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ABSTRACT The World Health Organization promotes healthy living through regular physical activities,
such as exercise and sports, as well as access to healthcare and rehabilitation services for people with motor
dysfunctions. However, there is a lack of specialized personnel and increased costs associated with such
activities. These have led to the increased use of machine learning for the analysis and evaluation of human
motion during exercise. To study the latest advancements in this area, a systematic literature review focusing
on publications from 2017 to 2021 was performed. As a result, 88 relevant publications were identified,
which developed both shallow machine learning and deep learning algorithms. The results indicated that
algorithms for human motion assessment should provide personalized and informative assessments, with
explainable and interpretable outcomes, that can be computed in real-time or concurrently with the execution
of an exercise. Furthermore, they should be easy to adapt based on the needs of applications and should be
able to performwith different motion capture systems. This has been challenging because of the usually small
amount of collected data, the lack of large open datasets, and the unique characteristics of exercise motions.
Based on the above findings, guidelines for the development of such algorithms are proposed and discussed.
They relate to the selection of the type of assessment, handling data imbalances, selecting of motion capture
technologies, balancing between accuracy and speed, selecting the right algorithm, performing concurrent
assessment during an exercise, personalization and scalability, and evaluation.

INDEX TERMS Assistive technologies, deep learning, exercise, healthcare, human action evaluation,
machine learning, motion analysis, motion quality assessment, rehabilitation, sports.

I. INTRODUCTION
Human Motion Quality Assessment (HMQA), also referred
to as HumanAction Evaluation, Human Performance Assess-
ment, or in broader terms, ActionQuality Assessment (AQA),
has seen an increased interest in the scientific literature,
because of the need for unbiased and personalized assess-
ment of human motion in various domains. HMQA is
defined as ‘‘quantifying the motion quality from a functional
point of view by assessing its deviation from an established
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model’’ [1]. In other words, it analyzes and quantifies how
someone performs an activity. HMQA should not be confused
with Human Activity Recognition (HAR), which is another
motion analysis technique that focuses on recognizing what
activity is being performed [2], [3].

Applications of HMQA have been used in sports training
applications [4], athletic event performance scoring sys-
tems [5], motor rehabilitation systems [6], [7], medical diag-
nostics [8], skill assessment and education [9], [10], and to
assess ergonomic risks [11]. Such assessments, in the absence
of automated processes, are mostly performed by experts in
their respective fields and thus rely on their level of expertise
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and experience [12], [13]. However, there is often a low
agreement between different raters performing HMQA of the
same activity. In other words, they have a low inter-rater
reliability in their evaluations [14], [15]. This can happen
for various reasons. For example, time limitations can hinder
the performance of comprehensive assessments. In addition,
assessments rely on the experience level of raters [16] and are
also affected by raters’ subjective biases. Lower inter-rater
and intra-rater (i.e., the ability of a rater to consistently rate
the same activity) reliability scores decrease further when
assessing complex motions, and during live performances,
compared to offline evaluations of recordings [17]. The limi-
tation in consistently rating activities in real-time is especially
detrimental when there is a need to use the assessment results
to provide immediate feedback to the performer. Finally,
because such assessments are performed by a human expert,
they are restricted in their scalability and cannot be performed
without the presence of the expert. For example, this is the
case in home applications [18], and industrial settings [19].

A. HMQA DURING EXERCISE
Exercise is defined as a ‘‘planned, structured, and repetitive
bodily movement done to improve or maintain one or more
components of physical fitness’’ [20]. It is a subset of physical
activity that includes body conditioning and sports activi-
ties [20]. If we decompose the above definition, planned or
goal-oriented exercise motions are not reactive to an event but
are performed to achieve a specific outcome [21]. Structured
or task-oriented exercise motions have common characteris-
tics that are specific to the task at hand [21]. For example,
these characteristics may include set starting and ending
points for the motion and predefined motion trajectories.
Finally, exercise motions are often repetitive and performed
multiple times during a session [21]. HMQA is often required
during exercise to assess the execution of performed motions.
This assessment is usually performed by therapists and med-
ical personnel for healthcare applications (e.g., for diagnos-
tic purposes and rehabilitation), and by coaches and trainers
for sports and wellness applications. Various approaches for
HMQA during exercise have recently been explored to facil-
itate and automate the assessment process.

This study presents Machine Learning (ML) processes that
have been proposed for HMQA during exercise. A systematic
literature reviewwas conducted to identify previous studies in
the area that used ML. Although there have been some rele-
vant reviews in individual application domains in the past [4],
[5], [6], [22], to the best of our knowledge, no prior review
has studied the use of HMQA during exercise across multiple
domains, particularly with the use of ML. This review aims
to address the following research questions (RQ):
RQ1: What are the requirements forML algorithms used for

HMQA during exercise?
RQ2: What are the challenges for ML algorithms used for

HMQA during exercise?
The remainder of this paper is structured as follows:

Section II provides a high-level description of the process

for applying ML for HMQA during exercise. Section III
describes the methodology used in the literature review.
Section IV presents the results of the review, and Section V
discusses the results, answers the above research questions,
and proposes a set of guidelines for developing ML algo-
rithms for HMQA during exercise. Finally, Section VI sum-
marizes the process and findings.

II. HMQA USING MACHINE LEARNING
Traditionally, HMQA has been performed using either
rule [23], [24], [25] or template-based [26], [27], [28]
approaches. Rule-based approaches use predefined condi-
tional statements to evaluate the properties of human motion
(e.g., joint angles, range of motion, and relations between
joints). Template-based approaches use algorithms such as
Dynamic Time Warping (DTW) and Hidden Markov Models
(HMM), which perform pattern matching using previously
recorded motions. These methods are easy to implement and
run in real-time; thus, they are ideal for assessing motion dur-
ing exercise. However, the number of exercise executions that
can be used to create rules/templates is limited. This reduces
the scalability of these approaches [29]. Consequently, it is
difficult to develop personalized solutions that can match
the unique characteristics or impairments of each individual.
To overcome the above limitations, there has recently been
increased interest in using ML for HMQA. The process for
developing such solutions includes several steps. A high-level
schematic representation of the overall process is shown in
Fig. 1. However, the exact steps that each solution adapts, can
vary based on the input data modalities, type of assessment,
and algorithm used. Next follows a brief description of each
phase of this process.

A. DATA COLLECTION AND PREPROCESSING
The first step is the collection of data using motion capture
(MoCap) systems (e.g., inertial-based, optical). Data collec-
tion can occur either online, where data are directly used to
train/improve ML models (e.g., using reinforcement learn-
ing), or offline, where they are stored as a dataset that is
used later for training. Raw data captured using MoCap sys-
tems are continuous signals, (e.g., (x, y, z) coordinates of the
position of joints over time). These time-series often contain
noise, which makes them more difficult to analyze, and thus
may require preprocessing. Filters are used to remove such
unwanted features [30]. The selection of the filter and its
parameters varies based on the type of signal and capture
characteristics (e.g., the polling rate and signal resolution).
Filtering is often used with shallow ML algorithms, whereas
Deep Learning (DL) approaches often use unfiltered data.

When capturing data during an exercise, especially in a
non-controlled setting (i.e., not in a laboratory or following
strict protocols), values are recorded continuously. Therefore,
captured motion data include values from motions performed
before and after the execution of an exercise (i.e., during
preparation and post-exercise actions). These values are irrel-
evant for the assessment and are discarded, thus, segmenting

VOLUME 10, 2022 86875



F. Frangoudes et al.: Assessing Human Motion During Exercise Using Machine Learning: A Literature Review

FIGURE 1. High-level schematic representation of the process for HMQA using ML.

the data into smaller time-series [21]. The remaining val-
ues include data from only a single exercise execution or
repetition, which can be further divided into sub-phases of
an exercise (e.g., a tennis serve can be separated into three
phases: preparation, acceleration, and follow-through [31]).
Segmentation is typically performed based on the specific
characteristics of individual signals. For example, in a single-
leg squat exercise, analysis of the knee angle can discern
repetitions [32].

Next, based on the MoCap system, it may be necessary
to normalize the data to ensure their comparability. Nor-
malization can be performed across two different modali-
ties: spatial and temporal. Spatial normalization ensures that
all data are represented in the same coordinate system and
aligned based on a common plane. If the input data are not
spatially normalized, especially when data are represented
using a human skeleton, it can result in a lower, and with a
greater variance, accuracy of the assessment [33]. Temporal
normalization ensures that all segments have the same length,
and may be necessary when using certain ML algorithms. For
instance, when using Convolutional Neural Networks (CNN)
that require data to fit within a fixed-size matrix. However,
this alters the time-series (i.e., by discarding or introducing
new values) and may yield unexpected results. Overall, pre-
processing can improve assessment accuracy by making the
input data comparable and easier to analyze. Nonetheless, it is
time-consuming [34] and therefore, each application should
examine which of these steps to apply.

B. FEATURE EXTRACTION, ENGINEERING, AND
SELECTION
This section describes steps for extracting features from the
captured signals and engineering new features. The simplest
approach for feature extraction is by using the raw data from
each component of the captured signals as a feature vector
(e.g., for a triaxial accelerometer, the values of each of the
three axes (x, y, z) across time can be used as a feature). These
feature vectors include all time-series values from an exercise
execution and are used as inputs for ML algorithms [35].
Such input vectors are typically used in DL algorithms. A dif-
ferent method is through the application of various statisti-
cal/aggregate functions (e.g., minimum, mean, and standard
deviation). This produces descriptive statistics for the time-
series, which are used as features [36]. These features are
often used with shallow ML algorithms.

In addition to the above methods, feature engineering
transforms features into different and more efficient repre-
sentations while maintaining the expressivity of the original
features. Many techniques are used for such transformations,
each taking advantage of different characteristics of the data.
One such approach is the use of dimensionality reduction
algorithms [37] (e.g., Principal Component Analysis), which
use a set of features to create new features with reduced
dimensionality. Another approach is transfer learning, that
transforms features into a format that has been successfully
used in other domains [38]. For example, a set of feature
vectors representing time-series values can be transformed
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into an RGB image, where each column represents a different
feature (e.g., a skeletal joint), rows represent time points, and
the RGB values represent the values of that feature at that
time point (i.e., (x, y, z) position of a joint) [39]. Another
transformation, mostly used with skeletal data, is into a graph
that can model the adjacencies of the joints of the human
body [40].

