Dataset Open Access

Global Dam Tracker: A database of more than 35,000 dams with location, catchment, and attribute information

Zhang, Alice Tianbo; Gu, Vincent Xinyi


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nmm##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Global Dam Tracker (GDAT)</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Dams</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Catchments</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Energy Policy</subfield>
  </datafield>
  <controlfield tag="005">20230227212257.0</controlfield>
  <controlfield tag="001">7616852</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Georgia Institute of Technology</subfield>
    <subfield code="0">(orcid)0000-0003-3629-9668</subfield>
    <subfield code="a">Gu, Vincent Xinyi</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">14295777</subfield>
    <subfield code="z">md5:b16d1bc4fd88fa2d39f176b45bf4d3ed</subfield>
    <subfield code="u">https://zenodo.org/record/7616852/files/GDAT_data_v1.zip</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2023-02-07</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire_data</subfield>
    <subfield code="o">oai:zenodo.org:7616852</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">111</subfield>
    <subfield code="n">1</subfield>
    <subfield code="p">Scientific Data</subfield>
    <subfield code="v">10</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Washington and Lee University</subfield>
    <subfield code="0">(orcid)0000-0001-6649-7628</subfield>
    <subfield code="a">Zhang, Alice Tianbo</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Global Dam Tracker: A database of more than 35,000 dams with location, catchment, and attribute information</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;&lt;strong&gt;Citation&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;Zhang, Alice Tianbo, and Vincent Xinyi Gu. 2023. &amp;ldquo;Global Dam Tracker: A Database of More than 35,000 Dams with Location, Catchment, and Attribute Information.&amp;rdquo; &lt;em&gt;Scientific Data&lt;/em&gt; 10 (1): 111.&lt;/p&gt;

&lt;p&gt;&lt;a href="https://www.nature.com/articles/s41597-023-02008-2"&gt;https://www.nature.com/articles/s41597-023-02008-2&lt;/a&gt;&lt;/p&gt;

&lt;p&gt;&amp;nbsp;&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;Description&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;We present one of the most comprehensive geo-referenced global dam databases to date. The Global Dam Tracker (GDAT) contains 35,000 dams with cross-validated geo-coordinates, satellite-derived catchment areas, and detailed attribute information. Combining GDAT with fine-scaled satellite data spanning three decades, we demonstrate how GDAT improves upon existing databases to enable the inter-temporal analysis of the costs and benefits of dam construction on a global scale. Our findings show that over the past three decades, dams have contributed to a dramatic increase in global surface water coverage, especially in developing countries in Asia and South America. This is an important step toward a more systematic understanding of the worldwide impact of dams on local communities. By filling in the data gap, GDAT would help inform a more sustainable and equitable approach to energy access and economic development.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isPublishedIn</subfield>
    <subfield code="a">10.1038/s41597-023-02008-2</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.7616851</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.7616852</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">dataset</subfield>
  </datafield>
</record>
545
250
views
downloads
All versions This version
Views 545545
Downloads 250250
Data volume 3.6 GB3.6 GB
Unique views 476476
Unique downloads 228228

Share

Cite as