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Abstract  22 

The intestine harbours a complex array of microorganisms, collectively known as the gut microbiota. 23 

The past two decade witnessed an increasing interest in studying gut microbiota changes in relation to 24 

health and disease, driven by the vast advancement in the innovation and application of high-throughput 25 

multi-omics technologies. Microbial dysbiosis has been linked to many human pathologies, including 26 

metabolic disorders, such as type-2 diabetes, as well as inflammatory bowel diseases. Nevertheless, and 27 

even though the gut provides a common interface, a comprehensive understanding of microbiome 28 

contribution to disease causality remains limited, largely due to the heterogeneity in microbial 29 

community structure, individually diverse disease evolution and incomplete understanding for the 30 

mechanisms related to signal integration. Multiple factors might explain these inconsistencies, 31 

including methodological, environmental, therapeutic exposure factors, in addition to the inherent 32 

microbiome variations within human populations. To gain a mechanistic insight of how microbes 33 

impact intestinal health, we need to move from correlation to causation. Integrated analysis of multi-34 

omics data, including metagenomics and metabolomics, with measurements of host response and 35 

cataloguing bacterial isolates identified bacteria and bacterial products linked to disease pathology. In 36 

this Review, we provide a broader insight into microbiome signatures for inflammatory and metabolic 37 

disorders, discuss the standing challenges and propose areas to improve the application of multi-omics 38 

towards an improved mechanistic understanding of underlying microbe-host interactions.   39 
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Key Points: 40 

 41 

- Several commonalities exist between inflammatory bowel diseases (IBD) and type-2 diabetes, 42 

both recognized as multifactorial diseases with a rising global incidence following 43 

industrialization patterns. 44 

 45 

- Altered gut bacterial composition and host processing of bacteria-derived metabolites have 46 

been implicated in IBD and T2D and stand as a common underlying mechanism of disease 47 

pathogenesis. 48 

 49 

- A causal link between dysbiotic microbial communities and IBD or T2D has been established 50 

through gnotobiotic mouse experiments and through integrative multi-omics analyses of 51 

prospective longitudinal cohorts and large-scale population studies.    52 

 53 

- The challenge in disease-specific biomarker discovery lies in the timing of changes (cause or 54 

consequence), the functional redundancy of changes (similar signal integration into disease 55 

mechanisms) and the gut microbiota heterogeneity (across geography and ethnicities). 56 

 57 

- Big data refinement, testing and validation of specific bacterial strains, their encoded genes 58 

and metabolic by-products are necessary to identify disease biomarkers.  59 

 60 

Introduction  61 

 62 

The human digestive tract harbours a complex array of microorganisms, including bacteria, archaea, 63 

viruses, and fungi. Trillions of bacteria colonize the gastrointestinal tract in a spatially structured 64 

manner and their genomes reach more than 200 times the number of genes in the human body 1. 65 

Colonization density of bacteria follows a gradient from the proximal to the distal part of the gut, 66 

reaching highest numbers in the colon 2,3. In contrast to the small intestine, reduced motility in the colon 67 

provides prolonged retention of luminal content (20 – 50 hours) and builds a vast reservoir of 68 

biologically active metabolites. The term microbiome additionally includes the environment inhabited 69 

by the microbiota, or the niche shaped by the host. The incorporation of the host provides a broader 70 

view of the ecosystem where bi-directional microbe-host interactions influence the physio-chemical 71 

characteristics of the microbial environment “theatre of activity” 4 (Box 1). Since the digestive tract and 72 

its microbiome is considered as a central organ at the intersection of immune- and metabolic processes, 73 

we focus in this review on inflammatory bowel diseases (IBD) and type-2 diabetes (T2D) as examples 74 

of microbiota-associated disorders. 75 

Several commonalities exist between IBD and T2D, both recognized as multifactorial diseases with a 76 

rising global incidence following industrialization patterns 5–7. Their aetiology is associated with a 77 

complex interplay of genetic susceptibility, environmental triggers, and urban lifestyles. In this 78 

commonality, metabolic diseases, such as T2D, are characterized by chronic subclinical inflammation 79 

in liver, adipose tissue, muscles, pancreas, and gut. On the other hand, inflammatory gastrointestinal 80 

disorders, such as Crohn’s diseases (CD) or Ulcerative colitis (UC) are associated with inflammation-81 

driven metabolic alterations 8. Genome-wide association studies (GWAS) identified genetic variants 82 

associated with increased susceptibility to developing T2D (143 loci) 9 and IBD (> 240 loci)10. 83 

Nevertheless, the heritability explained by these variants are rather limited (<10% for T2D, <15% for 84 

UC and <50% for CD) 11–16, supporting the relevance of environmental triggers, in particular the gut 85 

microbiome as a major contributor to disease aetiology.  86 
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Despite the great advancement in GWAS and multi-omics driven risk profiling, the identification of 87 

disease susceptible individuals is still difficult and validated diagnostic or prognostic markers are 88 

lacking. Analysis of multiple population studies and IBD or T2D patient cohorts identified microbiome 89 

signatures linked to disease phenotypes 17–20, the risk of relapse 21 or response to treatment 22. Therapy 90 

for complex diseases, such as T2D and IBD, remain challenging, but recent controlled trials using faecal 91 

microbiota transplantation (FMT) show clinical efficacy in both diseases 23–26. In this Review, we 92 

summarize the current knowledge on the involvement of the gut microbiome in IBD and T2D. We 93 

critically assess the status of the currently available disease-associated microbiome signatures and 94 

discuss the limitations facing their use in clinical applications. Finally, we discuss the use of multi-95 

omics big data in an integrative framework to disentangle the complexity of disease pathology. In 96 

particular, we focus on the mechanistic interaction between bacterial strains and gut-derived metabolites 97 

on promoting processes involved in inflammatory and metabolic diseases such as IBD and T2D.  98 

 99 

Box 1 – Gut microbiome and microbe-host interactions: Terminology 100 

 101 

Microbiome signature: unique pattern of microbiome configuration that can stratify defined 102 

physiological and pathological conditions including risk prediction in patients for disease development 103 

or progression.  104 

Microbiota refers to the microorganisms of a defined environment. It comprises bacteria, fungi, 105 

archaea, and viruses.  106 

Microbiome comprises all the microorganisms, their genomes and the surrounding host-shaped 107 

environmental conditions of a given habitat. Characterization of gut microbiome can be achieved 108 

through the application of metagenomics, metabolomics, metatranscriptomics, and metaproteomics 109 

combined with clinical or environmental metadata 4,27. 110 

Dysbiosis or Pathobiome describe “an altered microbial community composition, which has a 111 

consequential impact on the host immune response and leads to the emergence and outbreak of 112 

pathogens” 4,28,29. 113 

Pathobiont versus opportunistic pathogen: Pathobionts are microorganisms linked to chronic 114 

inflammatory conditions. Opportunistic pathogens can cause acute infections. While pathobionts are 115 

harmless to the host under normal conditions, pathogens can drive disease in a healthy host30. 116 

 117 

Microbial and metabolic dysbiosis as common features of IBD and T2D 118 

Both IBD and T2D show microbial alterations, characterized by reduced community richness, in 119 

addition to the reduction of beneficial microbes and expansion of pathobionts31. The challenge in 120 

understanding the role of microbial alterations in disease initiation and progression lies in the timing of 121 

changes (cause or consequence), the functional redundancy of changes (similar signal integration into 122 

disease mechanisms) and the fluctuations of changes during disease course (lack of longitudinal 123 

sampling). Despite the differences in pathology, IBD and T2D share common mechanistic features. 124 

T2D exhibits chronic low-grade inflammation and gut barrier disruption, and vice versa, recurrent 125 

inflammatory flares in IBD coevolve with metabolic alterations at the cellular and systemic level 32,33 . 126 

 127 
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Evidence for causal relationship between microbiota and inflammatory, immune or metabolic disorders 128 

was shown by FMT trials, in which the stool of a healthy donor is transferred to the patient 34. FMT has 129 

been shown to be highly effective in treating approximately 90% of patients with Clostridium difficile 130 

infections 35 and has been assessed for the treatment of T2D36, obesity, graft-versus-host diseases 131 

(GvHD) 37andIBD38, including UC  and to a less extent CD. Based on the results of four randomized 132 

clinical trials, FMT induced clinical remission in 28% of UC patients 25,39–41. Few studies have examined 133 

the clinical efficacy of FMT for CD and the results were rather heterogenous. In a clinical study 134 

including 174 CD patients treated with FMT, clinical remission was achieved in 20% and clinical 135 

response was achieved in 43% of patients 42. A recent randomized controlled trial conducted by Sokol 136 

and colleagues showed no significant impact of FMT on CD clinical remission, but higher engraftment 137 

of donor microbiota was associated with maintenance of remission 24. Conversely and despite a 138 

multitude of microbiota association studies, evidence for FMT for metabolic diseases is less established. 139 

