intermediate languages. 20th

IEEE International Conference on

Program Comprehension (ICPC) (pp.

247-249). Passau,Germany: IEEE.

121. D. Yu, J. Y. (2019). Detecting java

code clones based on bytecode

sequence alignment. IEEE Access, 7 ,

22421-22433.

122. Singh, C. M. (2017). Enhancing

program dependency graph based

clone detection using approximate

subgraph matching. IEEE 11th

International Workshop on Software

Clones (IWSC) (pp. 1-7). Klagenfurt,

Austria: IEEE.

123. M. Wang, P. W. (2017). 24th

Asia-Pacific Software Engineering

Conference (pp. 100-109). Nanjing,

Jiangsu, China: APSEC.

124. Y. Higo, S. K. (2011). Code clone

detection on specialized PDG’s with

heuristics,. Proceedings of the 15th

European Conference on Software

Maintenance and Reengineering

(CSMR’11),, (pp. 75-84). Oldenburg,

Germany.

125.] Z. Xing, Y. X. (2011).

Clonedifferentiator:Analyzing clones

by differentiation. IEEE/ACM

Journal of Advancement in Software Engineering and Testing

Volume 6 Issue 1

DOI: [To be assigned]

HBRP Publication Page 13-36 2023. All Rights Reserved Page 35

International Conference on

Automated Software Engineering

(ASE 2011) (pp. 576-579). NW

Washington, DCUnited States:

IEEE/ACM.

126. Misu, M. R. (2017). Interface

Driven Code Clone Detection. Asia-

Pacific Software Engineering

Conference (APSEC) (pp. 747-748).

Nanjing, Jiangsu, China.: IEEE.

127. Sheneamer, A. a. (2016). Semantic

clone detection using machine

learning. Machine Learning and

Applications (ICMLA), 2016 15th

IEEE International Conference (pp.

1024-1028). Anaheim, CA: IEEE.

128. Vislavski, T. G. (2018). LICCA: A

tool for cross-language clone

detection. IEEE 25th International

Conference on Software Analysis,

Evolution and Reengineering

(SANER) (pp. 512-516).

Campobasso, Italy: IEEE.

129. Ghofrani, J. M. (2017). A

conceptual framework for clone

detection using machine learning.

Knowledge-Based Engineering and

Innovation (KBEI), 2017 IEEE 4th

International Conference. Tehran ·

Iran: IEEE.

130. Akram, J. Z. (2018). DroidCC: A

Scalable Clone Detection Approach

for Android Applications to Detect

Similarity at Source Code Level.

IEEE 42nd Annual Computer

Software and Applications

Conference (COMPSAC) (pp. 100-

105). Tokyo,Japan: IEEE.

131. [131] Sheneamer, A. S. (2018). A

detection framework for semantic

code clones and obfuscated code.

Expert Systems with Applications 97 ,

405-420.

132. Matsushita, T. a. (2017). Detecting

code clones with gaps by function

applications. 2017 ACM SIGPLAN

Workshop on Partial Evaluation and

Program Manipulation , 12-22.

133. Kodhai, E. a. (2014). Method-

level code clone detection through

LWH (Light Weight Hybrid)

approach. Journal of Software

Engineering Research and

Development 2 .

134. Uemura, K. A. (2017). Detecting

and analyzing code clones in HDL.

Software Clones (IWSC), 2017 IEEE

11th International Workshop (pp. 1-

7). Klagenfurt, Austria: IEEE.

135. Nasirloo, H. a. (2018). Semantic

code clone detection using abstract

memory states and program

dependency graphs. 4th International

Conference on Web Research (ICWR)

(pp. 19-27). Tehran, IRAN: IEEE.

136. Singh, M. a. (2015). Detection of

file level clone for high level cloning.

Procedia Computer Science 57 , 915-

922.

137. White, M. M. (2016). Deep

learning code fragments for code

clone detection. 31st IEEE/ACM

International Conference on

Automated Software Engineering (pp.

87-98). New York,NY,United States:

IEEE/ACM.

138. H. Xue, Y. M. (2020). Twin-

Finder: Integrated Reasoning Engine

for Pointer-Related Code Clone

Detection. 14th International

Workshop on Software Clones

(IWSC) (pp. 1-7). London, ON,

Canada: IEEE.

139. Kawser Wazed Nafi, B. R. (2020).

A universal cross language software

similarity detector for open source

software categorization. Journal of

Systems and Software,

//doi.org/10.1016/j.jss.2019.110491 .

140. George Mathew, C. P. (2020).

SLACC: Simion-based Language

Agnostic Code Clones

,arXiv:2002.03039 [cs.SE]. Accepted

at ICSE 2020 technical track, (p. 11).

141. Karnalim, O. (2020). TF-IDF

Inspired Detection for Cross-

Language Source Code Plagiarism

Journal of Advancement in Software Engineering and Testing

Volume 6 Issue 1

DOI: [To be assigned]

HBRP Publication Page 13-36 2023. All Rights Reserved Page 36

and Collusion.

https://doi.org/10.7494/csci.2020.21.

1.3389 .

142. Perez, D. a. (2019). Cross-

Language Clone Detection by

Learning over Abstract Syntax Trees.

16th International Conference on

Mining Software Repositories (pp.

518–528). Montreal, Quebec,

Canada: IEEE Press.

143. K. W. Nafi, T. S. (2019).

CLCDSA: Cross Language Code

Clone Detection using Syntactical

Features and API Documentation.

34th IEEE/ACM International

Conference on Automated Software

Engineering (ASE), (pp. 1026-1037).

San Diego, CA, USA: IEEE.

144. Saini, V. a. (2018). Oreo:

Detection of Clones in the Twilight

Zone. Proceedings of the 2018 26th

ACM Joint Meeting on European

Software Engineering Conference

and Symposium on the Foundations

of Software Engineering (pp. 354–

365). New York, NY, USA:

Association for Computing

Machinery.

145. Nghi D. Q. Bui, L. J. (2017). Cross-

Language Learning for Program

Classification using Bilateral Tree-

Based Convolutional Neural

Networks. arXiv:1710.06159.

146. Hu, Y. a. (2017). Binary Code

Clone Detection across Architectures

and Compiling Configurations.

Proceedings of the 25th International

Conference on Program

Comprehension (pp. 88-98). Buenos

Aires, Argentina: IEEE.

147. T. Vislavski, G. R. (2018).

LICCA: A tool for cross-language

clone detection. 2018 IEEE 25th

International Conference on Software

Analysis, Evolution and

Reengineering (SANER) (pp. 512-

516). Campobasso: IEEE.

148. Cheng, X. P. (2017). CLCMiner:

Detecting Cross-Language Clones

without Intermediates. . IEICE

Transactions on Information and

Systems , 273-284.

149. Al-Omari, F. K. (2012). Detecting

Clones Across Microsoft .NET

Programming Languages. 19th

Working Conference on Reverse

Engineering (pp. 405-414). IEEE.