Once all features are extracted and/or engineered, it is pos-
sible to have many features that will increase the complexity
and accuracy of the ML model [41]. Therefore, to reduce
complexity, a subset of features may be selected instead
of using all of them to develop the model. This may be
needed, especially in more complex systems that use multiple
input devices and modalities, and can therefore include many
features irrelevant to the performed motions [42]. In sim-
ple cases, this process can be performed manually based
on empirical knowledge. However, various feature selection
algorithms have been proposed to select optimal subsets of
features. Feature selection algorithms are divided into unsu-
pervised and supervised algorithms [43]. Unsupervised algo-
rithms can use correlation analysis or clustering techniques
to identify redundant features. Supervised algorithms, on the
other hand, are separated into (1) wrapper techniques (e.g.,
sequential algorithms and genetic algorithms), (2) filter tech-
niques (e.g., correlation criteria and mutual information), and
(3) embedded techniques that select features while training
the model (e.g., Random Forest (RF)) [43].

C. MODEL TRAINING, VALIDATION, AND TESTING
The final steps in the process include the training and valida-
tion of the ML model and subsequent testing. The selection
of the ML algorithm that will be used in the process depends
heavily on the type of assessment performed.

1) TYPES OF HMQA
HMQA is divided into three categories based on the type of
assessment performed: regression-based, ranking-based, and
parametric assessments [44].

a: REGRESSION-BASED ASSESSMENTS
Regression-based assessments characterize the quality of
motion using a continuous numerical value (i.e., a score). One
approach to developing such assessments is to use only the
optimal executions of an exercise to train the ML model [45].
The assessment is then performed by detecting the deviations
of a performed motion as compared to the optimal ones. If the
two have a high similarity (i.e., only small deviations), the
performed motion was without any errors. On the contrary,
greater deviations signify a motion of lower quality and with
more errors. As only the optimal executions of an exercise
are required for the assessment, it can be implemented even
with a few representative data samples. However, if there are
samples across a wider range of motion quality, a model can
also be developed by learning associations of features with
different scores [46]. Regression assessment can be applied
using a unified regression model across a set of different

motions. However, this approach can lead to problems in
fitting all the data into a single model and decreasing the
overall performance, especially with similar activities [47].
Instead, it is preferable to use an individual assessment model
for each motion. However, regression-based assessments are
unable to provide more context about their outcomes (e.g.,
identifying specific erroneous patterns or what causes the
detected deviations).

b: RANKING-BASED ASSESSMENTS
Ranking-based assessments use classification to an ordinal
value that represents the skill level of the execution (e.g., poor,
fair, good [48]). Such assessments classify the performed
motions into specific classes that follow a rank butmay be dif-
ficult to quantify exactly. In its simplest form, this can include
two classes [49] (e.g., incorrect or correct motion). However,
additional classes can provide a finer distinction between the
performed motions [50]. In addition, hybrid approaches have
been studied in which ranking-based assessment is followed
by regression-based algorithms that use the confidence scores
of the classification to compute a motion quality score [3].
Ranking-based assessments have the advantage of offering
a better distinction in terms of motion quality. This requires
more samples from each class. As such, they can develop a
scaling problem if there are many classes or characteristics
that increase complexity. Moreover, although they provide
more information, the ranking nature of the assessment does
not allow the identification of disjoint classes that are not
comparable to each other.

c: PARAMETRIC ASSESSMENTS
Parametric assessments evaluate domain-specific exercise
characteristics using either a continuous numerical value
(e.g., follow-through for table tennis strokes [51]) or by clas-
sifying them (e.g., identification of postural errors during a
barbell squat exercise [52]). Such methods utilize techniques
similar to those of the other two approaches, but with a focus
on domain-specific parameters. Therefore, they provide more
context in their assessments with relevant information about
the motion performed. However, as a result, more samples are
required to implement them, and it is harder to reuse them in
other applications.

2) MODEL DEVELOPMENT
After selecting the ML algorithm, the model is trained.
The process starts by separating the dataset into the cor-
responding training and validation subsets (often by using
a cross-validation technique such as k-fold and leave-k-
subjects-out). The cross-validation technique used depends
on the characteristics of the dataset. For instance, smaller
datasets may have higher accuracy with a leave-k-subjects-
out approach [3] because the data of individual subjects are
not mixed in both the training and validation subsets. The
cross-validation technique can also be used during the train-
ing phase of themodel to facilitate the selection of the optimal
parameters of the algorithm.

VOLUME 10, 2022 86877



F. Frangoudes et al.: Assessing Human Motion During Exercise Using Machine Learning: A Literature Review

Once the model is trained, it can be tested for its perfor-
mance over a set of new data, referred to as the test dataset.
This set of data can be held-out from the initial dataset or
recorded and assessed in real-time. The final testing is per-
formed by following a similar process to the one during
the training by applying preprocessing steps (i.e., filtering,
segmentation, and normalization as necessary), and feature
extraction and selection. Finally, the data are fed into the
trained model for evaluation.

III. LITERATURE REVIEW METHODOLOGY
A systematic literature review was conducted following the
PRISMA methodology [53]. The steps in the process are
presented in Fig. 2 and discussed in detail below.

A. SEARCH STRATEGY
A search was conducted for publications in the electronic
databases ACMDigital Library, IEEEXplore Digital Library,
PubMed, Sage Journals, Taylor & Francis Online, and Sco-
pus. In addition, the databases Academic Search Ultimate,
CINAHL, MedLine, and ScienceDirect were searched using
EBSCOHost. The results were restricted to publications pub-
lished in English between January 2016 and December 2021.

The search across the databases was based on the search
pattern [Machine Learning] AND [Motion] AND [Human]
AND [Assessment]. Each of the four core search terms
was expanded to a set of keywords of similar context as
follows: Machine Learning: machine learning, deep learn-
ing, neural network, convolutional network, memory net-
work, LSTM, SVM, Vector Machine, forest, regression;
Motion: exercise, rehab, sport, human action, action quality,
movement, fitness; Human: human, patient, athlete, limb;
Assessment: assess, quality, evaluate, correct. Additional
publications were retrieved and processed based on existing
knowledge.

B. SELECTION CRITERIA
The focus of this review is to study methods for the assess-
ment of human performance during exercise using ML algo-
rithms. Therefore, various inclusion criteria were selected
to ensure that only relevant publications were included in
the analysis. For this review, the term exercise was adopted
based on the definition in Section I-A and includes motions
performed for body conditioning (e.g., squat, lunge, shoul-
der flexion) or related to a sport (e.g., strokes in tennis,
martial arts moves). Publications that only analyzed motions
related to activities of daily living (e.g., walking, drinking
from a cup, standing-to-sitting) were excluded. Publications
that only included wrist and/or finger exercises were also
excluded, as were publications that focused on static postures
and did not include motion.

In addition, all included publications used ML algorithms
for HMQA. Publications that only recognized different exer-
cises (i.e., only performed HAR), or performed assessments
without the use of ML algorithms, were excluded. Regarding
the modalities of the captured data, only studies that used

human-body-centric data modalities were included. The term
human-body-centric data modalities refers to data whose val-
ues relate to human body segments (e.g., forearm, shoulder,
chest). For example, such data can be captured from internal
sensors (i.e., values from an accelerometer, gyroscope, and
magnetometer) that are attached at specific body locations
or from optical cameras that can discern skeletal data (i.e.,
joint positions and/or orientations). Publications in which the
analysis was only based on other modalities, such as muscle
activity, force, and image-based characteristics with no skele-
tal context, were excluded.

C. SCREENING STRATEGY AND ARTICLE REVIEW
The results from each electronic database were retrieved and
imported into Zotero (http://www.zotero.org/), a reference
management software. After removing duplicate entries, the
initial results were screened based on titles and abstracts
against the inclusion criteria. Publications that did not meet
all inclusion criteria were excluded. The remaining publica-
tions were further screened based on their full text to assess
their eligibility for inclusion in the analysis. Simultaneously,
additional publications were identified and screened for eli-
gibility as well. These were identified based on references
in the screened publications, or from the publications that
cited publications that met the inclusion criteria. Once the
set of publications for analysis was finalized, the included
publications were reviewed in detail, and the extracted data
were added to a spreadsheet for analysis.

IV. RESULTS
The search of the electronic databases yielded 26851 pub-
lication records (Fig. 2). An additional 28 records were
included based on previous knowledge. After duplicates were
removed, 12176 unique records were screened based on
their titles and abstracts. Of those, 11740 were excluded,
and 436 were assessed based on their full text for eligibil-
ity. Another 53 publications were identified and included in
the full-text assessment based on references and citations
of the assessed records, bringing the total number of pub-
lications assessed for eligibility based on their full-text to
489. Of these, 401 publications did not meet the inclusion
criteria and were excluded from further analysis. Almost
three-quarters (297/401) were excluded because they did not
include exercise-relatedmotions. Another 59 publications did
not perform any assessment of human motion, and 25 publi-
cations assessed motion without using ML. Fifteen publica-
tions did not use human-body-centric data for the assessment.
Finally, five publications were excluded because they did not
include details regarding the implementation of the assess-
ment or only proposed the use of the technology for future
use. The full text of one publication could not be found.
This process yielded 88 publications that were included in
the analysis. Tables 1, 2, 3, and 4 list the included publica-
tions as related to healthcare, rehabilitation, sports, and well-
ness applications, respectively. The following subsections
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FIGURE 2. Summary of the PRISMA methodology followed for the literature review.

provide information about various aspects of the publications
extracted from the analysis.