Recent landmark studies demonstrated metabolic improvements together with changes in intestinal 140 

microbiome in patients with metabolic syndrome who received FMT from lean healthy donors 26. These 141 

effects were however inconsistent and transient, explained by limited donor microbiota engraftment26 142 

or varying donor fecal microbial diversity at baseline36. Intriguingly, supplementation with low-143 

fermentable fiber following oral FMT lead to improved insulin sensitivity, changed microbiota 144 

composition and prolonged donor stool engraftment in obese patients with metabolic syndrome, 145 

emphasizing the value of  microbial modulation therapy in reversing metabolic dysfunction43. In line 146 

with these findings, FMT from metabolically compromised obese donors transiently worsened insulin 147 

sensitivity in recipients with metabolic syndrome, whereas FMT from healthy post-gastric bypass 148 

donors induced a minimal increase in insulin sensitivity in recipient patients, providing evidence for the 149 

transmissibility of donor metabolic profile by FMT 44. 150 

 151 

Microbial dysbiosis in IBD  152 

 153 

Several large cohort studies (Table 1) investigated gut microbiota alterations in IBD based on microbial 154 

profiling of luminal and mucosal microbial communities.  Overall, an overabundance of certain 155 

bacterial groups such as Enterobacteriaceae, Fusobacterium, Ruminococcus gnavus, Streptococcus 156 

anginosus, Enterococcus, Megasphaera, Campylobacter, and sulfate-reducing Gamma- and 157 

Deltaproteobacteria have been implicated in patients with active disease. Conversely, the loss of 158 

beneficial taxa such as Faecalibacterium prausnitzii, Christensenellaceae, Collinsella, Roseburia, 159 

Ruminococcus and other butyrate-producing bacteria has been linked to disease 18,21,22,45–49. Shotgun 160 

metagenomics of stool samples provided a more comprehensive view of functional dysbiosis and 161 

showed perturbations of metabolic pathways in IBD. An upregulation of metabolic pathways involved 162 

in sulfur-containing amino acids synthesis, riboflavin metabolism, glutathione transporters , oxidative 163 

stress and nutrient transport were shown for IBD 19,48,50–52. Assessment of strain-level intra-species 164 

resolution revealed increased strain diversity of pathobionts and reduced strain diversity in beneficial 165 

microbes in stool samples from patients with IBD or irritable bowel syndrome (IBS) compared with 166 

healthy controls52. In-depth analysis showed 219 taxa (including 152 species) associated with CD and 167 

102 taxa (including 93 species) associated with UC. CD was predominantly characterized with a 168 

decrease in taxa belonging to Lachnospiraceae and Ruminococcaceae and an increase in taxa belonging 169 

to Enterobacteriaceae family, whereas a decrease in taxa belonging to Bacteroidaceae and increase in 170 

taxa belonging to Lachnospiraceae was observed for UC. In concordance with this heterogeneity, only 171 

few species were identified to be shared across different IBD studies53, suggesting individual 172 

differences within similar CD phenotypes and disease courses.  One of the first clinical evidence for the 173 

key role of the intestinal microbiota in IBD pathogenesis originated from experiments showing that 174 

diversion of the fecal stream from an inflamed segment of the small intestine improved disease 175 

symptoms in CD patients. Restoration of fecal stream and postoperative exposure of the neo-terminal 176 

ileum to luminal contents induced inflammation, suggesting that the microbiota triggers postoperative 177 

recurrence of CD54,55 . Furthermore,efficacy of antibiotic treatment in subsets of patients with active 178 

CD emphasizes the causal link of bacteria to IBD 56.  179 
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Mechanistic studies in mouse models of acute and chronic intestinal inflammation provided evidence 180 

for a causal relationship between microbial dysbiosis and IBD 57,58. For example,the transfer of faecal 181 

microbiota from patients with IBD to germ-free recipient mice was sufficient to transfer disease 182 

phenotype 21,59 and genetically susceptible IBD mouse models develop no spontaneous inflammation 183 

under germ-free conditions60.Additinaly, the transfer of dysbiotic microbial communities from inflamed 184 

mice could transfer disease phenotype in recipient germ-free mice61. Likewise, the transfer of IBD 185 

microbiota into germ-free mice induced imbalance in intestinal Th17 and RORgt+ regulatory T cells 186 

and commensal bacteria of the intestinal microbiota Bacteroides fragilis was shown to induce Foxp3+ 187 

regulatory T-cell development62, suggesting microbiota-driven disease mechanisms in IBD.  188 

 189 

Microbial dysbiosis in T2D 190 

 191 

Like IBD, a widely variable change in the abundance of several bacterial taxa has been described in 192 

T2D (Table 2). For instance, previous data showed an increased relative abundance of Escherichia coli, 193 

Veillonella, Blautia, Anaerostipes, Lactobacillus, Faecalibacterium, Clostridiales amongst others in 194 

patients with T2D. On the contrary, reduced abundance of Bacteroides, Bifidobacterium, 195 

Parabacteroides, Oscillospira and the mucin-degrading gut bacteria, Akkermansia muciniphila is 196 

associated with improved metabolic health 20,63,64. In a recent study by Zhong et al., metagenomic and 197 

metaproteomic analysis were performed on fecal samples from a Chinese cohort to characterize the gut 198 

microbiota compositional and functional alterations65. The cohort included 254 individuals including 199 

77 treatment-naïve type 2 diabetics, 80 pre-diabetics and 97 individuals with normal glucose tolerance. 200 

T2D and pre-diabetics showed lower abundance of bacterial species belonging to Clostridiales and 201 

higher abundance of Megasphaera elsdenii compared to controls. Functional differences were observed 202 

in the microbiome of patients with T2D or pre-diabetics. Significant enrichment in pathways involved 203 

in sugar phosphotransferase systems (PTS), ATP-binding cassette transporters (ABC transporters) of 204 

amino acids, and bacterial secretion systems in the gut microbiota was observed in pre-diabeteics 205 

compared to control subjects, suggesting unique changes in the gut microbiome of pre-diabetics before 206 

transition to T2D. Differences in gut microbiota composition and gene clusters have been used to 207 

classify individuals with T2D20,66. However, confounding factors like geographic location, ethnicity, 208 

health status and medication history lead to inconsistency in identifying microbial alterations associated 209 

with T2D64. 210 

Recent studies provided evidence for a causal link of specific members of the intestinal microbiota to 211 

pathogenesis of T2D. For example, Akkermansia muciniphila is one of the key taxa shown to have a 212 

protective effect in metabolic disorders in human and in mouse studies67–69. Interestingly, prebiotic 213 

feeding normalized Akkermansia muciniphila abundance and improved metabolic health, where the 214 

administration of Akkermansia muciniphila reversed high-fat diet-induced fat-mass gain, metabolic 215 

endotoxemia, adipose tissue inflammation, and insulin resistance in mice 70. Despite its high oxygen 216 

sensitivity and need for animal-derived compounds in the growth medium, Akkermansia muciniphila 217 

was shown to retain its protective effects in mice when grown on a synthetic medium compatible with 218 

human administration71, opening avenues for therapeutic options to target human obesity and associated 219 

disorders. Further, the butyrate-producing bacterium Anaerobutyricum soehngenii (previously 220 

designated Eubacterium hallii strain L2-7) showed an increased abundance that correlated with 221 

improved peripheral insulin sensitivity in recipient of lean donor fecal microbiota transfer26. The 222 

administration of Anaerobutyricum soehngenii strain in patients improved peripheral insulin sensitivity 223 

after 4 weeks of treatment, together with an altered microbiota composition and changes in bile acid 224 

metabolism 72. 225 

226 
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IBD and T2D: overlapping microbiome signatures  227 

Curiously, specific bacterial taxa are overlapping between IBD and T2D, suggesting that immune-228 

mediated and metabolic disease share common features that lead to similar adaptations of the 229 

microbiota. Examples include the decreased levels of Clostridium spp., Faecalibacterium, 230 

Ruminococcus, Akkermansia, Collinsella and Roseburia, and increased representation by 231 

Enterobacteriaceace, Escherichia coli and Fusobecaterium nucleatum species, emphasizing the 232 

challenge in defining disease-specific markers (Figure 2). An example to illustrate this challenge is a 233 

recent study on 2,045 IBD patients, that aimed at finding a microbial signature for CD 18. The authors 234 

identified a signature of eight taxa including unknown members of the family Christensenellaceae and 235 

the genus Fusobacterium to discriminate between patients with CD and healthy individuals. 236 

Nevertheless, the abundance of Christensenellaceae is known to be associated with low body mass 237 

index (BMI) and weight loss 73, a catabolic condition frequently observed in IBD patients. Similarly, 238 

the enrichment of Fusobacterium is a considered a prognostic marker for metastatic colorectal cancer 239 

