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Abstract 

 

Early diagnosis of cattle diseases such as mastitis caused by Staphylococcus aureus (S. 

aureus) can be made effective if on-site detection methods with portable instruments are 

available. In this work, we fabricated immunosensors based on a layer-by-layer (LbL) film of 

chitosan and carbon nanotubes coated with a layer of antibodies to detect S. aureus. Using 

electrical and electrochemical impedance spectroscopies, detection was possible in buffer 

solutions and in milk with limits of detection which could be as low as 2.6 CFU/mL for milk, 

sufficient to detect mastitis at early stages. This high sensitivity is ascribed to the specific 

interactions involving the antibodies, as demonstrated with polarization-modulated infrared 

reflection absorption spectroscopy (PM-IRRAS). The selectivity of the immunosensor was 

verified by distinguishing S. aureus-containing samples from possible interferents found in 

milk, for which the interactive document mapping (IDMAP) was employed. Because the 

interferents affected the spectra, in spite of this distinguishability, we treated the data with a 

machine learning technique with decision tree models. A multidimensional calibration space 

was then obtained with rules that permit predictability in detecting S. aureus in matrices with 

high variability as in milk.  
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1. Introduction 

Detection of Staphylococcus aureus (S. aureus) in milk is relevant for diagnosing 

mastitis, one of the most frequent and costly diseases in dairy cows as it leads to severe milk 

loss, decreased milk quality, and increased probability of cow death [1]. While clinical 

mastitis may be readily recognized with a visual inspection of the mammary gland and milk, 

the same does not apply to subclinical mastitis which hinders an early diagnosis [2]. Such 

diagnosis can be done indirectly if the presence of S. aureus is detected in the milk at early 

stages of the disease. The most used method to diagnose intramammary infections is 

polymerase chain reaction (PCR) [3,4], which is accurate for bacterial DNA detection from 

bovine milk. However, this test is expensive due to the experimental procedures and 

equipment required [5]. Other tests include somatic cell count (SCC) [6], lactose percentage 

in mastitis milk [7], lactate dehydrogenase (LDH) test in mammalian  tissues [8],  electricity 

conductivity (EC) of milk [9] and N-acetyl-β-D-glucosaminidase test (NAGase) in milk from 

damaged breast epithelial cells [10]. Considering cost and ease of data collection, 

immunosensor devices are the most appropriate diagnostic test for detecting subclinical 

mastitis [11]. Immunosensors can be based on different detection principles, including 

impedance spectroscopy [12,13], colorimetry [14] and photoelectrochemical methods [15]. 

With the latter, photoactive materials and signal strategies may be chosen to reach high 

sensitivity and selectivity. Such photoelectrochemical methods have been used in monitoring 

food quality, as in the detection of mycotoxins[15,16]. It is relevant that colorimetric 

immunoassays were suitable to detect neurotoxins with high sensitivity, which was made 



possible by combining glucose oxidase and gold nanoparticles functionalized with antibodies 

in the signal transduction tag [14]. 

Immunosensors are now mostly fabricated with nanostructured films that incorporate 

a biomolecule to interact specifically with the analyte of interest. These films may be 

produced with self-assembled monolayers (SAMs) [17,18], layer by-layer (LbL) films 

[19,20], which are suitable for preserving the activity of the immobilized biomolecules [21]. 

They can contain nanomaterials such as carbon nanotubes, graphene, carbon dots and 

nanosheets [22]. There are several possible functions for the nanomaterials used in 

immunosensors. Perhaps the most relevant are related to enhancing the sensing signal via 

synergy with the biomolecules [23] and increasing the surface area of the working electrode 

in electrochemical devices [24]. Carbon nanotubes, in particular, have been proven excellent 

to increase surface roughness and then the sensitivity[25].   

In this work we exploit the advantages of immunosensors based on electrical and 

electrochemical impedance spectroscopy to detect S. aureus in milk and commercial samples. 

The immunosensor is a nanostructured film that contains a matrix of chitosan and carbon 

nanotubes, coated with a layer of Anti-S. aureus antibodies to recognize S. aureus specific 

sites. High sensitivity and selectivity are obtained, especially by employing information 

visualization. Furthermore, using machine learning methods it was possible to establish rules 

that afford some degree of predictability in the biosensing task.   