A. APPLICATION DOMAINS AND TARGET POPULATIONS
The majority of publications (56/88) were related to health-
care and rehabilitation applications (Tables 1 and 2). Another
17 publications were related to sports applications (Table 3),
and the remaining 15 were related to wellness applications
(Table 4). Subdomains were identified in each application
domain based on the purpose of the assessment, as shown
in Fig. 3. Of the publications in the healthcare/rehabilitation
domain, 17/56 performed a functional motor assessment of
patients, while 16 described systems for monitoring exercise
during rehabilitation. Another 12/56 related to the develop-
ment of virtual therapist applications that provide specific
feedback to patients. Six publications presented serious
games that use motion assessment within the context of the
game, and 5/56 were more general with no specific stated use.
From publications in the sports domain, 7/17 were designed
as coaching systems that provide corrective feedback to ath-
letes based on performed motions. Another seven assessed
the skill level of athletes, and three were related to sys-
tems for judging sports performances by predicting judged

athletic performance scores. Finally, in the wellness domain,
5/15 were related to fitness coaching applications that guide
(mostly novice) people during exercise, and one publication
performed a functional movement assessment that differen-
tiates between younger and older users. The remaining 9/15
publications were related to general exercise assessment for
wellness systems.

The included studies also focused on a wide range of pop-
ulation groups. For example, in the healthcare/rehabilitation
domain (Fig. 4 (a)), a large portion of these publications
(38/56) were related to neurological disorders, with the
majority (29/38) involving stroke survivors. Another 5/38
publications related to people with Parkinson’s disease.
Of the last four, two were related to people with Alzheimer’s
disease, one to people with multiple sclerosis, and one to
neurological disorders in general. Another population group
of interest within the healthcare domainwas people withmus-
culoskeletal disorders (11/56 publications). Of those, eight
were general not focusing on a specific musculoskeletal dis-
order, two related to patients recovering from anterior cruci-
ate ligament (ACL) reconstruction, and one with people with
knee osteoarthritis. Finally, 2/56 publications in the health-
care/rehabilitation domain were related to people with motor
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FIGURE 3. Application domains and subdomains based on the purpose of the assessment of identified publications.

deficits, and another 7/56 were more general in the healthcare
domain and rehabilitation.

Similarly, various sports were included in publications in
the sports domain (Fig. 4 (b)). High interest in HMQA exists
in racket sports (8/17 from publications related to sports).
Of these, four publications were related to tennis, three to
table tennis, and one to badminton. Other sport types of
interest included gymnastics, with one publication for floor
exercises, and one for the vault, and martial arts, where one
publication was related to kick-boxing, and another to Tai
Chi. Two publications related to water sports, with one study-
ing canoeing, and one diving. Similar werewinter sports, with
one publication related to figure skating, and one to skiing.
A comparison of athletes from different sports performing
various exercises was performed in 3/17 studies. In addition,
one publication performed a separate HMQA analysis on
motions performed in three different sports (i.e., gymnastics
vault, diving, and skiing). Therefore, the total number of pub-
lications accounting for individual sports adds to 19, which
is two more than the number of publications included in
the study. Publications related to the wellness domain aimed
toward the general population, with no specific characteris-
tics, to improve overall fitness levels, and promote healthy
living.

B. HMQA USING ML
1) DATA COLLECTION AND DATASETS
The first step in theMLprocess is data collection. The 88 pub-
lications included in the review developedML solutions using
73 unique datasets (i.e., nine datasets were used in more than
one publication). Forty-one of the 73 datasets related to the
healthcare domain, 17 to sports, and the remaining 15 to
wellness (Table 5).

a: STUDIES DESIGN
Almost two-thirds of the datasets (46/73) used a one-group
design (Table 5) and all participants were treated as a sin-
gle group with common characteristics. For these datasets,
data collection was performed in two ways. First, the par-
ticipants performed exercises only in an optimal manner,
and the models were developed to recognize deviations from
the optimal motions. Second, the participants performed the
exercises both correctly and incorrectly. Thus, both were
used to train the ML models, which learned to detect vari-
ations in the quality between motions. The remaining 27/73
used a multiple-group design where participants were sep-
arated into two or more groups (e.g., based on skill level
(amateur vs. elite), based on health condition (impaired vs.
healthy)). When using these datasets, the developed models
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TABLE 1. Included studies related to HMQA during exercise for healthcare applications.

were designed to identify the group to which the participant
performing the exercise belonged to. The latter approach was
more frequently used in the sports domain, while in health-
care/rehabilitation and wellness domains a one-group design
was more often preferred (Table 5).

b: SAMPLE SIZE
Regarding the number of participants (Table 6), the datasets
in healthcare/rehabilitation and wellness domains had simi-
lar sizes with a combined median number of 21 participants
(25th percentile = 10, 75th percentile = 36). In sports, the
median number of participants was less than half that of the
other two (see Table 6), mostly because of the number of
datasets with only a single participant. In contrast, the number
of included exercises across all domains was more uniform
(Table 6), with a combined median number of three exercises
(25th percentile= 1, 75th percentile= 6). Finally, the number
of exercise executions included in each dataset (i.e., number
of repetitions) varied between the three domains (Table 6),
with sports having the fewest and wellness the most. The
combined number of samples across all three domains had
a median of 815 (25th percentile = 174, 75th percentile =

1760).

c: INPUT DEVICES AND DATA MODALITIES
The captured motion data in all the datasets were in a human-
body-centric format based on the inclusion criteria of the
review. As such, motion data were mostly recorded using
inertial sensors and/or optical cameras, from which a skele-
tal representation was extracted. Both types of technologies
were used in 39/73 datasets (i.e., some datasets used both
technologies).

Fig. 5 shows the combinations of types of inertial sensors
used in the datasets. Accelerometers and gyroscopes (i.e.,
inertial sensors with six degrees of freedom (DOF)), were
used most often (16/39 datasets). The two sensors together
with magnetometers (i.e., nine DOF) were used in another
15 datasets. Individual sensors (i.e., three DOF) were used
less frequently. Inertial sensors were placed at various loca-
tions based on the exercises performed in each dataset. Fig. 6
shows the locations on the body sensors were attached, along
with the number of datasets that placed sensors at each loca-
tion. Sensors were attached most often at the wrists for the
upper extremities (18 and 17 placements at the right and left
wrist, respectively), and at the thighs for the lower extremities
(14 and 13 placements at the right and left thigh, respec-
tively). For the core body, sensors were most often attached
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TABLE 2. Included studies related to HMQA during exercise for rehabilitation applications.

to the chest, and the lumbar spine area (10 placements
each).

Another 39/73 datasets used an optical camera for MoCap.
More specifically, 24 datasets used depth sensor technolo-
gies (i.e., an RGBD camera), mainly the 1st and 2nd
generation Kinect (https://en.wikipedia.org/wiki/Kinect) by
Microsoft (https://www.microsoft.com/). Other input tech-
nologies that were used included high-end marker-based
optical systems, such as OptiTrack (https://optitrack.com/)
and Vicon (https://www.vicon.com/), which were used in
eight datasets total. Traditional RGB cameras were used

in six datasets, and one dataset used only an Infrared (IR)
camera.

d: DATASETS AVAILABILITY
The majority of the datasets used were private and were
developed and used only by the respective groups of
each publication (60/73). Publicly available datasets com-
prised 17.8% of the total (13/73). The most commonly
used public datasets were the UI-PRMD dataset [121]
used in six publications [55], [56], [70], [75], [78], [122],
and the KIMORE dataset [123] used in five publications
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TABLE 3. Included studies related to HMQA during exercise for sports applications.

TABLE 4. Included studies related to HMQA during exercise for wellness applications.

[30], [40], [78], [80], [96]. Table 7 provides information about
all publicly available datasets, including a reference to the
link fromwhich each one can be accessed. Of the publications

included in the review, 64/88 used a private dataset, while
22 used public datasets. Another two used both private and
public datasets.
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FIGURE 4. Target populations for publications related to healthcare/rehabilitation applications (a), and sports applications (b).

TABLE 5. Datasets per application domain, and study design method
used.

TABLE 6. Sample size of datasets per application domain.

2) PREPROCESSING
Once the data have been collected and based on their modality
and the ML approach that will be used (see Section II-A),
preprocessing steps might be required before meaningful

FIGURE 5. Types of inertial sensors used in datasets in the included
publications. The colors and displayed numbers indicate the number of
datasets that used each type. The lower half indicates the combinations
of sensors (i.e., AG = accelerometer and gyro, AGM = accelerometer, gyro,
and magnetometer). The percentages are based on 39 datasets that used
inertial sensors.

features can be extracted. The first step is the application of
filters to remove noise from sensor values. Of the 88 publi-
cations, 29 applied a filter to their data (Table 8), with 16 in
the healthcare domain, eight in the sports domain, and five
in the wellness domain. The most common filter was the
Butterworth filter, which was used in 18 publications (16 low-
pass [29], [30], [32], [52], [54], [68], [69], [73], [76], [86],
[105], [107], [108], [109], [112], [113], one high-pass [84],
and one band-pass [50]), and then the moving average used
in five publications [46], [92], [93], [94], [95]. Filters are
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TABLE 7. Publicly available datasets.

FIGURE 6. Placement of inertial sensors used in datasets in the included
publications. The colors and displayed numbers indicate the number of
datasets in which a sensor was placed at the location. The percentages
are based on 39 datasets that used inertial sensors.

TABLE 8. Filter used per MoCap technology based on the publications
that used a filter (percentages are based on 29/88 publications).

most commonly applied to data captured from inertial sen-
sors, with 14/39 publications that used inertial sensors apply-
ing them [29], [32], [50], [52], [68], [69], [73], [76], [102],
[103], [109], [112], [113], [119]. Among the publications
that used optical cameras, 8/39 that used RGBD data applied
filters [30], [46], [81], [86], [92], [93], [94], [95], and 5/9 of
the ones that used high-end optical based systems [54], [98],
[105], [107], [108].