(CRC) 74. Given the fact that IBD patients are at higher risk of developing CRC, the proposed 240 

microbiome signature might be an associated phenomenon with no causal link to the underlying disease 241 

mechanisms.  242 

 243 

Additional meta-omics approaches, including shotgun metagenomics and metabolomics, together with 244 

patient treatment history, demographics and environmental data enabled deeper characterization of the 245 

gut microbiome functional capacity. Findings from the second phase of the HMP immensely improved 246 

our understanding of microbe-metabolite interactions in T2D 75 and IBD 19. Integrative network analysis 247 

of microbiome, metabolome and transcriptome datasets from 132 individuals identified key disease-248 

associated network hubs connecting bacteria (Faecalibacterium prausnitzii, unclassified 249 

Subdoligranulum, Alistipes, Escherichia coli and Roseburia) to certain metabolites (SCFAs, octanoyl 250 

carnitine and several lipids). Interestingly, differences between subjects with and without IBD were 251 

most apparent in the fecal metabolome compared to the fecal metagenome, metatranscriptome, or 252 

proteome 19. In the second study of the iHMP - the Integrated Personal Omics Profiling Study (iPOP), 253 

the authors showed a strong correlation between plasma metabolites and insulin resistance in 254 

longitudinal samples from 106 subjects, suggesting perturbation of the host metabolome and gut 255 

microbiome interactions in insulin resistant individuals. 256 

 257 

Biomarkers of gut microbiome dysbiosis 258 

According to the National Institute of Health (NIH) Biomarker Definition Working Group, a biomarker 259 

is defined as ‘‘a characteristic that is objectively measured and evaluated as an indicator of normal 260 

biological processes, pathological processes, or pharmacologic responses to a therapeutic 261 

intervention’’76. An ideal clinical biomarker should be rapid, quantitative, objective, reproducible, non-262 

invasive and exhibit high accuracy in predicting disease state across several populations or ethnicities 263 

(Box 2) 77. The identification of microbiome biomarkers and their use for classification of disease 264 

entities require extensive computational and statistical tools to determine networks of bacterial taxa that 265 

can accurately discriminate between different disease phenotypes (e.g., healthy vs. IBD or pre-T2D vs. 266 

T2D), as well as closely related disease entities (e.g., IBD and IBS). Profiles of microbial biomarkers 267 

require further validation in large population-based cohorts to verify their diagnostic or prognostic 268 

value. In the following sections, we review the advancements made towards the development of 269 

microbiome-based biomarkers for disease risk profiling. These biomarkers range from single indicator 270 

bacterial taxa to a dysbiotic complex communities, to multi-omics-based biomarkers (Box 3).  271 

From single indicator strains to complex signature networks. Multiple studies investigated the 272 

utility of microbial alterations as disease biomarker, particularly in patients with CD or UC. First efforts 273 

pursued to define single bacterial taxa as indicators for disease activity. For instance, Faecalibacterium 274 

prausnitzii, a butyrate producing Firmicutes is depleted in patients with CD 78. Lower abundance of this 275 

bacterium in ileal mucosa from CD patients strongly correlated with the risk of endoscopic recurrence 276 
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after ileal resection. Conversely, an increased abundance of adherent invasive Escherichia coli 277 

correlated with ileal CD 79. Mostly, 16S rRNA amplicon sequences for family-level or genus-level 278 

taxonomic classification but rarely species-level associations were applied. However, most bacterial 279 

species comprise individual strains with massively different gene content, making strain diversity of 280 

great functional importance, particularly in terms of pathogenicity. For instance, subspecies of 281 

Ruminococcus gnavus and Escherichia coli has each been associated with IBD severity 80,81. 282 

Nevertheless, a particular subspecies of Ruminococcus gnavus was found to be more abundant in IBD 283 

fecal microbiota and was linked to changes in oxidative stress response, adhesion and iron and mucus 284 

utilization 82. Similarly, strains belonging to the species Bacteroides fragilis showed functional 285 

divergence leading to differential IgA induction in IBD-related mouse models. These genetically 286 

distinct strains showed differential colitogenic and immunomodulatory effects when colonizing mice 287 
83. To define key dysbiotic taxa to use for monitoring disease severity, Lopez-Siles and colleagues tested 288 

whether the co-abundances of Faecalibacterium prausnitzii and Escherichia coli could be used to 289 

diagnose patients with IBD by computing the absolute abundances ration of these two bacteria, using 290 

quantitative PCR analysis (F-E index). While using the F-E index improved the classification of UC 291 

and IBS from those with CD and allowed a better discrimination of CRC from other gut disorders, it 292 

failed to discriminate between IBD subtypes 84,85, suggesting the limited utility of single taxa indicators 293 

for disease sub-classification. Gut dysbiosis indices were mostly based on the bacterial community, 294 

however, Sokol et al. 45 defined dysbiosis based on the differential abundance of two fungal phyla 295 

Basidiomycota and Ascomycota which robustly separated samples originating from healthy subjects 296 

and IBD patients with different disease phenotypes45. In addition, reduced fungal diversity was shown 297 

in pediatric CD together with increased Candida taxa 86. Interestingly, recent work by Sarrabayrouse 298 

and colleagues showed significant difference in fungal and bacterial loads between healthy relatives 299 

and non-related healthy controls and between patients with different IBD subtypes, demonstrating that 300 

bacteria and fungi contribute to IBD gut dysbiosis .87. 301 

Dysbiosis score as a quantifiable deviation from a healthy baseline: Moving beyond the 302 

simplistic view conveying the abundance of a single bacterium as a marker for disease, several studies 303 

evaluated dysbiotic indices that describe more complex bacterial co-occurrence abundances for disease 304 

classification. For instance, Halfvarson and colleagues demonstrated that microbiota of IBD patients 305 

fluctuates more dramatically than healthy subjects, based on deviation from a baseline they identified 306 

and termed as “healthy plane”. The distance to the “healthy plane” varied overtime in IBD patients. 307 

Nevertheless, this distance does not necessarily correlate with disease activity 88. Gevers et al. 308 

demonstrated in a large early onset pediatric CD cohort (RISK study) that the microbiome dysbiosis 309 

(MD) index, which is the log of total abundance in organisms increased in IBD over total abundance of 310 

organisms decreased in IBD strongly correlated with disease severity and could be used in the 311 

stratification of patients 48. Nevertheless, MD index was limited in classifying disease and showed an 312 

overlap between IBD and healthy individuals 48. In a recent study from the second phase of the 313 

integrative Human Microbiome Project (iHMP), the authors identified samples from IBD patients with 314 

highly dysbiotic metagenomic microbial structure using a dysbiosis score based on Bray–Curtis 315 

dissimilarities to non-IBD metagenomes. In addition to the microbial response to inflammation, their 316 

dysbiotic score encompassed other host (transcriptomic regulation) and biochemical (serum metabolites 317 

and chemokines) interactions, providing a more comprehensive view of the systemic and microbe-host 318 

interactions in IBD 19. Nevertheless, it is important to emphasize that dysbiosis is not a well-defined 319 

condition and hence dysbiotic indices differ according to the methodology, disease entity and among 320 

different cohorts or groups of individuals.  321 

Large-scale marker profiling using machine learning algorithms. Several studies used machine 322 

learning (ML) algorithms to validate complex microbiome signatures on cross-sectional and 323 

longitudinal patient cohorts. For example, Pascal et al. in 2017 analyzed fecal samples from large cohort 324 

of IBD and non-IBD individuals and based on the 16S microbiota profiling, they proposed a microbial 325 

signature specific for CD based on the abundance of 8 bacterial taxa. Additionally, Ananthakrishnan et 326 

al. showed that early changes in gut microbiome composition at baseline could predict IBD patients’ 327 

response to therapy, 14 weeks after anti-integrin initiation with an AUC of 0.87 compared to  a model 328 
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based on clinical covariates (AUC =0.62) 22. In two recent studies, we assessed the utility of microbiome 329 

signatures as biomarkers of IBD and T2D. In the first study, we examined disease activity and response 330 

to therapy in a unique cohort of 29 CD patients who undergone autologous hematopoietic stem cell 331 

transplantation (HSCT). Integration of microbiome and metabolome profiles from human donors and 332 

humanized mice improved the predictive modelling of disease outcome from an AUC of 0.79 to an 333 

AUC of 0.96 and identified a network of disease-associated bacterial and metabolite factors involved 334 

in sulfur metabolism 21.While these findings sound promising, it is important to acknowledge that 335 

microbiome risk profiles are based on prediction models that are derived from population or individual 336 

patient prospective cohort studies, and hence could be more accurate for groups of similar patients 337 

“populations or cohorts” than they are for any individual patient. Therefore, it is important to keep in 338 

mind that the predicted risks might not translate directly to individual patients, possibly due to limited 339 

generalizability in heterogeneous settings.  340 

In the second study, we investigated metabolic health and the diurnal rhythmicity of gut microbiota in 341 

a German population cohort of 1,976 individuals. Fecal microbiota profiling identified a risk signature 342 

of 13 microbial taxa that showed disrupted diurnal rhythmicity in T2D. A predictive model based on 343 

this arrhythmic risk signature could successfully predict individuals at risk of developing T2D with an 344 