 

2. Methodology 

2.1 Immunosensor Fabrication 

 The immunosensors were made with layer-by-layer (LbL) [26,27] films of chitosan 

(CHT) and carbon nanotubes (Sigma Aldrich) modified with carboxylic acids (MWCNT) 



[28],[29] (Sigma-Aldrich). LbL films were obtained by depositing a chitosan layer from a 1 

g/mL solution in acetate buffer pH 4.5 either onto a gold electrode (Zimmer & Peacock A/S, 

Coventry, England) or interdigitated gold electrode during 10 min, followed by immersion 

into the MWCNT solution for 20 min. The former gold electrode was used for 

electrochemical measurements in phosphate buffer saline (PBS) (Sigma-Aldrich) solutions 

while for the electrical impedance measurements the interdigitated gold electrodes had 50 

pairs of 10 µm wide digits with 10 µm spacing between them. The active layer was deposited 

onto the LbL films by first immobilizing N-ethyl-N- (3-dimethylaminopropyl) carbodiimide 

(EDC) and N-hydroxysuccinimide (NHS), acquired from Sigma-Aldrich, with a 0.1 mol/L 

EDC:NHS (1:1) solution to modify the MWCNT carboxylic acids. Then, anti–S. aureus 

antibodies in which the host species is a rabbit (ABCAM-ab20920)) were adsorbed as the top 

layer. In order to avoid non-specific adsorption in the detection experiments, the 

immunosensor were completed with incorporation of bovine serum albumin (BSA) 1% from 

Sigma-Aldrich by dropping a solution on the electrode for 15 min, which was then washed 

and dried. The film-forming process was monitored with polarization-modulated infrared 

reflection absorption spectroscopy (PM-IRRAS) in a KSV spectrophotometer, model PMI 

550 (KSV Instruments, Finland), with spectral resolution of 8 cm−1 and at an incident angle 

of 81° [29–31]. From the electrochemical impedance spectroscopy (EIS) measurements, the 

resistance change was determined for each adsorbed layer of chitosan (CHT), carbon 

nanotubes (MWCNT), and antibodies (Anti-S. aureus), in addition to that caused by detection 

of S. aureus. 

 

2.2 Detection of S. aureus 

 Samples of S. aureus were diluted in PBS solutions at concentrations ranging from 

103 to 108 CFU/mL. For each bacteria concentration, an immunosensor unit was immersed in 



50 µL of solution for 10 min. Following adsorption, the immunosensor was washed to 

eliminate or minimize non-specific adsorption. The same procedure was used for detection in 

milk samples  (Letti A2, Brazil), including fat content). Two methods were used for detection: 

impedance spectroscopy using a Solartron model 1260 A (Solartron Analytical, USA), in the 

range between 102 and 106 Hz, and electrochemical impedance spectroscopy (EIS) with an 

AnaPOT potenciostat from Zimmer & Peacock A/S. The latter measurements were made in a 

three-electrode configuration: the nanostructured film was deposited onto the gold 

interdigitated electrode as the working electrode (geometric area 9.5 mm²), the reference 

electrode was Ag/AgCl (3 mol/L KCl) and the auxiliary electrode was made of gold (1.0 

cm²). EIS data were acquired in the frequency range between 0.1 Hz and 100 kHz with an 

amplitude of 10 mV and under open circuit conditions in a solution containing 5.0 mmol/L of 

K3[Fe(CN)6]/K4[Fe(CN)6] (Sigma-Aldrich, USA).  

 

2.3 Data Analysis with Visualization Techniques and Multidimensional Calibration 

Spaces 

 The capacitance spectra were analyzed with the multidimensional projection 

referred to as interactive document mapping (IDMAP) [32] to study selectivity and possible 

false positives in detecting S. aureus.  IDMAP considers the Euclidean distance between the 

electrical signal of different S. aureus concentrations in the original space X={x1, x2, …,xn} 

and projects them in a space of a lower dimension, where Y={y1, y2, ..., yn)  gives the 

position of visual elements representing the spectra. Since information is inevitably lost in 

procedures to reduce data dimensions, the process was optimized using eq. 1, 
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where δ(xi,xj) are the Euclidean distances in the original space, d(yi,yj) are the Euclidean 

distances in the lower dimension space (2D in our case), and δmax and δmin  are maximum and 

minimum Euclidean distances between the data instances.
 