Related to the segmentation of data into execu-
tions/repetitions, 34/88 used an automated technique to seg-
ment them. The other 54/88 used set time windows or
triggers when they recorded the data, or manually performed
segmentation. Of those that used an automated approach,
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16/34 performed segmentation using peak detection of spe-
cific sensor values (e.g., the velocity of a specific angle or
values from one axis of the accelerometer) [21], [30], [31],
[32], [33], [58], [63], [66], [76], [79], [88], [91], [105], [115],
[116], [119]. Other approaches included using the Euclidean
distance between a body segment and a predefined reference
position [34], [102], or through pattern-matching algorithms
such as HMM [89], [90], and DTW [100].

Another step that may be desired during preprocessing,
especially in non-controlled conditions, is the normalization
of the data in either the spatial or the temporal domain. The
normalization in the spatial domain relates to and can be
applied only to data that represent a human skeleton using
the positions of the joints. In such cases, two different types
of normalization can be applied.

The first attempts to transform the positions of the joints
so that their relative coordinates use a common reference
point, which was performed by 12/49 publications of those
that included such data [30], [33], [44], [47], [49], [81], [82],
[86], [88], [107], [108], [109]. To perform this normalization,
a body segments’ property (e.g., pelvis height) is selected
as reference, and its transformation properties (e.g., position,
scale, magnitude) are transformed to match a specific value.
Then, the transformation matrix used for the reference body
segment is applied to the rest of the joints. The most common
reference body segments used in the publications were the
head (i.e., based on the subjects’ height) [44], [107], [108],
[109], the center point between the two shoulders [49], [81],
[82], [86], and the pelvis [33], [47], [88].

The other spatial normalization relates to the reference
orientation of the values, that is, the direction of the human
skeleton. This type of realignment was applied by 17/49 pub-
lications that included applicable data representations (i.e.,
a human skeleton) [33], [45], [46], [47], [48], [49], [60],
[61], [81], [82], [85], [86], [88], [107], [108], [109], [110].
Realignment is usually performed by transforming the human
skeleton such that the center point between either the shoul-
ders or hips is facing forward.

Another type of normalization is in the temporal domain.
More specifically, it is often necessary to transform a given
time-series to a specific length. This type of transforma-
tion was performed in 35/88 publications. Most publications
accomplished this via resampling [131]. Resampling can
be performed either by down-sampling longer timer-series,
or up-sampling shorter ones using interpolation algo-
rithms [131] (e.g., the most common in the included pub-
lications was through the use of bilinear interpolation
[35], [77]). This interpolation can be performed naively,
or by detecting key events within the movement, and ensur-
ing that these events occur at set time points [21], [100],
[110] (e.g., on a cyclic motion reaching the half-point of
the movement can be at the half-point of the time-series).
Another method used for up-sampling a time-series with a
shorter length is by padding the time-series vector at the
end with zeros to fill the missing values [44], [122]. Other
approaches for temporal normalization include the use of

signal analysis algorithms such as DTWorMulti Event-Class
Synchronization (MECS) [132].

3) FEATURE EXTRACTION, ENGINEERING, AND SELECTION
The raw features extracted from the captured data are repre-
sented as time-series, where each data point characterizes the
state of a human body part at a given time point. These raw
features are either data values from inertial sensors placed
at body parts, as shown in Fig. 6, or the positions and/or
orientations of skeletal joints extracted from images recorded
by optical cameras using pose estimation algorithms (there
are no raw features in the form of images, as they were
excluded based on the human-body-centric inclusion criteria
in the screening process). The input data modalities used in
each publication are listed in Tables 1-4. More specifically,
of the 39 publications that used inertial sensors, 34 extracted
features from accelerometers, 22 from gyroscopes, and four
from magnetometers. Seven of the 39 publications used these
values to compute the orientation of the respective joints.
Finally, one publication [104] fused values from multiple
inertial sensors and computed the orientation of the joints for
the full-body human skeleton of a subject. Fifty-four publi-
cations used optical-based systems and extracted a full-body
human skeleton from the captured data. Thirty-six out of the
54 publications used as features only the position of the joints,
while six publications used the orientation of the joints [50],
[58], [66], [70], [78], [83]. Another six publications used
features of both modalities together [45], [55], [56], [85],
[96], [100]. Finally, six publications recorded subjects with
conventional RGB cameras and then used pose-recognition
algorithms (e.g., OpenPose [133]) to compute a 2D represen-
tation of the human skeleton (i.e., the positions of joints were
in a 2-dimensional coordinate space) [44], [47], [49], [79],
[117], [120].

Of the 88 publications, 72 used the raw features described
above directly to train their ML algorithms (Fig. 7). Fur-
thermore, raw features were used to engineer new features
that provide additional details related to motion during a
performed exercise. Geometric features provide information
about the relationship between joints in space using linear
algebra operations (e.g., angles and distances). These features
were used in 21 publications [34], [45], [46], [54], [59], [60],
[61], [62], [68], [76], [84], [85], [89], [90], [92], [93], [94],
[95], [99], [111], [118]. Kinematic features, which were used
in 20 publications, describe the motion of joints [21], [32],
[45], [54], [58], [59], [60], [61], [62], [66], [69], [84], [85],
[86], [87], [91], [92], [93], [94], [95]. For example, these can
be the velocity, acceleration, or jerkiness of a joint. Jerkiness
is the derivative of acceleration and describes a motion’s
smoothness. Event-related features were used in 12 publi-
cations and characterize exercise-specific events [29], [31],
[48], [50], [59], [60], [61], [62], [65], [84], [87], [91]. These
can include the duration of an exercise or a sub-phase of an
exercise (e.g., during the loading and release phases of a serve
in tennis [31]). Finally, different signal analysis algorithms
were used in ten publications [3], [33], [49], [57], [68], [69],
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FIGURE 7. Types of features extracted/engineered.

TABLE 9. Modality of the final feature vectors for publications using
shallow ML and DL algorithms (indicated percentages are column-wise).

[76], [88], [97], [104]. Such algorithms can engineer features
relating motion trajectories to predefined templates or extract
frequency domain characteristics of the signals.

All the features, both the extracted (raw values) and engi-
neered ones, were then used to create feature vectors that
were provided as input for the ML algorithms (Table 9). The
modalities of the final feature vectors used in each publication
are listed in Tables 1-4. The most frequently used method
to create feature vectors, used in 44/88 publications, was to
apply statistical functions to extract contextual information
regarding the performed motion. These functions compute
aggregate values that describe a time-series as a whole and
are then combined into a single feature vector. This approach
was primarily used in publications that implemented shallow
ML algorithms (39/44 publications that used the technique
implemented shallow ML algorithms (Table 9)). The statisti-
cal function used most often by 35/44 publications was the
mean function. Other frequently-used functions, with uses
in at least ten publications each are maximum (in 24 pub-
lications), standard deviation (in 22 publications), minimum
(in 19 publications), range (in 18 publications), variance (in
12 publications), and zero-crossings (in 10 publications).
Other functions that were used in at least five publications
each were the root means square, skewness, and kurtosis,
each used in nine publications, the median and interquartile
range used in seven publications each, and energy used in six
publications.

Publications using DL approaches primarily used input
feature vectors created from time-series of raw and/or engi-
neered features. For example, a publication that used the raw
values from a triaxial accelerometer, created three feature
vectors, one for each axis. Each feature vector includes the

values from that axis for each time point of the series. This
approach was used in 21/88 publications, of which 19 imple-
mented DL algorithms (Table 9).

Another approach for the creation of feature vectors is
to transform the extracted and/or engineered features into a
different modality, which was used in 13 publications. Such
transformations can provide additional contextual informa-
tion that is relevant to the target modality or take advantage of
existing approaches optimized using this modality. The most
frequently used technique in this category was remapping
data into a graph-based representation [40], [55], [56], [75].
Each node in such a graph represents the values recorded from
a human joint, whereas the edges of the graph represent joints
that are connected (e.g., the elbow to the shoulder). Therefore,
the graph can provide information about the hierarchy of the
human skeleton, starting from the pelvis as the root of the
graph and expanding to the extremities (i.e., hands and feet),
which represent the leaves of the graph. Similarly, another
type of features transformation is into images [39], [47], [86],
[110]. The rows of the image represent the different joints,
and the columns represent the time points of the time-series.
Each pixel in the image stores the triaxial values of the joint
at that time point as an RGB value. This approach was popu-
larized because it can benefit from existing approaches used
in image analysis that use the same features representation.

Finally, feature vectors were created using dimensionality
reduction in 13/88 publications. This approach is similar to
the transformation of features; however, the final feature vec-
tor can be orders of magnitude smaller. The primary method
of dimensionality reduction used in seven of the publications
was Principal Component Analysis [66], [68], [105], [107],
[108], [109], [115]. Other techniques used include autoen-
coders [78], [96], discrete wavelet transform [74], and trans-
formation to numeric/word sequences [44], [71], [80].

During the training of ML models, it may be beneficial
to select only a subset of the available features, instead of
using all of them, to optimize the overall performance of
the model. Particularly for systems supporting multiple exer-
cises or full-body skeleton-based input devices, many fea-
tures may be irrelevant and could reduce the accuracy of
the assessment. Therefore, various methods have been used
for feature selection from all categories of feature selection
techniques (see Section II-B). Of the 88 publications, 19 used
feature selection methods to reduce the number of features
(Table 10). The most common category of methods used was
embedded, with nine publications using it. These studies used
ML algorithms such as RF [46], [52], [60], [61], [73], [100],
[113], and regression [31], [48] to dynamically select features
while training the MLmodel. Another popular category, with
six publications using such algorithms, was filter methods.
Primarily, they included statistical techniques, such as Pear-
son’s Correlation and ANOVA, that were used to identify fea-
tures with the highest correlation to the expected output [49],
[69], [70], [84], [91]. Wrapper techniques were used in two
publications by applying RL for feature learning [93], [94],
and one publication that used forward feature selection [118].
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Finally, one publication made use of several techniques from
all three categories of feature selection and made the final
selection of features based on those that were ranked the
highest across all the methods [32].