AUC of 0.78 when body-mass index (BMI) was included 20. These examples, among others provide 345 

evidence for the applicability of microbiome signatures in biomarker discovery for diagnostic and 346 

therapeutic purposes, however it is important to note that dysbiotic indices are not standalone 347 

measurements and need to be incorporated with additional host-derived and clinical data. Proper 348 

standardization and validation require large-scale studies with longitudinal assessment of potential 349 

biomarkers and the consideration of possible confounders, such as diet, age, ethnicity, medical history 350 

and lastly time of defecation, which all have proven to be involved in microbiome alterations.  351 
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Box 2 – Gut microbiome Biomarker Discovery: Definitions 352 

A biomarker is ‘‘a characteristic that is objectively measured and evaluated as an indicator of normal 353 

biological processes, pathological processes, or pharmacological responses to a therapeutic 354 

intervention.’’ (NIH, 76,89 355 

A ‘‘diagnostic’’ biomarker is a characteristic that is directly linked to the etiology of the disease, e.g., 356 

elevated blood glucose concentration for the diagnosis of T2D, a marker showing strong correlation 357 

with inflammation in IBD (e.g., Fecal calprotectin). 358 

Sensitivity refers to the proportion of individuals who have the disease condition (reference standard 359 

positive) and give positive test results 90. 360 

Specificity is the proportion of individuals without the disease condition and give negative test results 361 
90.  

362 

Receiver’s Operating Characteristic (ROC) curve plots the specificity and sensitivity of a specific 363 

measurement to distinguish health status in a population of subjects.  364 

The area under the curve (AUC) estimates the accuracy of a specific measurement to be a diagnostic 365 

tool. The higher the AUC, the better the model is. A perfect model has an AUC=1. This analysis is used 366 

to identify the appropriate thresholds to classify a certain population or to diagnose a patient with 367 

expected sensitivity and specificity. A ROC curve is generated, and the AUC is calculated. 368 

 369 

  370 
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Box 3 – Gut microbiome Biomarker Discovery: from single taxa to complex networks 371 

 372 

 373 

Inconsistency of disease biomarker prediction across geography and ethnicities  374 

Previous studies have compared gut microbiome profiles between western and rural or non-375 

industrialized populations and identified dramatic differences in their gut microbiome characteristics. 376 

In 2015, Martínez et al. compared the fecal gut microbiota of individuals from two non-industrialized 377 

regions in Papua New Guinea (PNG) with that of United States (US) residents. Interestingly, gut 378 

microbiome profiles in PNG showed significantly higher microbial diversity and lower interindividual 379 

variations compared to US residents 91. They also reported many shared bacterial species among PNG 380 

and the US with different abundance levels, explained by decreased bacterial dispersal rates in Western 381 

populations. In another pioneering study by Falony et al., the authors aimed at identifying a global core 382 

microbiome in healthy populations. They showed a decrease in the number of core genera from 17 to 383 

14 when they compared gut microbiome profiles from rural populations in Papua New Guinea, Peru, 384 

and Tanzania with that of western populations including Flemish and Dutch cohorts, in addition to UK 385 

and US populations 92. This loss of resident microbes or the concept of “disappearing microbes”, as 386 

coined by Blaser and Falkow 93 may explain the rising incidence of chronic diseases in the western 387 

world. In a more recent study and to robustly validate the generalizability of microbiota-based 388 

classifying models of metabolic health, He at al. characterized the gut microbiota of 7,009 individuals 389 

from 14 districts within 1 province in China and tested the effect of geographic location on the predictive 390 

power of the models they generated 64. Interestingly, host location showed the strongest association 391 

with variations in gut microbiome. Further, in a large longitudinal intercontinental study on 531 patients 392 

with IBD from Ireland and Canada, geographic location was the major determinant of microbiome 393 

variations, yet most (90.3%) of the compositional variance remains unexplained 94.The importance of 394 

geography and related environmental exposure are well-illustrated with migration studies, where a 395 

strong association between microbiome functional strain diversity and migration was clearly 396 

demonstrated. In this context, Vangay et al. performed 16S and deep shotgun metagenomic sequencing 397 
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on stool samples collected from individuals living in Thailand and in the US, including first- and 398 

second-generation immigrants before and after immigration. Intriguingly, US immigration was found 399 

to be associated with significant alterations to the gut microbiome, including loss of diversity, loss of 400 

bacterial strains, functional loss of fiber degradation and a shift from the Prevotella to Bacteroides 401 

enterotype. Additionally, these perturbations were intensified by obesity and across generations 95.  402 

To examine connections between geographical locations and gut microbial dysbiosis in IBD and T2D, 403 

we summarized the changes revealed in selected microbiome association studies from countries around 404 

the world. Due to the higher availability of 16S rRNA gene-based sequencing datasets, we focused on 405 

cohort studies with 16S microbial profiling, despite the variability in the sequenced 16S variable 406 

regions, or the sequencing platform in some cases (Figure 1). In case of the IBD stool-derived 407 

microbiome, Firmicutes, Proteobacteria and genera including Fusobacterium, Escherichia coli, 408 

Ruminococcus gnavus and Streptococcus showed consistent increased relative abundance correlating 409 

with disease manifestation. On the other hand, Roseburia, Blautia and Faecalibacterium consistently 410 

decreased cohorts. In T2D, a decrease in, Akkermansia muciniphila, Clostridium, Roseburia and 411 

Faecalibacterium was shown in most cases. However substantial divergences in the disease-associated 412 

profiles between individuals from different race and ethnicity remain. The relevance of these taxa in 413 

disease pathology has been validated in several clinical and translation gnotobiotic experiment, as 414 

discussed before26,62,67,71,85,96,97. Collectively, these data dictate the necessity for more global studies of 415 

human microbiota in different geographic locations across continents to rule out regional associated 416 

confounding factors and define specific and individualized microbiome signatures. Recently, studies 417 

within the integrative Human Microbiome Project (iHMP) aimed at exploring the link between gut 418 

microbiome alterations and the development of IBD or T2D in large cohort population studies 19,75. 419 

Nevertheless, and up to date, most of these studies have predominantly focused on western populations, 420 

in most cases from US and Europe, representing at most 1/6th of the world’s population. In the recent 421 

years, a few national and international projects have been initiated to characterize gut microbiome 422 

variations in diverse populations and ethnicities, including studies in Africa, Asia, South America and 423 

the Middle East 98 424 

 425 

 . 426 
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Table 1 Gut microbiome signatures associated with IBD in selected regions across the globe 1 

Region  Population Biomarker Risk signature  

(increased) 

Risk signature 

(decreased) 

Sequencing 

Technology 

Statistical Analysis Validation 

Cohort 

Reference 

Spain Spanish IBD 

cohort (34 CD 

+33 UC, 111 

HC) 

Diagnosis confirmed 

by endoscopy and 

histology clinical 

remission for at least 

3 months—defined by 

(CAI) for UC and 

(CDAI) for CD. 

HC were without 

previous history of 

chronic disease.  

Fusobacterium, 

Escherichia coli  

loss of beneficial microorganisms is 

more associated with patients with CD 

than a gain of more pathogenic ones. 

Faecalibacterium, 

Peptostreptococcaceae, 

Anaerostipes, 

Methanobrevibacter, 

Christensenellaceae, 

Collinsella 

 

 

16S rRNA gene 

sequencing of V4 

region (Illumina 

MiSeq) 

MaAsLin 

 

80% for CD, using the Spanish 

and Belgian cohorts, and a 

specificity of 94.3%, 94.4%%, 

89.4% and 90.9% of CD 

detection versus HC, and 

patients with anorexia, IBS and 

UC, respectively. 

Belgian CD 

cohort (n= 187), 

a Spanish IBS 

cohort (n=41 

patients), a UK 

healthy twin 

cohort (n= 1016 

samples) and a 

German 

anorexic cohort 

(158) and French 

cohort of IBD 

(146 CD and 86 

UC) and the 38 

HC.) 

18 

France 235 patients 

with IBD and 

38 healthy 

subjects (HS) 

A diagnosis of IBD 

was defined according 

to clinical, 

radiological, 

endoscopic, and 

histological criteria. 

Ruminococcus gnavus was increased 

in ileal CD.  

 

Streptococcus anginosus in IBD. 

Aggregatibacter segnis and 

Actinobacillus (two members of the 

Pasteurellaceae family) in IBD flare 

compared with remission. 

 

disease-specific fungal microbiota 

dysbiosis 

Ruminococcus, 

Coprococcus, Blautia, 

Eubacterium and 

Dorea (IBD), 

Roseburia, 

Faecalibacterium, 

Dorea and Blautia 

(IBD flare) 

Anaerostipes in IBD 

and particularly in flare 

and in ileal CD. 