A multidimensional calibration space (MCS) [33] was created from the capacitance 

values and concentrations taken as classes [34] using the interpretability represented with 

ExMatrix [35] applied for Decision Tree (DT) models [36–38]. Since these models are 

parametrized, a selection experiment [38] was performed through a KFold Cross-Validation 

[39], from which hyperparameter combinations were selected to maximize performance (i.e. 

accuracy). The models built with distinct hyperparameters were evaluated during the KFold 

Cross-Validation, and the hyperparameters providing the highest average performance were 

employed to create the final model. The Nested KFold Cross-Validation approach [40,41] 

was adopted for the performance estimation where an inner KFold Cross-Validation loop was 

executed for selecting the models (i.e. tuning the hyperparameters) [38]. The model 

performance was then carried out by an outer KFold Cross-Validation loop [40,41]. 

Optimistic (overestimation) and biased performance can be an issue on small datasets 

[40,41], as is the case of the dataset employed in this paper. These problems were avoided by 

doing this Nested KFold Cross-Validation combined with the tuning of hyperparameters. 

 

3. Results and Discussion 

The building of the immunosensors film architecture was monitored with EIS and 

PM-IRRAS. The Nyquist diagrams in Figure S1 in the Supporting Information show a 

considerable change in impedance when the layer of anti-S. aureus antibodies was adsorbed. 

Also shown are the changes in the diagrams when the immunosensors are exposed to two 

concentrations of bacteria. The adsorption of anti-S. aureus was confirmed with typical bands 



in the PM-IRRAS spectra of Figure S2, [42–48] which also allowed us to infer the molecular-

level interactions responsible for detection when the immunosensor was exposed to S. aureus 

in a PBS solution and in milk. The PM-IRRAS spectra feature bands at 1070, 1550 and 1655 

cm-1 due to phospholipids, membrane proteins, other proteins, and antibodies. The bands 

assigned to C-H dipoles from CH3 and CH2 [49] in other milk components (such as lactose) 

are observed at 2859 cm-1 and 2935 cm-1. The assignment of the main bands is given in Table 

S1 in the Supporting Information.  

The detection of S. aureus was performed in triplicate, with two analytical methods, 

viz. electrical impedance spectroscopy and electrochemical impedance spectroscopy. The 

Nyquist plots in Figure 1 depict the S. aureus detection in PBS solutions and in milk solution, 

whose data were analyzed using a Randles circuit comprising an electrolyte resistance (Rs), a 

charge transfer resistance (Rct) and a constant phase element (CPE). The change in Rct (in 

modulus) increases with the concentration of S. aureus in PBS and in milk, as indicated in 

Figures 1b and 1d, respectively. At high concentrations the signal tends to saturate as all the 

sites available for interaction are taken. The detection limits were calculated from the initial 

linear range and using the IUPAC method (LOD = 3 SD/S), where SD is the standard 

deviation of 10 measurements taken from the blank signal and S is the slope of the analytical 

curve. These limits are 10 CFU/mL for PBS and 1.8 CFU/mL for milk, with the response 

tending to saturate at ca. 108 CFU/mL. This LOD is sufficient to detect mastitis at early 

stages, because the cutoff limit for latent mastitis is 1x104-1.2x104 CFU/mL [50]. The lower 

LOD for milk may indicate that this matrix (composed with proteins and fat) does not affect 

the activity of membrane proteins of bacteria which are recognized by the antibodies in the 

immunosensor. On the contrary, milk seems an even easier matrix than PBS to detect S. 

aureus, and this conclusion is corroborated with the results for impedance spectroscopy to be 

presented later on.  
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Figure 1. (a) and (c) Nyquist plots of the impedance spectra from 100 kHz to 1 Hz for a gold 

electrode modified with a CHT/MWCNT/anti-S.aureus-BSA exposed to varying 

concentrations of the S aureus samples and mil sample in K3Fe(CN)6 and K4Fe(CN)6 

(5mmol/L). (b) and (d) Plots of the relative change in Rct against the concentration of S 

aureus samples and milk solution in K3Fe(CN)6 and K4Fe(CN)6 (5 mmol/L). 