TABLE 10. Feature selection algorithms from the publications that used
one (percentages are based on 19/88 publications).

4) MODEL TRAINING
Various ML approaches were proposed in the identified pub-
lications for HMQA during exercise. Three different cate-
gories of algorithms were explored. Fifty-one publications
used shallow ML models, 35 used DL models, and two pub-
lications used RL models [93], [94]. Shallow ML algorithms
(Fig. 8), can be separated into different subcategories based
on their approach. The most commonly used subcategory
was ensemble techniques, which combine multiple learning
algorithms (primarily decision trees), with 17/51 publications
using them [29], [34], [46], [49], [52], [57], [60], [61], [64],
[68], [73], [76], [79], [104], [112], [113], [119]. RF was used
in 10/17 publications using ensemble techniques [29], [46],
[52], [60], [61], [73], [76], [79], [112], [113], and eXtreme
Gradient Boosting (XGBoost) was used in three publica-
tions [34], [65], [104]. Support Vector Machines (SVM) were
also widely used, with 14/51 publications applying them,
for both classification [3], [21], [31], [32], [33], [36], [63],
[88], [89], [90], [100], [108], [111] and regression [3], [47].
Other algorithms that were used include k-Nearest Neigh-
bours (k-NN), which was used in four publications [71],
[97], [105], [118], Logistic Regression used in three publi-
cations [48], [54], [59], and variations of Artificial Neural
Networks (ANN) used in five publications [58], [87], [95],
[98], [114]. There were also hybrid approaches that com-
bined different algorithms into a hierarchical structure. These
include the use of k-NNwith RF [91], SVMwith an Ensemble
classifier [66], and ANN with a Decision Tree and a Thresh-
old Model [92].

DL algorithms (Fig. 9), which were used in 35 publi-
cations, can be separated into discriminative and genera-
tive algorithms [134]. Discriminative algorithms, given an
input x and a label y, attempt to learn the probability of
the output label y based on the given input directly. Gen-
erative algorithms, on the other hand, try to understand
how a dataset is generated, and therefore learn the joint

probability of a pair (x, y) and how it can be used to predict the
output label y [134]. The vast majority, with 31 publications
using them, were the discriminative algorithms. Of these,
12 publications used variations of CNN. More specifically,
six publications used traditional CNNs [30], [35], [77], [86],
[103], [110], two publications used Graph CNNs [55], [56].
Dynamic CNN [84], Temporal CNN (Res-TCN) [72], Resid-
ual Network (ResNet) [39], and a combination of a Genetic
Algorithm and a CNN [80] were all used in one publication
each. The other big category of algorithms used under dis-
criminative models was Recurrent Neural Networks (RNN),
which were used in 11/31 publications. Long Short-Term
Memory (LSTM) RNN, in particular, were used in nine
publications, making it the most used ML algorithm in the
publications [44], [51], [74], [81], [83], [85], [101], [106],
[115]. A traditional RNN [102], and a Gated Recurrent Unity
Network (GRU) [45] were used in one publication each.
CNNs and RNNs were used together in eight publications,
seven of which used a CNN with an LSTM [40], [75], [78],
[96], [116], [117], [120], and another used a CNN with an
RNN [67]. Finally, four publications used generative DL
algorithms. The algorithms used were Generative Adversar-
ial Network (GAN) [70], Self-Organizing Map (SOM) [65],
Transformer [82], and a combination of a Feed-forward neu-
ral network, SOM, and Nonlinear AutoRegressive Neural
Network (NAR) [50]. Moreover, two publications used RL
algorithms for their assessment, using a combination of Deep
Q-network with Double Q-Learning (DQ), Markov Decision
Process (MDP), and Artificial Neural Network [93], [94].

As it was stated in Section II-C1, motion assessment can
be performed through regression, rank-based classification,
and parametric assessment. Of the included publications, the
majority (42/88 publications) used rank-based classification,
whereas 15 used regression. The remaining 31/88 publica-
tions used parametric-based assessment, of which 27 were
based on classification and the other four regression. Fig. 10
shows the type of assessment used in the publications. Of the
ones that used classification, most (21/88) used binary classi-
fication [36], [39], [49], [55], [59], [60], [61], [65], [66], [71],
[72], [79], [84], [101], [102], [105], [106], [111], [114], [117],
[120]; that is, datasets were assessed using a dichotomous
variable (e.g., normal or abnormal motion). Other often-used
types of assessments were using 3-point ordinal scale val-
ues evaluated from rank-based classification approaches [35],
[48], [54], [62], [63], [64], [68], [77], [83], [86], [87], [97],
[98], [99], [103], [107], [108], [109], and score-based assess-
ments evaluated using regression methods [31], [40], [44],
[45], [46], [47], [56], [58], [67], [70], [74], [75], [78], [80],
[85], [96], [104]. Of the parametric approaches, the most
commonly used was the classification to a set of nominally-
labeled variables, where each of the labels described a dif-
ferent error that can occur during a motion execution [34],
[52], [73], [81], [82], [91], [100], [112], [113], [115], [116],
[118], [119]. Of the publications using this approach, ten
assessed the motion using the label that had the highest prob-
ability, and another five publications returned all possible
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FIGURE 8. Taxonomy of shallow ML algorithms for HMQA used in the reviewed publications. Numbers indicate the number of publications that used a
category of algorithms (rectangular shapes) or a specific algorithm (shapes with dashed lines). The percentages are based on the total number of
publications (i.e., 88).

labels that were identified. Other publications in this cat-
egory provided assessments using either multiple nomi-
nal variables [21], [33], [76], [88], [89], [90], [110] or
multiple scores [3], [51], providing multiple specific assess-
ments of the domain-specific characteristics of the performed
motions.

5) MODEL VALIDATION, AND TESTING
Related to the testing and validation of the algorithms, more
than one-third (35/88) of the publications only used holdout
validation, separating their datasets into either two subsets,
one for training and one for testing, or three subsets for train-
ing, validation, and testing. The remaining 53/88 publications
used different types of cross-validation to iteratively vali-
date their models using different subsets from their datasets.
Of these, 32/53 publications used k-fold cross-validation,
with most splitting their datasets into 10 random subsets
(i.e., 10-fold cross-validation). Another 20 publications used
leave-one-out cross-validation, where usually the data of one

of the subjects were left out for validation and the remaining
data were used for training, repeating for all subjects. One
publication used stratified shuffle split cross-validation.

Various metrics can be used to evaluate how well a pro-
posed model assesses actual data. These metrics depend on
the type of assessment that the model performs, with classifi-
cation and regression algorithms requiring different metrics.
The primary evaluation metric and evaluation results of each
publication are listed in Tables 1-4. Of the included publica-
tions that used classification-based algorithms, 60/69 primar-
ily evaluated their results using the accuracy of the model,
which assessed the number of correctly classified patterns of
each class. Other metrics used, included recall (or sensitivity)
used in 22/69 publications, F1-score used in 21 publications,
precision used in 13 publications, and specificity used in ten
publications.

The variety in the metrics used to evaluate ML algo-
rithms makes the comparison between different approaches
challenging. Fig. 11 shows a box and whisker plot
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FIGURE 9. Taxonomy of the DL algorithms for HMQA used in the reviewed publications. Numbers indicate the number of publications that used a
category of algorithms (rectangular shapes) or a specific algorithm (shapes with dashed lines). The percentages are based on the total number of
publications (i.e., 88).

with the reported accuracies of the algorithms used for
classification-based assessments from the 60 publications
that used the accuracy metric. The plot displays only algo-
rithms that were used in at least two publications and sep-
arates the shallow and DL approaches. The algorithms are
presented in order based on their median values. Of the
shallow algorithms, Boosting approaches had the highest
median value of 95.56% (25th percentile = 75%, 75th per-
centile = 98.91%). Following are the ANN, SVM, and k-NN
algorithms. Regarding DL algorithms, the combination of
CNNs with RNNs had the highest reported median accuracy
of 97.27% (25th percentile = 97.14%, 75th percentile =

97.49%), but using a very small sample of just two pub-
lications. RNNs followed after that with median accuracy
comparable to that of Boosting approaches, with a median
value of 95.5% (25th percentile = 89.64%, 75th percentile =

96.69%). CNNs had the lowest median accuracy values
among DL algorithms.

Regarding the publications that used regression algo-
rithms, the results were reported using different metrics.
In total, 23 publications reported regression-based results.
Five out of the 23 publications reported their results using
the correlation coefficient, four used Root Mean Square Error

(RMSE), andMean Squared Error (MSE) andMeanAbsolute
Error (MAE) were used in three publications each. Results
were also reported using a Mean Absolute Percentage Error
(MAPE), Mean of Absolute Deviations (MAD), separation
degree, confidence of separation, and Sum of Absolute Devi-
ations (SAD). The small number of instances per metric does
not allow meaningful reporting of any aggregate values for
these metrics.

Overall, the evaluation of the algorithms across differ-
ent applications, populations, input data modalities, and
assessment types provided relatively consistent results. How-
ever, there were some noteworthy exceptions. For example,
although ensemble techniques had high accuracies across
most cases and configurations, their accuracywas lowerwhen
dealing with classification into multiple (i.e., more than 3-4)
different categories [34], [52], [73], [76], [112], [113]. On the
contrary, SVM algorithms were evaluated with higher accu-
racies when performing classification to dichotomous values
(i.e., binary assessments) [32], [36], [66], [111].

In addition to the above metrics, nine publications reported
the time required for a trained model to assess new data [3],
[34], [46], [83], [90], [101], [102], [111], [118]. These times
ranged from a few milliseconds to several seconds.
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FIGURE 10. Types of assessment used in the publications, and the types of variables used for the assessment.

FIGURE 11. Box and whisker plot of the accuracies of ML algorithms of
publications that used classification and the ‘accuracy metric’. The boxes
include the 25th to 75th percentiles range and the line indicates the
median value. Listed are algorithms used by at least two publications
each. The algorithms are separated into shallow ML and DL approaches
and sorted based on the median value of accuracy.