16S rRNA gene 

sequencing of V3-

V5. PGM Ion 

Torrent 

MaAsLin 

 

NA 45 

 

USA 85 patients with 

IBD (43 UC, 

42 CD)  

disease activity was 

assessed using the 

Harvey Bradshaw 

index for CD (Harvey 

and Bradshaw, 1980) 

and simple clinical 

colitis activity index 

for UC 

CD: Bifidobacterium longum, 

Eggerthella, Ruminococcus gnavus, 

Roseburia inulinivorans, and 

Veillonella parvula decreased in 

patients achieving remission.  

UC: Streptococcus salivarium 

increased in patients not achieving 

remission 

relative abundance of 

Roseburia 

inulinivorans and 

Burkholderiales at 

baseline was predictive 

of week 14 remission. 

 

Illumina based 

DNA shotgun 

sequencing 

Neural network algorithms 

(vedoNet) to predict treatment 

response  

 

External 

validation was 

performed in an 

independent 

cohort of 20 

patients with 

moderate-to-

severe CD or 

UC initiating 

therapy with an 

anti-TNF 

biologic therapy 

(infliximab or 

adalimumab) 

22 
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China 72 CD patients, 

51 UC patients, 

and 73 healthy 

diagnoses based on 

standard endoscopic, 

radiographic, and 

histologic criteria. 

CD: Streptococcus, Proteobacteria, 

Enterococcaceae 

 

UC: Bacteroidia, and 

Pseudomonadaceae 

Roseburia, 

Coprococcus, 

Clostridiales 

16S rRNA gene 

sequencing of V4 

region (Illumina 

MiSeq) 

Random forest classification 

models were trained on features 

of the OTU data with 5 repeats 

of 10-fold cross-validation 

HC-CD, AUC=0.89 

HC-UC, AUC=0.93 

RISK and 

PRISM US 

cohorts 

75 

USA 447 treatment-

naive patients 

with CD and 

221 healthy 

subjects 

newly diagnosed 

population of 

pediatric patients with 

CD 

Pasturellaceae, Veillonellaceae, 

Neisseriaceae, Fusobacteriaceae 

species, and Escherichia coli 

. 

Bacteroides, 

Clostridiales, 

Faecalibacterium, 

Roseburia, Blautia, 

Ruminococcus, 

and Lachnospiraceae 

16S rRNA gene 

sequencing of V4 

region (Illumina 

MiSeq) 

MaAsLin 

 

NA 48 

Spain 29 CD patients 

under HSCT 

diagnoses based on 

standard endoscopic, 

radiographic, and 

histologic criteria. 

 

sulfate-reducing Gamma- and 

Deltaproteobacteria, butyrate-

producing Clostridiales, Enterococcus, 

Megasphaera, Campylobacter, and 

Fusobacterium.  

Akkermansia, 

Barnesiella, 

Oscillibacter, 

Roseburia, and 

Odoribacter. 

16S rRNA gene 

sequencing of V3-

V4 region 

(Illumina MiSeq) 

Random forest classification 

models were trained on features 

of the OTU data with 5 repeats 

of 10-fold cross-validation 

OTU AUC=0.79 

Bacteria-metabolite AUC=0.96 

 

NA 21 

Denmark 300 UC, 213 

CD 

30 healthy 

subjects  

CD: HBI-score 

UC: SCCAI-score 

Firmicutes and Proteobacteria Dorea 

  

16S rRNA gene 

sequencing of V3 

region (Illumina 

MiSeq) 

 NA  99 

Germany  62 individuals 

including twin 

CD, UC patients 

and healthy 

volunteers  

CAI, Colitis Activity 

Index, endoscopic 

appearance and 

continuity of 

inflammation, histology 

and proven exclusive 

affection of the colon. 

Lachnospiraceae and 

Ruminococcaceae 

Actinobacteria and 

Proteobacteria 

16S rRNA gene 

sequencing of V4-V5 

region 

 NA  100 

Functional Profiling Using Shotgun Metagenomics 

Region Population Biomarker Functional Risk signature 

(increased) 

Functional Risk  

signature (decreased) 

Sequencing 

Technology 

Statistical Analysis Validation Cohort Reference 

USA N=4 CD 

N=7 Healthy 

Endoscopic, 

pathologic, or 

radiographic findings 

Modules involved in glycolysis and 

carbohydrate transport and metabolism 

(nutrient uptake) 

 

CD and UC: Metabolism of sulfur-

containing AA Cysteine increased. 

 

Increase in Riboflavin metabolism, 

glutathione transporters. 

Lower abundance of 

genes involved in lipid 

metabolism and 

catabolism 

 

Global decrease in 

nicotinamide, purine, 

and pyrimidine 

Illumina MiSeq 

(2x150 bp, paired-

end) 

NA NA 101 
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nucleotide biosynthesis 

in IBD  

 

USA  N=366 children 

under 22 years 

old with CD 

Pediatric Crohn’s 

Disease Activity 

Index (PCDAI) 

CD: Top six pathways included sulfur 

relay systems, galactose metabolism, 

biosynthesis of siderophores, 

glycolipid metabolism, 

glutamine/glutamate metabolism and 

biosynthesis of Siderophores 

 Illumina HiSeq Random Forest on samples at 

baseline=0.87 using gene 

pathway data 

 

Most predictive pathways: 

glycerophospholipid 

metabolism, aminobenzoate 

degradation, sulfur relay 

system and glutathione 

metabolism (increased) and 

selenocompound metabolism 

(decreased) 

NA 51 

USA  N=266 samples 

from N=12 

controls and 

N=20 IBD 

CD: CDAI or HBI-

score 

UC: SCCAI-score 

IBD: Increase in facultative anaerobe 

abundance in IBD (Streptococcus 

salivarius and Streptococcus 

parasanguinis), Ruminococcus gnavus  

 

-Genes involved in Oxidative stress 

(NADH oxidase and peroxiredoxin- 

encoding genes) 

-Genes involved in biosynthesis of 

Cysteine, acquisition of iron  

13 genes involved in sugar utilization 

and transport 

IBD: decrease in 

(Blautia obeum and 

Alistipes putredinis) 

Illumina MiSeq 

(2x150 cycle runs) 

NA 80 samples from 

(HMP) as 

healthy 

 

Data from 51 as 

IBD validation 

cohort 

82 

Denmark N=1,792 

participants: 33 

IBD, 412 IBS 

and 1025 

control 

Dutch cohorts 

(LifeLines 

DEEP, UMCG 

IBD, MIDS)  

Endoscopic, 

pathologic, or 

radiographic findings 

CD: 219 taxa (including 152 species) 

associated with CD  

UC: 102 taxa (including 93 species) 

associated with UC.  

 

CD: an increase in taxa belonging to 

Enterobacteriaceae family. 

 

IBD: Perturbations in multiple 

functional pathways, including 

pathways involved in amino acid 

synthesis, vitamins, neurotransmitters 

and SCFA synthesis 

CD: a decrease in taxa 

belonging to 

Lachnospiraceae and 

Ruminococcaceae. 

 

UC: a decrease in taxa 

belonging to 

Bacteroidaceae and 

increase in taxa 

belonging to 

Lachnospiraceae  

Illumina HiSeq 10-fold cross validation  

To discriminate between IBD 

and IBS  

AUC 

(age+sex+BMI+calprotectin+ 

top taxa) = 0.90 

 102 

USA 

 

N=155 

individuals 

N=68 CD, 53 

UC, 34 non-

IBD 

Endoscopic, 

pathologic, or 

radiographic findings 

CD and UC: Unclassified Roseburia 

species were significantly elevated  

 Bifidobacterium breve and 

Clostridium symbiosum were uniquely 

enriched in UC.  

Roseburia hominis, 

Doreaformicigenerans, 

and Ruminococcus 

obeum were strongly 

Illumina HiSeq 

2500 platform 

(101 bp, paired 

end) 

Random Forest 

 

5-fold CV 

AUC (metabolites+ species) 

=0.92 

Validation 

cohort from the 

Netherlands. 

LifeLines-DEEP 

(22 control), 43 

103 
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 Twelve species were enriched in CD, 

including Ruminococcus gnavus, 

Escherichia coli, and Clostridium 

clostridioforme.  

enriched in non-IBD 

controls.  

 

 

Independent Validation 

AUC (metabolites+species) 

=0.89 

IBD patients 

(UMCG cohort). 