 

The distinction ability for the different concentrations of S. aureus in PBS solutions 

and in milk using EIS is better illustrated in the IDMAP plots in Figures 2a and 2b, 

respectively. In these maps, each EIS spectrum is represented as a marker on the projected 

2D chart. Samples with similar spectra are located close to each other, while very dissimilar 

samples are placed far apart. Note that the data points are shifted to the right with increasing 

concentrations. However, samples with 104 CFU/mL (Figure 2b) are not correctly located, 

because the distinguishing ability using IDMAP is not perfect. Thus, we resorted to machine 

learning in section 3.1, which allowed for a higher accuracy in prediction 



 

 



Figure 2. IDMAP plots obtained with the EIS spectra for the immunosensor exposed to 

different concentrations of S .aureus in (a) PBS solutions; (b) milk. The maps have no axes 

because what is relevant in these plots is the relative distance between data points.  

 

The effects from S. aureus on the capacitance values of the immunosensors as 

measured with electrical impedance spectroscopy depend on the matrix. Figure 3a shows that 

in PBS solutions the capacitance shows an overall decrease with increasing concentrations of 

S. aureus (according to the analytical curve in Figure 3b). In contrast, the capacitance 

increases when the bacteria are in milk samples, as shown in Figures 3c and 3d, where 

saturation is observed at high concentrations. The limit of detection estimated from the initial 

linear range using the IUPAC method (LOD = 3SD/S) was 2.75 CFU/mL for commercial and 

2.6 CFU/mL for milk. As in the case of EIS, a lower LOD was observed in milk samples. 

 



 



 

Figure 3. Capacitance spectra for CHT/MWCNT/anti-S.aureus-BSA exposed to various 

concentrations of S.aureus in (a) PBS solutions and (c) milk and calibration curves for 



CHT/MWCNT/anti-S. aureus-BSA sensors exposed to various concentrations of S. aureus 

in (b) PBS solutions and (d) milk 

 

Figure 4 shows the IDMAP plots obtained from the impedance spectra in Figure 3, 

where the distinction of the various S. aureus concentrations is demonstrated both for PBS 

solutions and milk. Because the impedance is very sensitive to any changes in the 

immunosensor, including from non-specific interactions, it is essential to verify whether false 

positives may occur. We have therefore made several control experiments in which the 

immunosensor was exposed to interferents, namely mucin, tryptone, casein, leucine, and 

palmitic acid, some of which can be found naturally in milk. The IDMAP plot in Figure 5 

confirms the selectivity of the immunosensor toward S. aureus in PBS solutions, whose data 

points occupy a distinct region of the plot compared to those of the interferents. This is 

despite the effects caused by such interferents – probably owing to non-specific adsorption – 

as it is clear in the IDMAP plot. Therefore, using this multidimensional projection technique 

one may obtain a reasonable distinction ability for the immunosensor, even in the presence of 

non-specific adsorption.  



 

 



Figure 4. IDMAP plots obtained with the electrical impedance spectra of Figure 4 for the 

immunosensor exposed to different S. aureus concentrations in (a) PBS solutions, (b) milk.  

 

 

Figure 5. IDMAP plot for the Electrical Impedance Spectra from interferents and milk 

solution in PBS and S. aureus antibody (AB). 

 

 

3.1 Machine Learning Applied to the Electrical Impedance Spectroscopy Data  

 

The robustness of a monitoring system for detecting bacteria in real samples, as with 

milk investigated here, depends not only on a high sensitivity that can prevent false negatives 

but also on whether false positives can be avoided by distinguishing possible signals from 

interferents in the sample. We have shown that using the multidimensional projections 

techniques such as IDMAP may solve this problem. Still, this approach does not permit 

predictability when a new set of measurements are taken with real samples (e.g. milk) that 

exhibit an intrinsic variability. Such predictability may be afforded if the data are treated with 

supervised machine learning methods based on decision trees [36–38]. This was done here by 

creating two multidimensional calibration spaces (MCS) [33], one from capacitance spectra 



of PBS solutions and another from capacitance spectra of milk samples. The concentrations 

were discretized [34] as classes, resulting in 7 classes: 0, 103, 104, 105, 106, 107, and 108 

CFU/mL for PBS solutions, and 0, 1, 10, 102, 104, 106, and 107 CFU/mL for milk samples. 