V. DISCUSSION
In this study, the current state of research was explored in
the field of HMQA during exercise using ML. In the last
five years, there have been several publications in this area,
which is indicative of high research interest and its appli-
cability in different domains. Public interest has also been

high, with various commercial applications using relevant
technologies, including mobile-based [135], [136], [137] and
standalone applications. For example, Tempo Studio [138]
(Tempo, United States) is a home gym system and virtual
trainer, that uses Azure Kinect DK (Microsoft, United States)
to capture the motion of users during exercise, analyze it
using ML, and provide corrective feedback. In the follow-
ing subsections, the research questions posed at the end of
Section I-A will be addressed. More specifically, we discuss
the requirements for ML algorithms used for HMQA during
exercise (subsection V-A), what challenges they face (subsec-
tionV-B), and finally, provide some guidelines for developing
them (subsection V-C).

A. RQ1. REQUIREMENTS FOR ML ALGORITHMS USED
FOR HMQA DURING EXERCISE
According to the identified publications, HMQA during
exercise is applicable in three application domains: health-
care/rehabilitation, sports, and wellness. The three domains
introduce several requirements that a system for HMQA
should have. Some are unique to each domain based on
the characteristics of the target populations and the intended
use of the systems, and others are common across all three
domains. The main requirements derived from the applica-
tions included in the publications are presented next.

1) INFORMATIVE ASSESSMENTS
The main purpose of all applications using HMQA during
exercise is the analysis of the performed motions and extrac-
tion of meaningful information. For example, in the health-
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care domain, therapists often perform functional assessments
of their patients (Table 1). Thus, they require a detailed image
of the patient’s performance during the various exercises.
Moreover, applications designed for patients, such as vir-
tual therapists or gamified experiences (Table 2), must gen-
erate corrective feedback based on how they perform. The
World Health Organization (WHO) also highlights the need
for research in the development of telerehabilitation services
so that everyone can have access to the same care, as part of
its Rehabilitation 2030 initiative [139]. Similarly in the other
two domains, athletes and trainees expect feedback on their
exercise execution from coaching systems to improve their
technique (Tables 3 and 4).

In general, research has shown that providing feedback
can positively affect motor learning [140]. Visual feedback
can improve physical reach and exercise performance in gen-
eral [141]. This is achieved by providing a more engag-
ing experience during exercise and by immersing users in
the activity [142]. Feedback can also help with the psy-
chological state of users by improving their motivation and
mood [143], [144]. However, to accomplish this the feedback
generation component of such systems requires receiving
a well-structured assessment from the HMQA component,
which is both of high quality and provides comprehensive
information. This means that the assessment should provide
quantitative metrics of the quality of motion during exercise
and any erroneous characteristics. This can help with the
generation of appropriate feedback that is easy for the user
to understand [142].

2) EXPLAINABILITY AND INTERPRETABILITY
Expanding on the previous section, assessments beyond being
informative should also be intuitive. The logic between the
performed exercise data and the end assessment itself should
be easily understood by users [100]. In ML, explainability
signifies the ability to explain how an algorithm works inter-
nally [145]. Interpretability, on the other hand, provides an
understanding of why a specific outcome is observed and
how it will change based on different inputs [145]. Both
of these principles should be considered to ensure that the
end user of such systems can understand both how and why
an assessment was made. Research has shown that the lack
of transparency in such systems prevents users from trust-
ing them, and therefore are hesitant to adopt them [146].
Thus, more recent studies have explored how to develop sys-
tems whose decision-making processes are easier to under-
stand. In one such example [94], users can manually select
the features to be considered by the assessment algorithm,
and the system can visualize how these affect the assess-
ment outcome. Extending the above study, the same authors
evaluated their system with therapists [93] by comparing
it with the traditional assessment methods. Their results
revealed significant differences across various metrics related
to the usefulness of the explainability of the system and
how it can better assist therapists in monitoring patients.
In another study, Hülsmann et al. [100] developed a dynamic

visualization method within a Virtual Reality-based coaching
system to improve the interpretability of their assessments.
Their solution, which identified several error patterns that can
occur during squats, provided users with easy-to-understand
feedback based on each error. However, the visualizations
were manually assigned to each of the errors and were not
extracted directly from the ML model. In another approach,
Leightley et al. [111] tried to provide pinpointed information
about the assessment outcome andwhy it wasmade by group-
ing different joints together (i.e., each arm, and leg bilater-
ally), and analyzing each group. To accomplish this, however,
they developed a separate SVM model for each group of
joints, instead of using a single unified model.

3) REAL-TIME AND CONCURRENT ASSESSMENTS
As noted above, generating informative assessments can be
used to provide appropriate feedback in various types of sys-
tems, including virtual trainers in the wellness domain [112],
[115], [116], [118], [119], and coaching systems for
sports [31], [51], [98], [99], [100], [101], [102]. Similarly,
in rehabilitation applications such as virtual therapists [21],
[33], [88], [89], [90], [91], [92], [93], [94], [95], [96], [97]
and serious games [45], [50], [84], [85], [86], [87] patients
need to be informed their performance. However, this type of
feedback should also be provided in real-time to improve the
effectiveness of such systems. This was highlighted in a user
study of a serious game used for rehabilitation [45]. Thera-
pists who participated in the evaluation underlined the impor-
tance of providing real-time assessments while monitoring
exercise execution. Therefore, HMQA algorithms must be
designed to provide real-time assessments that can be used for
immediate feedback generation. It should also be considered
that in such systems, assessment is only part of the feedback
generation process. For example, Decroos et al. [34] reported
in their results that the time required to provide a user with
feedback using their systemwas 0.28s. However, the majority
of the time was used for data transfer, segmentation of the
data, and feature extraction, whereas the actual assessment
took less than a millisecond.

Feedback can be classified as intrinsic, which is done by
providing sensory-perceptual information, or extrinsic, which
is provided by an external source (i.e., a coach/trainer or
a therapist), in the form of verbal remarks [147]. Extrin-
sic feedback can either provide information related to the
outcome of an activity, referred to as knowledge of results
feedback, or information about the characteristics of the
activity, referred to as knowledge of performance feedback
[147], [148]. As such, knowledge of results feedback is ter-
minal, meaning it is given after the execution, while knowl-
edge of performance can also be concurrent and provide
real-time feedback during the execution of the activity [147].
In general, the feedback provided using knowledge of per-
formance is more effective than knowledge of results [140],
[149]. The dynamic nature of exercising further underscores
the importance of providing feedback. Therefore, it is worth
exploring ways to provide concurrent assessments during
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the execution of an exercise, not just at the end of the
exercise.

4) ADAPTABILITY AND INTERCHANGEABILITY OF INPUT
MODALITIES
An important factor related to the population that often
uses such systems is access to MoCap technologies and
their usability. In particular, in healthcare and rehabilitation
domains, the cost of such assistive systems should be consid-
ered. Patients are usually incurred with the costs of healthcare
services, and the high cost of rehabilitation assistive systems
could be a prohibitive factor for their use [150], [151], [152],
[153], [154]. This suggests that the use of low-cost MoCap
technologies, such as inertial sensors and low-cost RGB(D)
cameras, may be preferred. Algorithms for HMQA will thus
have to operate under these conditions and adapt based on the
type of MoCap technology available in a specific application.
It is therefore important to study how the reduction in the
number of inertial sensors used affects the accuracy of the
algorithms for HMQA during exercise [31], [52], [73], [112],
[113], [116], [119], as well as the use of more cost-effective
alternatives, such as conventional RGB cameras with pose
recognition algorithms [44], [47], [49], [79], [117], [120].

At the same time, the use of the systems by elderly pop-
ulations, which are less familiar with the technologies, can
make the use of wearables and other devices more diffi-
cult [115] (e.g., through the misplacement of sensors that
can introduce noise in the data). HMQA algorithms should
be able to manage such occurrences, adapt, and make con-
sistent assessments, regardless of the setup of the MoCap
system.

5) PERSONALIZATION
Personalization is another characteristic ML algorithms for
HMQA during exercise should consider. This term means
that the algorithm should be able to consider the unique
physiological characteristics of the user who is performing
an exercise [155]. Personalization is especially important
in the healthcare domain, where subjects, beyond their pri-
mary condition or impairment, can have other co-morbidities
that could prevent them from being easily matched to more
generic models [94].

B. RQ2. CHALLENGES FOR ML ALGORITHMS USED FOR
HMQA DURING EXERCISE
Through this review, various challenges of ML approaches
for HMQA during exercise have been analyzed.

1) SMALL NUMBER OF DATA SAMPLES IN DATASETS, AND
BIASES
The accuracy and performance of ML algorithms, particu-
larly for the analysis of human movement, are heavily depen-
dent on the data used for training and validation [156]. Unlike
other fields where established datasets exist to train MLmod-
els and in agreement with previous studies [157], it was
shown that there is a lack of data related to the assessment

of the quality of motion during exercise (Table 6). In addi-
tion, the small size of the datasets results in few samples per
exercise, and in the case of datasets with multiple classes
(e.g., for different qualities of motion and types of erroneous
movement), there are often only a few available samples per
class. This leads to unbalanced classes in the datasets [91].
These two characteristics often reduce the scope of pro-
posed solutions. For example, Whitford et al. [79], because
of a lack of data, merged the data of three different
types of errors into a single incorrect category, instead of
using all three error types separately and provide a finer
assessment.

Similar to the use of ML in other areas, another challenge
that can be even greater because of the small number of
samples, is the introduction of biases because of the unbal-
anced nature of the training data [90], [119], [158]. This can
be especially true when analyzing human motion, as peo-
ple have different characteristics affected by medical condi-
tions or other personal traits. However, limited research has
been conducted on this topic. For example, Albert et al. [30],
studied neurological disorders and were able to identify
when exercises were performed by healthy subjects, people
with Parkinson’s Disease, and stroke survivors. In another
study, Kianifar et al. [32], showed that different biomechani-
cal characteristics between sexes can affect the relevant fea-
tures of the performed exercises. Therefore, the dataset com-
position can directly affect the accuracy of the developed
models.