USA  Longitudinal 

sampling of 

132 patients 

with IBD, 

1,638 stool 

samples  

CD: HBI-score 

UC: SCCAI-score 

Faecalibacterium prausnitzii and 

Roseburia hominis  

 

Nicotinuric acid found exclusively in 

IBD 

Escherichia coli, 

Ruminococcus torques, 

Ruminococcus gnavus, 

Clostridium hathewayi, 

Clostridium bolteae 

 

Pantothenate and 

nicotinate (Vitamin B5 

and B3) depleted in 

IBD 

Shotgun 

metagenomics, 

HiSeq2000 or 2500 

2x101 xx  

 NA  19 

 

 

 

 

 

  2 

 3 

 4 

Table 2 Gut microbiome signatures associated with T2D in selected regions across the globe  5 

Region Populatio

n 

Biomarker Risk signature 

(increased) 

Risk signature 

(decreased) 

Sequencing 

Technology 

Statistical Analysis Validation Cohort Reference 

Mexico CARE-In-

DEEP 

Study (N 

= 427) 

oral-glucose tolerance 

test 

 

Escherichia coli, Veillonella 

Blautia, Anaerostipes 

 

 16S rRNA gene 

sequencing of V4 

region (Illumina 

MiSeq) 

Random forest; AUC = 

0.69; all taxa 

Differential gene 

expression analysis 

(negative binomial 

distribution) 

 

 NA 104 

Sweden N=145 

women 

with 

normal, 

impaired 

or diabetic 

glucose 

control. 

HBA1C Lactobacillus gasseri,  

Lactobacillus salivarius  

Desulfurispirillum 

indicum  

Clostridium beijerinckii  

Clostridium Eklund  

Clostridium botulinum  

Pyramidobacter 

Clostridium 

thermocellum  

Shotgun  

metagenomics 

Random forest; AUC = 

[0.60; 0.71]; no. species = 

[1 ;952] 

Chinese population 

(105.), random forest; 

AUC = [0.60; 0.74]; no. 

species = [1 ;1152] 

66  

Israel N = 800  Bacteroides thetaiotaomicron, 

Alistipes putredinis 

Eubacterium rectale 

Parabacteroides 

distasonis 

Roseburia inulinivorans 

Eubacterium eligens 

16S rRNA gene 

sequencing of 

V3-V4 region 

(Illumina MiSeq) 

Stochastic gradient 

boosting regression; 4,000 

estimators 

 

Validation cohort of n = 

100 

 

106 
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Bacteroides vulgatus 

Pakistan N = 60 Fasting blood glucose Bacteroidetes,Verrucomicrobia 

Proteobacteria,Elusimicrobia, 

Acidobacteria, Deferribacteres 

Gemmatimonadetes,Porphyromonad

aceae, Alistipes marseilloanorexic, 

Bacillus sporothermodurans, 

Staphylococcus, Prevotella 

Verrucomicrobia, 

Elusimicrobia, 

Methanogenic archaeon 

16S rRNA gene 

sequencing of 

V3-V4 region 

(Illumina MiSeq) 

Kruskal – Wallis test  107 

China N = 6,896 MetS =waist>90 cm 

(male) or waist>85 cm 

(female), FBG≥6.1 

mmol/L (110 mg/dl) or 

diagnosis of diabetes 

mellitus, TG≥1.7 

mmol/L (150 mg/dl), 

HDL<1.04 mmol/L 

(40 mg/dl) 

SBP/DBP≥130/85 

mmHg or previous 

diagnosis of high 

blood pressure 

Actinobacteria, Fusobacterium 

Streptococcus, Lactobacillus 

Akkermansia, Synergistes 

Methanobrevibacter, 

Oscillospira,Roseburia, 

Bifidobacterium 

16S rRNA gene 

sequencing of V4 

region (Illumina 

MiSeq) 

MaAsLin 

 

 108 

China N = 60 Fasting blood glucose Faecalibacterium, Clostridiales, 

Dorea, Clostridiaceae, 

Lachnospiraceae 

Bifidobacterium, 

Parabacteroides, 

Oscillospira, 

Bacteroides 

16S rRNA gene 

sequencing of 

V3-V4 region 

(Illumina MiSeq) 

Random forest; AUC = 

0.90; 50 OTUs 

 109109 

China Three 

Chinese 

cohort 

studies 

N = 1,832 

Fasting blood glucose 

or HBA1C (ADA) 

Lactobacillaceae Mogibacteriaceae, 

Clostridiaceae, 

Butyrivibrio, Roseburia, 

Megamonas, 

Clostridiaceae, Dorea 

 

16S rRNA gene 

sequencing of 

V1-V2 region 

(Illumina MiSeq) 

LightGBM algorithm; 

AUC = 0.88; 21 features 

Cohort 1 N = 203; AUC 

= 0.87, Cohort 2 N = 

7,009; AUC = 0.83 

110 

Denmark Inter99 

study 

populatio

n  

N = 784 

HBA1C Lactobacillus, 

Escherichia coli 

Roseburia, 

Subdoligranulum, 

Intestinibacter 

Shotgun 

metagenomics 

  63 
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Africa Africa 

America 

Diabetes 

Mellitus 

(AADM) 

study 

N = 291 

ADA Oral glucose 

tolerance test 

 

Peptostreptococcus, 

Eubacterium, 

Prevotella, 

Desulfovibrio 

Collinsella, Adlercreutzia 

Anaerostipes, 

Epulopiscium, 

Clostridium butyricum, 

Ruminococcus, 

Pediococcus 

16S rRNA gene 

sequencing of V4 

region (Illumina 

MiSeq) 

Differential gene 

expression analysis 

(negative binomial 

distribution) 

PERMANOVA 

Kruskal-Wallis rank 

 

 111 

Germany KORA 

cohort 
N = 1,976 

WHO Oral glucose 

tolerance test 
  

Escherichia coli Faecalibacterium 

prausnitzii, 
Bifidobacterium longum, 
Intestinales bartlettii, 

Coprococcus, 

Eubacterium rectale  

16S rRNA gene 

sequencing of 

V3-V4 region 

(Illumina MiSeq) 

Random forest; AUC = 

0.76; 14 OTUs; BMI 
Geralized linear model 

(AUC = 0.79; 13 OTUs; 

BMI) 

FoCus cohort (N = 

1,529); TwinsUK cohort 

(N = 1,399) 

20 

Germany Popgen 

cohort 

(N= 436, 

and 

FoCus 

cohort (N 

= 844) 

HOMA-IR > 5.0 Bacteroides thetaiotaomicron Clostridium sensu stricto, 
Escherichia coli, 
Romboutsia, 
Barnesiella, 
Pseudoflavonifractor, 
Veillonella, 
Roseburia 

16S rRNA gene 

sequencing of 

V1-V2 region 

(Illumina MiSeq) 

MaAsLin 
 

17 associations 

identified here, 15 were 

among the analysed taxa 

in the independent SHIP 

cohort (N = 800), and of 

these, 7 retained a 

significant association 

with obesity 

112 

United 

Kingdom 

TwinUK 

cohort (N 

= 977) 

Overweight BMI 25 – 

30, obese BMI > 30 

 Christensenellaceae  16S rRNA gene 

sequencing of V4 

region (Illumina 

MiSeq) 

t- test. Benjamini-

Hochberg, Wilcoxon rank 

sum one sided (lean 

higher) 

NA 73 
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USA CDC 

cohort N 

= 451, 

NYU 

study N = 

239 

Overweight (BMI 18 – 

25) N = 246, 

Obese (> 30) N = 142 

Gemellaceae, Streptococcus,  

Blautia 

Parabacteroides, 

Clostridiaceae, 

Lachnospiraceae, 

Ruminococcaceae, 

Clostridiales, 

Oscillospira 

16S rRNA gene 

sequencing V4 

Illumina MiSeq 

with a 300-cycle 

(2 × 151 bp) 

weighted UniFrac distance, 

PCoA and CAP, 

PERMANOVA, adjusting 

for age, sex, polyp status, 

and study, DESeq2,  

RF (1,825 OTU) repeated 

(20 times) 5-fold cross-

validatio - optimal model 

included 49 OTUs and had 

an AUC of 0.81, testing 

sets was 0.72 and 0.68 

 

Test Set: NYU study N 

= 239  

Validation set = Baxter 

et al. 402 subjects  

113 

Functional Profiling Using Shotgun Metagenomics 

Region Populatio

n 

Biomarker Functional Risk signature 

(increased) 

Functional Risk  

signature (decreased) 

Sequencing 

Technology 

Statistical Analysis Validation Cohort Reference 

Sweden N=46 

T2D 

N=442 

pre-T2D 

N=53 

controls 

Oral-glucose tolerance 

test (oGTT) 

 

Finnish diabetes risk 

score (FINDRISC) 

 

- 118 metagenomic species 

significantly altered  

 

-Two component systems 

-Fructose and Mannose metabolism 

-Pentose phosphate pathway 

-BCAA synthesis 

-B group Vitamin biotin metabolism  

 

 Illumina HiSeq 

4000 

(150 bp; paired-

end) 

Random forest; AUC = 

0.70 

True Prediction, 

AUC=0.64 

118 features selected  

 Swedish 

Cardiopulmonary 

Bioimage Study 

(SCAPIIS) 

114 

Swede N=53 

T2D 

N=49 IGT 

N=43 

controls 

Fasting glucose and 

HBA1C 

Four members of Lactobacillus  

 