Both MCS were obtained using a model selection experiment [38] with a KFold Cross-

Validation [41]. Several Decision Tree (DT) [36–38] models were built to select the DT 

hyperparameter combination yielding the highest average performance (i.e. accuracy) in a 

KFold Cross-Validation with k = 3. The chosen hyperparameters were used to create the final 

DT model and the MCS via ExMatrix visualization method [35]. To assess the performance 

of the DT model, a 3 x 2 Nested KFold Cross-Validation (k_outer = 3 and k_inner = 

2)[40,41] was conducted. Both MCS provide ~95% average accuracy, which means that the 

rules created for the calibration spaces allow for predicting the correct concentration with 

~95% accuracy.  

Figure 6 illustrates the two MCS [35] with rules extracted from the DT models. In this 

visualization, rules are represented by rows while columns represent features, and cells refer 

to rule predicates. These predicates delimit the values of capacitance for of S.aureus 

concentrations, while rules are ordered by concentration class and the features are ordered by 

importance. Figures 6A and 6B show MCS with five selected frequencies among 19. For 

S.aureus detection in PBS samples in Figure 6a, 21 Hz is the most important frequency 

(feature) for biosensing, while 1000 Hz is the most important frequency for S. aureus 

detection in milk samples in Figure 6b. These features are positioned in the first column of 

each MCS, with an importance value of 0.33. Furthermore, frequencies are used in the rules 

which belong to different spectral regions, with the exception of rule r1 for 107 CFU/mL 

(PBS Solution) and for the reference sample (without bacteria) for detection in milk samples. 

The need to employ different frequency regions supports the usefulness of impedance 

spectra, as the distinction ability is increased compared to using only electrical responses at 



given frequencies. The two MCS present the minimum number of rules (i.e. 7, one for each 

concentration class), thus revealing a strong separability capacity. 

 

 



Figure 6. Multidimensional Calibration Space (MCS) from two DT models in the ExMatrix 

representation, for PBS solutions (a) and milk samples (b). The logic rules are presented in 

both spaces have the minimum number of rules (7, one per concentration class). For PBS 

solutions, the concentrations 0, 103, 104, 105, 106, 107, and 108 CFU/mL were discretized as 

classes. MCS has 5 dimensions corresponding to the 5 selected frequencies (features), which 

are 21 Hz, 10 Hz, 1000 Hz, 4641 Hz and 100000 Hz. The most important feature is F21, with 

an importance value of 0.33. The rules employ frequencies from different regions to 

distinguish the S.aureus concentrations, with the exception of rule r1 (sixth row) for 107 

CFU/mL (magenta) which requires only F1000 Hz (third column). For the milk samples, the 

concentrations 0, 1, 10, 102, 104, 106, and 107 CFU/mL were discretized as classes, and MCS 

also has 5 dimensions, corresponding to F1000, F21, F46, F10000 and F464158. The most 

important feature is F1000, with an importance value of 0.33. As in the PBS solutions, 

different frequency regions are used in the rules except for 0 CFU/mL (blue) determined with 

rule r1 (first row) using F1000 Hz (first column).  

 

4. Conclusions 

We reported a selective immunosensor capable of detecting S. aureus in buffer 

solutions and in milk, with a sensitivity that is sufficient for early diagnosis of mastitis in 

cows. The immunosensor was made with nanostructured films containing a layer of 

antibodies, which can be produced at low cost. Its usefulness was demonstrated with two 

principles of detection, viz. electrical and electrochemical impedance spectroscopies, thus 

indicating that the specific interactions involving antibodies are sufficiently strong to be 

captured by different methods, including with portable devices. Indeed, with PM-IRRAS we 

could stablished the molecular-level interactions responsible for the sensing mechanisms. The 

selectivity of the immunosensor was verified using a series of possible interferents, whose 

impedance spectra were treated with a multidimensional projection technique. Though 

distinction of the various samples could be made, there were also changes in the spectra 

induced by the interferents – probably to non-specific adsorption. This latter limitation was 

addressed by employing machine learning to obtain a multidimensional calibration space 

(MCS) [33] based on decision trees. Using this new construct of analytical chemistry, it was 

possible to establish rules that provide predictability for employing the immunosensor in 

detecting S. aureus in real samples with intrinsic variability (as in milk). Taken together, the 



immunosensing and the data processing technologies presented here pave the way for 

performing on-site early diagnosis of mastitis, in addition to detecting S. aureus in food 

samples.  
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