2) LACK OF LARGE, OPEN DATASETS
In addition to the previous challenge, there are a limited
number of publicly available datasets (see Table 7). More-
over, the available datasets have relatively small sample
sizes. The median number of participants in these datasets
is 19 (25th percentile = 12, 75th percentile = 42) and
the median number of samples is 580 (25th percentile =

216, 75th percentile = 1950). This mandates the collec-
tion of new data before ML algorithms can be developed.
However, this can be a difficult task, particularly in the
healthcare domain, where access to specific populations can
be difficult [30]. Overall, the limitation of available open
datasets leads to difficulty in developing new and better
approaches, as well as in comparing the accuracy of the ones
proposed.

Moreover, most of the available data are often collected
in very controlled conditions within laboratories, and thus
might not necessarily be representative of data recorded in a
natural setting, such as in a home rehabilitation or home train-
ing session. Another characteristic of the publicly available
datasets that was identified, is the prevalence of optical-based
MoCap technologies. Of the 13 datasets identified, only
two captured data using inertial sensors [128], [129]. Others
mostly used depth-based cameras (e.g., Kinect), conventional
RGB cameras, or high-end marker-based optical cameras.
This is a clear limitation, especially in the sports domain,
where motion assessment is often performed in the field,
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an environment that is more friendly to the use of wearables
with inertial sensors [159], [160].

3) EXERCISES CHARACTERISTICS
One characteristic of motion data from exercising involves
possible variations in the execution of activities, also known
as intra-class variations [21], [100]. In other words, an exer-
cise can be performed in different ways, and characteristics
of the users could introduce execution variations. As a result,
the accuracy of the assessments may decrease, even if the
executions are correct. This occurs especially in the case of
rehabilitation, as mentioned above, in which patients often
have different functional abilities based on their disability.
In addition, data from exercises may also display inter-class
similarities [161]. Thus, motion data from an erroneous exer-
cise execution may only have subtle differences compared
with a correct exercise execution, making it difficult to dif-
ferentiate between the two [112].

An additional challenge is the differences in the duration
between the executions of an exercise [51], [77], [100], [132],
which could prevent the use of certain approaches. The vari-
ability in the temporal domain also extends to the spatial
domain, where some errors can be found at different time
points, or even across multiple joints [100], making it dif-
ficult to identify them. These problems become even more
challenging when coupled with other external conditions that
can affect the data, such as noise in the signals and occlusion
of limbs in vision-based approaches [77]. These problems
are inherent to motion data, and exercise in particular, and
different approaches should be explored, both relating to fea-
ture engineering and the implementation of ML algorithms,
to minimize their impact.

Finally, exercises are often complex motions where they
are performed by the synergies of different body joints
and include several phases. Most of the included publi-
cations focused on simple motions, where only a single
joint was responsible for movement. More complex motions
are usually analyzed by first decomposing them into more
basic motions, followed by more traditional approaches.
This is often implemented using HMM [89], [90]. How-
ever, as assessments are performed in more areas, the need
for such solutions will also increase. Therefore, a study of
other approaches to achieve this can be beneficial for future
scalability.

C. SUGGESTED GUIDELINES FOR DEVELOPING ML
SOLUTIONS FOR HMQA DURING EXERCISE
Next, a set of general guidelines is proposed to be considered
when developing ML solutions for HMQA during exercise.
The guidelines stem from approaches adapted in the reviewed
publications and relate to the requirements and challenges
outlined above. The guidelines cover the full design and
development of such solutions, from the conception of the
solution to the implementation and final evaluation of the
algorithms. A summary of these guidelines is provided in
Table 11.

TABLE 11. Summary of guidelines for the development of ML solutions
for HMQA during exercise.

1) SELECTING TYPE OF ASSESSMENT
The first step in designing a ML algorithm is to select the
type of assessment that the algorithm will perform. This
includes whether the assessment will be classification-based
or regression-based and whether it will include a single or
multiple output values. In the case of HMQA, this decision
should be guided based on the information that the end-user
needs to receive. The requirement to provide informative
assessments highlights the essential role feedback can play
in applications that use HMQA during exercise, and how that
can affect the type of assessment. For example, the assess-
ment can relate to biomechanical characteristics, such as the
deviation of the joints’ angle or the distance between two
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joints [92]. Therefore, a dichotomous classification of correct
or incorrect motions based on a threshold, or a score from a
regression-based assessment may be preferred. It can also be
used to describe the quality of the performed motion based
on the flow of motion using motion trajectories [21], [101],
etc. Parametric-based variables from theHMQAcan also pro-
vide domain-specific knowledge of performance feedback.
For example, Tabrizi et al. [51] assessed forehand strokes in
table tennis based on different characteristics (e.g., forward
swing, follow-through, and appropriate speed of the racket
movement), that required multiple outputs for the assess-
ment. Several studies have also used classification to iden-
tify various errors during exercise. In one such publication,
Wei et al. [90], as part of a virtual physical therapist appli-
cation, identified errors patients performed during a forward
lunge (e.g., bending of the back knee, not keeping the front
shank vertical, etc.). Therefore, these characteristics and the
analysis of the expected outcome of the targeted applications
can help to define the proper assessment result types that can
generate the required information.

The majority of the proposed solutions performed HMQA
using classification into different classes, with only 19 pub-
lications using regression. In general, this approach is less
scalable, as there is a limited number of classes that can be
represented while ensuring the efficient and real-time assess-
ment of data. On the other hand, regression-based approaches
can identify more subtle changes in the performed motions
and thus provide more specific feedback on their execu-
tion [46]. This, of course, could also be perceived as a lim-
itation in some cases, especially when dealing with more
complex motions, since a single score may be insufficient
to provide sufficient context about the performed quality of
the exercise. However, variations of the above are also note-
worthy. For example, some studies [3], [51] used regression
to assess the multiple domain-specific characteristics of an
exercise. This allows the capture of subtle deviations in the
execution of exercises across different relevant features and
providing a more informative assessment.

Another hybrid approach is the use of classification for
exercises into different classes, and then using the confidence
scores from the classification to generate a regression-based
assessment [3], [56], [94], [162]. Thus, the training set
includes clusters of the correct execution and one of each
error pattern. To evaluate a new exercise execution, the cluster
to which the execution is closest is computed. Finally, the
confidence scores for each of the clusters (i.e., the proba-
bility that the execution belongs to a cluster) are used with
a regression-based algorithm. Lim et al. [101], on the other
hand, first used a classifier to identify a motion based on each
class, and then augmented the classifier using a probabilistic
inference model, which then computed the latent trajectory of
each class that was given back to the user as feedback. Further
research should be performed on such methods, to ensure that
the assessment can provide sufficient contextual information.

In addition, relevant is the decision whether the assessment
should characterize the full human body, or whether it is

prudent to separate individual joints or group joints together
(i.e., upper limbs, lower limbs, torso) [163]. Such assessments
can identify erroneous patterns missed by other approaches.
However, they result in a more complex assessment model,
risking having a slower assessment. At the same time, they
are unable to identify errors related to movement dynam-
ics, such as synergies between different body parts, or other
spatio-temporal characteristics [164]. Overall, both the type
of assessment and the reference body for the assessment can
affect how the results of HMQA are understood by the end-
users. Therefore, careful consideration must be made during
the development of any HMQA algorithm to ensure its effec-
tive use.

2) HANDLING DATA IMBALANCES
When collecting data, limited access to the target population,
and challenges with data capturing can often lead to data
imbalances in the recorded datasets. Various solutions have
been proposed to address this problem. For example, some
have tried using algorithms that can work well with a rela-
tively small set of samples [68], [94], [98]; however, this usu-
ally limits the type of assessments that can be derived. Other
approaches augment existing datasets by adding variations
based on previously recorded values or by generating new
samples using GANs [30], [70], [109]. Khoramdel et al. [82]
used a modified version of the focal loss function when train-
ing with their dataset to overcome the problem. Finally, some
research has been performed using transfer learning, by uti-
lizing existing models trained with other types of data, and
then using them in the relevant domain(s) [30], [39].

3) SELECTION OF MoCap TECHNOLOGIES
Capturing motion data can be achieved using various
technologies. Optical-based systems, both RGB-based and
depth-based (i.e., RGBD-based), are easy to set up, and
non-invasive, with no need to wear any sensors. Their main
limitation is their static position, which limits the view
angle, making them prone to occlusion, especially when
dealing with complex motions [21], [77], [86], [104]. Sev-
eral approaches have been developed toward using multi-
ple synchronized cameras. This is implemented in high-end
marker-based optical systems [54], [66], [70], [98], [99],
[100], [105], [107], [108], as well as by using conventional
cameras [60], [61], [117], [120]. However, this may lead
to a longer preprocessing time to extract a single skeletal
representation of the user. Depth-based optical systems are
also often limited by the available polling rate of the data
they record. For example, the average polling rate of the
RGBD devices in the included publications was 30 frames
per second, compared to inertial-based sensors, which had an
average polling rate of 83 recordings per second. Moreover,
the recorded data are high-resolution images and thus require
more processing power for analysis. This often leads to video
frames being skipped to improve resource management and
achieve real-time performance [5].
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With the expansion of wearables, inertial sensors, have
become a common go-to solution for exercise tracking as a
minimally invasive device [142], [160], [165], [166], [167].
Common hardware devices used in such cases include per-
sonal smartphones, smart-watches, custom-made sleeves,
or other commercial kits. However, these solutions often
require strict placement of devices at specific positions and
orientations, making them less robust [168], even though
approaches have been studied to overcome such prob-
lems [169], [170]. Inertial sensors also suffer from drift prob-
lems that need to be compensated during preprocessing to
ensure that the recorded data are meaningful [171], [172].