MGC model identified Roseburia 

and Faecalibacterium prausnitzii as 

highly discriminant for T2D 

 

- 7 of the T2D-enriched KEGG 

orthologues markers 

-starch and glucose metabolism 

 -fructose and mannose metabolism  

-ABC transporters for amino acids 

-ions and simple sugars 

-cysteine and methionine 

metabolism 

Five members of 

Clostridium 

 

Illumina HiSeq 

2000 

 

RF and ten-fold cross-

validation on microbial 

cluster AUC = 0.83  

on species AUC= 0.71 

Chinese population 

((Qin et al., 2012).), 

66 



19 
 
 

Netherlands  N= 1,179 

LL-DEEP 

sample 

oral glucose tolerance 

test (oGTT) 

GABA degradation activity  

PWY-5022 

 

 Illumina HiSeq 

platform 

Random Forest on log 

transformed data 

 

Microbial pathway 

involved in 4 

aminobutanoate  

(GABA) degradation 

Aminobutanoate 

degradation V) on 

increased insulin secretion 

 Genotype and 

phenotype data from the 

UK Biobank, a study of 

500,000 subjects from 

the United Kingdom 

aged 45–65 years of ag 

115 

China, 

Suzhou 

 

N = 77 

T2D 

N = 80 

Pre 

N = 97 

controls 

 The most discriminatory MLG for 

separating TN-T2D and NGT was 

Akkermansia muciniphila.  

Faecalibacterium prausnitzii and 

Escherichia coli both showed to be 

important in separating Pre samples 

from T2D and healthy samples 

 

TMAO producing enzyme 

Dimethylaniline monooxygenase 

Higher amylase (AMY1) levels 

Antimicrobial cathepsin G 

higher levels of four 

AMPs in controls 

GTPase-activating-like 

protein (IQGAP1) and 

unconventional myosin-

Ic (MYO1C) were 

uniquely identified in the 

healthy group  

lower levels of proteases 

(trypsin and 

chymotrypsin and their 

precursors) and lipases 

BGISEQ-500 

sequencing for 

metagenomics 

(single-end; read 

length of 100 bp)  

Random Forest, five-fold 

cross validation 

AUC (T2D vs. Pre = 0.90) 

AUC (PRE vs. healthy = 

0.88) 

AUC (T2D vs. Controls = 

0.94) 

 65 

China N=71 

T2D 

N=74 

controls 

 Bacteroides caccae, 

Clostridium hathewayi, 

Clostridium ramosum, 

Clostridium symbiosum, 

Eggerthella lenta, 

Escherichia coli 

 

Membrane sugar transport 

BCAA transport 

methane metabolism 

xenobiotics degradation and 

metabolism 

sulphate reduction 

 

Clostridiales sp. SS3/4, 

Eubacterium rectale, 

Faecalibacterium 

prausnitzii, Roseburia 

intestinalis, 

Roseburia inulinivorans, 

Haemophilus 

parainfluenzae 

 

-level of bacterial 

chemotaxis 

-flagellar assembly 

-butyrate biosynthesis --

metabolism of cofactors 

and vitamins 

HiSeq 2000 

 
Random Forest 

AUC = 0.81 

50 gut microbial gene marker  

 116 

 6 
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 1 

Figure 1. Bacterial risk signatures in gut microbiome of patients with IBD (enriched: magenta, decreased: blue) or T2D (enriched: orange, decreased: green) in 2 

diverse populations across the globe. Box color: enriched or decreased taxa (magenta, blue or orange, green) for IBD and T2D, respectively 3 

 4 
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In all these studies, the authors tried to identify disease-associated microbial risk profiles contributing 1 

to the development of IBD or T2D. However, it clearly remains challenging to reach a common 2 

consensus on disease-related bacterial taxa with a disease diagnostic value. Despite the heterogeneity, 3 

few bacterial taxa were found to be commonly implicated across different studies (Figure 1). For 4 

instance, Akkermansia, Eubacterium rectale, Alistipes and Faecalibacterium prausnitzii were found to 5 

be positively correlated with improved metabolic health in multiple reports 66,105,109,112,117. Similarly, in 6 

IBD, an overabundance of Escherichia coli, Enterococcus, Fusobacterium, Ruminococcus gnavus and 7 

Streptococcus or a reduction in Feacalibacterium prausnitzii,Roseburia, members of Ruminococcus 8 

genus were described for IBD-associated dysbiosis 18,19,21,45,48,100,118. Intriguingly, some taxa showed 9 

similar trends in IBD and T2D. For instance, an overabundance of family Christensenellaceae and 10 

Escherichia coli were linked to CD and T2D-associated dysbiosis 18,20,109, posing questions about the 11 

specificity of the available microbiome signatures for discriminating between different disease entities. 12 

Looking at overlapping IBD and T2D-ssociated core signatures showed similar or opposite trends. We 13 

focused on the 16S studies summarized in Tables 1 and 2 and described bacterial signatures associated 14 

with each disease entity according to the highest reported taxonomic level (bacterial phylum, family, 15 

genus and species) (Figure 2). 16 

  17 
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 18 

 19 

 20 

Figure 2. IBD and T2D overlapping global risk profile. Bacterial genera signatures associated with 21 

IBD, T2D and common shared genera based on IBD and T2D 16S rRNA gene sequencing microbiome 22 

association studies summarized in Table 1 and 2.  23 
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Metabolomics for IBD and T2D biomarker discovery 1 

In the pursuit of identifying disease biomarkers, metabolites serve as the most proximal indicators of 2 

disease activity and are strongly linked to the underlying regulatory signals that modulate disease 3 

mechanisms. In fact, both the metabolome and microbiome fluctuate in relation to endogenous and 4 

exogenous factors such as diet, environment, aging, and health condition 119. Numerous studies have 5 

reported substantial alterations in the gut metabolite profiles from patients with IBD 19,21,103,120,121 or T2D 6 
75,122–124. For instance, reduced levels of medium chain fatty acids, such as pentanoate and hexanoate 125 7 

and reduced levels of vitamin B 126 were reported in fecal metabolome from IBD patients. Conversely, 8 

increased levels of amino acids, amines, and carnitines were reported in the feces and serum of adult 9 

and pediatric IBD patients, respectively 121,127 . A landmark study by Marchesi et al. showed that 10 

metabolite profiling could discriminate IBD patients from healthy individuals 128. This was followed by 11 

numerous studies that consistently showed that the metabolite phenotype of IBD patients differ from 12 

healthy individuals 103,120,129,130. Interestingly, metabolite profiling could also discriminate different 13 

disease subtypes, such as CD and UC 128,130, and further stratified CD to ileal or colonic inflammation 14 
129. Similarly, patients with T2D demonstrated altered metabolic activity 131,132 and serum levels of 15 

branched-chain and aromatic amino acids, such as leucine, isoleucine, valine, phenylalanine, tyrosine 16 

and tryptophan showed association with insulin resistance, obesity and the risk of T2D in multiple 17 

reports 133–135. Metabolite profiling of T2D patients revealed significant associations between specific 18 

bacterial metabolites and disease onset 75,123,136,137.  19 

As an example of promising metabolite biomarkers, tryptophan metabolism has attracted attention as a 20 

candidate biomarker due to its association with inflammatory and metabolic disease development in 21 

both human and mouse studies 138–141. Tryptophan is an essential amino acid acquired from the diet, and 22 

is mainly absorbed in the small intestine, yet a small fraction is catabolized to indole metabolites in the 23 

colon 142. Tryptophan metabolism and downstream cellular signaling have been reviewed by many 142–
24 

144 and will not be extensively discussed in this review. In a recent study, Chen et al. assessed the 25 

association of tryptophan with the risk of T2D development and they evaluated its performance as sole 26 

biomarker or in combination with existing amino acid biomarkers in a Chinese population 140. In this 27 

study, they quantitively measured the baseline fasting serum tryptophan concentrations in 51 subjects 28 

who developed diabetes and 162 subjects who remained metabolically healthy 10 years later. Higher 29 

levels of tryptophan at baseline were associated with a higher risk of T2D development. Beyond 30 

associations, the predictive modelling of tryptophan as disease biomarker was comparable to the 5 31 

existing amino acids in discriminating between T2D and non-T2D individuals. Noteworthy, prior 32 

reports showed that different amino acids could classify T2D patients from different populations with 33 

varying accuracy. For example, Phenylalanine and valine showed better performance in American 34 

populations 134, while tyrosine showed higher accuracy in South Asian populations 145, pointing to the 35 

importance of regional specific biomarker in achieving higher diagnostic accuracy.  36 

 37 

Microbiome-based biomarkers versus clinical biomarkers  38 

A valuable biomarker must contribute additional classification power to clinically relevant information. 39 

Fecal biomarkers provide a suitable target for mucosal disease diagnostics, given that the fecal stream 40 

is in direct contact with the intestinal mucosa. Fecal calprotectin (Fcal), a granulocyte-derived cytosolic 41 

protein detected in stool is the most utilized biomarker for inflammatory disorders. Schoepfer et al. 42 

showed a strong correlation between the severity of inflammation and Fcal levels 146. Further, a number 43 

of reports confirmed the ability of Fcal to detect endoscopic inflammation with a sensitivity ranging 44 

between (70-100%) and a specificity of (44-100%), explained by the variations in the selected cut-off 45 

values applied in each study 147,148. Nevertheless, elevated levels of Fcal are not specific for IBD but 46 

rather reflect inflammatory conditions also associated with other intestinal and metabolic pathologies 47 

(e.g., IBS, gastrointestinal malignancies, obesity and T2D). For instance, gut microbiota metagenomic 48 

profiling in 1792 individuals could distinguish IBD from IBS and machine learning algorithms showed 49 

improved IBD vs IBS prediction accuracy to AUC 0.91) compared to (AUC=0.80) based on Fcal 102. 50 
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Importantly, the model reached the highest prediction accuracy by combining Fcal with the top 20 51 

selected taxa (AUC=0.93), suggesting that integrating clinical, and microbial biomarkers improves 52 

diagnostics accuracy. An example of a combined biomarker approach has recently been used to predict 53 

response to therapy in patients with IBD 22. While baseline clinical data, including serological, 54 

endoscopic, and clinical markers, were insufficient in predicting remission (AUC=0.62), the use of 55 

taxonomic and metabolic profiles improved the diagnostic power to (AUC=0.72) and (AUC=0.74), 56 

respectively. Further, Dubinsky and colleagues showed that Fcal alone classified patients with Pouchitis 57 

or with normal Pouch with an AUC of 0.63. In contrast, the microbiome species model (with or without 58 

Fcal as an additional predictor) achieved an AUC of 0.78, confirming a superior diagnostic value of 59 

microbial profiles to Pouchitis classification 149.  60 

In the diagnosis of T2D, serological biomarkers for impaired glucose metabolism in patients with T2D 61 

include fasting plasma glucose (FPG), 2-h plasma glucose (2-h PG) in a 75-g oral glucose tolerance 62 

(OGTT), or the presence of glycated haemoglobin (HBA1C) 150. Combining biomarkers for predictive 63 

modelling of T2D has been shown in a recent study by Wu et al. using data from two Swedish cohorts 64 
114. Multivariate analyses demonstrated a strong correlation between insulin resistance and microbiome 65 

variations. Interestingly, using a microbiome-based machine learning model to distinguish between 66 

individuals with the lowest and the highest insulin resistance in the validation cohort yielded an AUC 67 

(0.78), suggesting that the gut microbiota is an important modifier of T2D progression. In fact, while a 68 

broad range of biomarkers have been proposed for T2D diagnosis, most of them fail to capture the 69 

disease complexity or to grasp both microbial and metabolic alterations. In this regard, metabolite 70 

biomarkers have been used in combination with established risk factors to significantly improve disease 71 

classification 151,152.  72 

Mechanistic implications of microbiome signatures 73 

The need to understand the functional role and specificity of single bacterial taxa (pathobiont) 153,154 or 74 

complex dysbiotic microbial communities (dysbiosis)155–157 is essential to resolve mechanisms of 75 

microbe host interactions in the pathogenesis of IBD or T2D. In this context, functional alterations of 76 

the gut microbiome potentially represent the consequential changes of host adaptations. A causal link 77 

of gut microbiota to multiple diseases has been demonstrated in gnotobiotic mouse experiments 78 
21,61,156,158–162. Germ-free mouse models are selectively colonized with single bacterial strains, minimal 79 

bacterial consortia or defined complex gut microbial ecosystems from human stool or other donor 80 

material to study their impact on host phenotype. In IBD, mono-association of germ-free mouse models 81 

with a variety of commensal bacteria, including Escherichia coli, Enterococcus faecalis, Bacteroides 82 

vulgatus, and Bilophila wadsworthia allowed us to understand underlying mechanisms of disease 83 

initiation or protection163–165. Building complexity through the generation of well-characterized minimal 84 

bacterial consortia (e.g., SIHUMI166 and Oligo MM12 167) provided the means to investigate complex 85 

mechanisms of host-microbe and microbe-microbe cross-talk under physiological and pathological 86 

conditions. In addition, colonization of germ-free mouse models with human fecal microbiota (also 87 

known as humanized mice or human microbiome-associated mice) has been used extensively as a 88 

translation tool to understand mechanisms of complex pathologies, including IBD, T2D, obesity117,156, 89 

asthma, and malnutrition21,59,117,156,158–160,168–170.  90 

We recently showed that gut bacteria are required for driving inflammation in a colitis mouse model and 91 

is associated with the risk of relapse in CD patients 21. Despite the known limitations of incomplete 92 

human bacterial transfer into germ-free mice 171, we captured key features of the disease-associated 93 

microbiome signatures. The transfer of gut microbiota into germ-free mice resulted in successful transfer 94 

of different disease states and revealed shared functional metabolic pathways implicated in 95 

inflammation. These shared patterns could serve as signatures for better classification of disease activity. 96 

Similarly, previous work showed that glucose tolerance 172 and insulin resistance 156,173 are influenced 97 

by gut microbiome composition, verified by a series of fecal microbiota transplantation trials in 98 

gnotobiotic mouse models156,157. At present, microbiome research is moving swiftly beyond the mere 99 

description of microbial community structure and disease association, towards a deeper understanding 100 

of the causative role of gut bacteria to the pathogenesis of complex chronic disorders (Figure 3). As 101 
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such, defining the functional capacity of a given microbial signature can be achieved by metagenomics 102 

and metabolomics interrogation. Strain-level shotgun metagenomic sequencing, can be used to identify 103 

strains, including those keystone species that are present in low abundance yet have an important role 104 

in disease development, and to infer bacterial metabolic pathways, microbial interactions, and microbial 105 

metabolites that affect host physiology. These collective efforts would enhance microbiome modelling 106 

and advance the development of microbiota-based signatures or risk profiles that can be utilized in 107 

clinical settings. 108 

 109 

Conclusions 110 

Over the past decades, evidence from human and mouse studies revealed a fundamental role of the 111 

intestinal microbiome in the pathogenesis of inflammatory and metabolic diseases, such as IBD and 112 

T2D. Changes in the structure and function of the gut microbial ecosystem (dysbiotic microbiome 113 

signatures) have been associated with disease activity, risk of relapse or response to therapy. 114 

Nevertheless, the multifactorial nature of most of these complex pathologies and the existence of a 115 

variety of confounding factors affecting human studies stand as a major challenge for the 116 

implementation of microbiome signatures for diagnosis, prognosis, or decision on therapy. In this 117 

context, the scientific community needs to move from correlation to causation. Beyond sequencing the 118 

identification, isolation and cultivation of functionally relevant bacterial strains and their metabolites is 119 

needed. To achieve this goal, the establishment and use of well-defined in vivo gnotobiotic mouse 120 

models provide fundamental information on the impact of microbial composition on host physiology 121 

and disease susceptibility. To address the heterogeneity and inter-individual variation in microbiome 122 

signatures identification, dense microbiome sampling and disease modelling across populations and 123 

ethnicities should be performed to improve predictive models’ generalizability. Thus, the stratification 124 

of population and patient cohorts is necessary to improve individual disease risk assessment. To ensure 125 

reproducibility and comparability between microbiome studies, the specificity and sensitivity of 126 

microbiome signatures need to be assessed and validated in well-characterized multi-centered cohorts.  127 
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 129 

 130 

 131 

Figure 3 Moving beyond correlation to causation and microbiome signatures discovery. To 132 

investigate the causative role the gut microbiota in disease pathogenesis, cross-sectional or longitudinal 133 

population- based and patient cohort studies are carried out. Microbial, environmental, as well as host-134 

related factors need to be considered when establishing correlations between disease entity and 135 

microbiome structure or function. Multi-omics data are generated based on samples collected from both 136 

host (phenotype, genotype, metabolome, transcriptome) and luminal or mucosal-associated microbiome 137 

(composition, metabolic and genetic functional pathways) using high-throughput omics technologies. 138 

Candidate microbiome-based biomarkers are identified using complex computational and machine-139 

learning tools. Functional validation of candidate biomarkers is achieved through comprehensive in 140 

vivo, in vitro and pre-clinical studies. Isolation and identification of candidate bacterial taxa is performed 141 

for biobanking and for subsequent in vivo targeted mechanistic studies in gnotobiotic mice. Colonization 142 

of germ-free mice with single bacterial taxa or with synthetic minimal consortia could give insight into 143 

the causative role of specific microbes and the underlying microbe-host interactions. Intervention studies 144 

using FMT, or different dietary interventions help to validate the clinical relevance of the identified 145 

microbiome signatures.   146 
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