Limited work has been conducted to compare algorithms
using different input data modalities. Both optical-based and
inertial devices have their advantages and disadvantages;
however, their usage has mostly been driven by usability
factors. The two technologies were compared in two stud-
ies [109]. Both studies showed that inertial data may provide
a higher assessment accuracy. However, the comparisons had
shortcomings, with one using simulated inertial data derived
from skeletal data recorded using an optical system [109],
and the other comparing inertial data with 2D skeletal data
computed from an RGB camera [79]. In the former of the
two, Ross et al. [109], however, also noted that despite hav-
ing higher accuracies, feedback generated from the inertial
data was harder to interpret and provide meaningful feedback
that could lead to improvements during exercise. In addition,
the fusion of data from both technologies has been used in
some publications [50], [58], [79], [83], [102]. A comparison
between the use of fused data and separate input modalities
has shown higher accuracy from algorithms trained using
fused data [79], [173].

Some studies have worked toward designing HMQA
models to work across different technologies. This can be
achieved by transforming the input data into a common for-
mat, regardless of the type of raw input data. One such for-
mat is a representation that uses joint angles. For example,
Decroos et al. [34] transformed the skeletal joint positions
into joint angles and used those for the assessment. Similarly,
joint angles can be computed from inertial data using various
filtering algorithms, as reported in some publications [51],
[104]. The ability to create ML models that can operate
with different MoCap technologies without compromising
the overall accuracy or violating the time requirements of an
assessment is an area that merits further research.

4) BALANCE BETWEEN ACCURACY AND SPEED
As discussed above, ML algorithms for HMQA during
exercise should generate accurate assessments in real-time.
Beyond accuracy, however, the need to create informative
assessments also adds another layer of complexity, which
make real-time assessments more difficult. Therefore, deter-
mining the correct balance between the two can be chal-
lenging. For example, shallow algorithms that may run faster
usually require longer preprocessing time [34]. In contrast,
DL approaches usually require no or minimal preprocessing,

but their assessments, depending on the size of the data, can
be slower. Simultaneously, new approaches in DL algorithms,
allow for faster training and inference times. For example,
LSTM has been a popular algorithm for human activity anal-
ysis, and the same was evident from this review, as it was
the most used algorithm across all publications. However, its
structure can be complicated, making it slower, particularly
for real-time applications. Recently, GRU RNN has been
used as an alternative because it achieves similar results to
LSTM, albeit using fewer gates [174], [175]. Of the publica-
tions included in this review, two publications implemented
this approach. Albert et al. [30] showed that their proposed
algorithm outperformed other approaches that used, among
others, LSTM, while simultaneously it reduced training time
by 3%. Khoramdel et al. [82] also used GRU-based model to
detect compensatory movements during upper-limb rehabil-
itation exercise. Their implementation using a 1-layer GRU
RNNhad higher accuracies compared to other RNN solutions
(including LSTM) with data from both healthy participants
and patients.

Data preprocessing, feature extraction, and selection meth-
ods also play important roles in this process. Several publi-
cations used raw values from the input devices as features,
in a time-series format, as input to the ML algorithms, com-
pared with aggregation-based variables that provide more
general characteristics of a recorded sample. These features
are typically used with DL systems or template-based algo-
rithms. Because of their complexity, even though they can
often detect more subtle fluctuations in the input signals,
they are computationally more demanding and require more
time for analysis [102]. One way to address this problem is
to transform the data into other types with either a reduced
dimensionality or amore efficient format. Another alternative
is the use of feature selection algorithms, which can reduce
the number of features used. Nonetheless, any preprocessing
of data can incur time penalties that may overshadow the
gains from their use.

5) SELECTING THE RIGHT ML ALGORITHM
The identified publications used a vast array of algorithms,
ranging from traditional, shallow ML techniques to DL
approaches, such as LSTM and CNN. Hybrid approaches
have also been proposed to exploit the characteristics of dif-
ferent approaches. One example is the combination of GCNs
with LSTMs presented in two publications [40], [75]. The
proposed solutions used GCNs to engineer features from raw
signals that convey spatial information based on the human
skeleton. These new features were then used with LSTMs.
Even though this representation performs well with move-
ments related to connected joints and their relation, it can
perform poorly when the relevant joints are not connected,
such as when symmetry between limbs is studied. Therefore,
different representations can be explored based on the ana-
lyzed movements [176]. Similarly, the combination of RNN
and CNN algorithms has shown a higher median accuracy
across all included publications [40], [75], [78], [96], [116],
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[117], [120]. With respect to shallowML algorithms, Ensem-
ble models have shown better accuracies in most scenarios,
as have SVMs in simpler assessments. However, this area
merits further exploration.

6) CONCURRENT ASSESSMENT DURING EXERCISE
The ability to provide feedback in real-time while perform-
ing an exercise is important to prevent injuries and cor-
rect prolonged erroneous exercise. However, most current
approaches only analyze motion once a repetition has been
completed and the full time-series has been extracted. The
few exceptions usually rely on template-based methods such
as Incremental DTW [33], [88], [100], and HMM [90] to
segment an exercise into smaller sub-phases, which are in
turn analyzed based on the current completion state of the
exercise. However, this approach can generate complex mod-
els, because a preprocessing phase is required to first seg-
ment the repetition, and then multiple models need to be
trained. This can be even more difficult if only a limited
amount of available data is considered. An alternative is to
use data augmentation techniques to generate full exercise
repetition data based on partial data. Such approaches, which
use GANs [30], [70], [177], can generate complete exercise
execution data that can be used with existing algorithms for
HMQA. This can be an important step toward real-time feed-
back generation during exercises.

7) PERSONALIZATION AND SCALABILITY
The need for the development of personalized models for
human activity analysis has been long discussed [178], [179].
This can be even more important for HMQA during exer-
cise that may deal with patients, such as in the health-
care/rehabilitation domain, where each individual may have
their own disabilities. Several studies have shown encour-
aging results using personalized models. At the same time,
however, they frequently fail to perform as well when dealing
with new data [33], [47], [73], [79]. In addition, the use of
personalized models can be more difficult for end-users [73],
[88], and more difficult to scale appropriately to a larger
number of exercises and errors, as separated samples by every
individual user will be required for each possible class.

Interestingly, some publications combined generic mod-
els with the ability of users to personalize them online by
selecting the desired features to be used. More specifically,
Lee et al. [92] proposed the use of binary mask vectors for
the inclusion or exclusion of features unique to each user by a
therapist. In a follow-up study [94], they also used a reinforce-
ment learning approach by applying a Deep Q-network with
Double Q-Learning alongwithMarkovDecision Process dur-
ing future selection to identify relevant features program-
matically. Then, they combined this with the vector mask
introduced above by the therapist to create a hybrid model.
In another approach, Lei et al. [47] used weight vectors to
describe the features that are relevant for each class. This
approach can help customize the models and optimize them
for different subjects without compromising their complexity.

As already discussed, HMQA for exercise is applicable to
a variety of domains and applications. This also extends to
the possible users of the applications using this technology.
In the healthcare domain, for example, assessment can help
with many conditions, including neurological disorders, mus-
culoskeletal conditions, and other motor deficits. Across the
sports and wellness domains, there are a variety of different
activities that can use such systems, and each has unique
characteristics. The included publications, almost entirely,
focused on a single area and dealt with a very specific prob-
lem. Often, domain-specific variables are used for assess-
ment. This can be beneficial for one application and can
provide more relevant feedback. However, it can also lead
to difficulty in generalizing the proposed algorithms to other
applications, requiring repeating the development process [2]
whenever a new area needs to be evaluated. The same prob-
lem exists when dealing with the addition of new types of
motions in an existingmodel or the identification of new devi-
ations for incorrect performances. This highlights the need to
create robust models that can be easily adapted and extended
without compromising accuracy or performance.

8) EVALUATION
Regarding the analysis of the algorithms and presentation of
the results, only the average accuracy was provided in most
publications. However, accuracy alone can be misleading and
does not present a complete picture of how an algorithm
performs [68]. Ideally, various metrics, such as recall, speci-
ficity, and F1-score, should be shared for all classification-
based results. In regression-based algorithms, various metrics
were used, such as MAE, RMSE, correlation coefficient,
MAD, and MAPE. Because different metrics provide dif-
ferent insights, a combination of metrics can provide a bet-
ter understanding of how well a model performs. Therefore,
RMSE should be presented, because it provides more infor-
mation related to larger deviations in the results and MAE,
which provides more interpretable results.

A common limitation of current publications stemming
from the small sample size of the datasets is the inability to
properly validate and test the models used. Different methods
of cross-validation should be used for the proposed solution,
based on the number of subjects and samples available, to pre-
vent overfitting and expand the ability of the models to gener-
alize to data from new users. If there are enough subjects with
samples of all different classes, leave-n-subjects out should
be preferred to ensure greater generalizability.

VI. CONCLUSION
HMQA can be an essential component of personal home-
based fitness and rehabilitation applications and various
sport-related applications. In this study, we performed a
systematic literature review of publications published from
January 2017 to December 2021 related to HMQA during
exercise usingML. The search yielded 88 publications related
to three different domains: healthcare/rehabilitation, sports,
and wellness. As reported through the analysis of the results
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and the research questions posed, there are several consid-
erations when deciding which algorithm should be used and
what type of assessment should be performed. First, the deci-
sion on the input data modalities and the type of output of the
HMQA should be made based on how the assessment will be
used as part of the overall system, and how the generation of
meaningful feedback can be achieved. This is closely related
to the application domain of the system and the target popula-
tion. In addition, the assessment should be performed in real-
time, which requires both fast inference times and the ability
to potentially augment incomplete exercise data to generate
data for full repetitions. At the same time, assessments should
be easy for the user to interpret, while simultaneously avoid
biases based on the training data.

The range of application domains that use HMQA for
exercise also merits better ways to generalize the developed
models, providing the ability to transfer knowledge between
domains without having to retrain the models. However,
to achieve this, there is a need for larger public datasets to be
made available in the field. Current public datasets are small
and have various limitations. Solutions that develop HMQA
that can work with various MoCap technologies could also
help expand the available data that can be used to train the
models. Through this review, a set of guidelines for develop-
ingML solutions for HMQA have been proposed, a summary
of which can be seen in Table 11.
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