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Abstract

Say that an integer n is exceptional if the maximum Stirling number of the second kind S(n, k)
occurs for two (of necessity consecutive) values of k. We prove that the number of exceptional
integers less than or equal to x is O(x3/5+ε), for any ε > 0.

1. Introduction

Let S(n, k) be the Stirling number of the second kind, that is, the number of partitions of
an n-set into k non empty, pairwise disjoint blocks. (Detailed definitions appear in the next
section.) Using the initial value S(0, k) = δ0 k and the recursion

S(n+ 1, k) = kS(n, k) + S(n, k − 1) (1)

one may show by induction on n that

S(n, k)2 ≥ (1 +
3
k

)S(n, k − 1)S(n, k + 1), 1 ≤ k ≤ n. (2)

It follows that the ratio S(n, k+1)/S(n, k) is strictly decreasing, and so there is either a unique
maximum Stirling number

S(n, k) < S(n,Kn), for all k 6= Kn

or else there are two consecutive peaks

S(n, k) < S(n,Kn) = S(n,Kn + 1), for all k 6∈ {Kn,Kn + 1}.
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Define the exceptional set E to be those n for which the second alternative holds. Based on
computation through n = 106 reported in the final section, it is possible that E = {2}. Let
E(x) denote the associated counting function

E(x) = #{n : n ≤ x and n ∈ E}.

The purpose of this paper is to prove

Theorem 1. For any ε > 0,

E(x) = O(x3/5+ε).

Our proof of this theorem depends on the fact that, when n ∈ E, the quantity er, where r is
the unique real solution of the equation rer = n, must be unusually close to an integer plus
1/2. (See equation (5) in Section 3.) Starting from (5) and using only elementary arguments,
we will prove in Section 4 a result slightly weaker than Theorem 1, namely with the exponent
3/5 replaced by 2/3. Then, in Section 5, we will prove Theorem 1 by invoking recent work of
Huxley [9] on counting integer points near curves. In Section 6, we give a heuristic argument
for why E should be a finite set. Finally, in Section 7, we report on the computation and
supporting lemma that proves E ∩ (1, 106] = ∅.

2. Definitions and Background

A partition of the set [n] = {1, 2, . . . , n} is a collection of non empty pairwise disjoint subsets of
[n], called blocks, whose union equals [n]. For example, {{1, 4}, {2, 3, 5, 7}, {6}} is a partition of
[7] into 3 blocks. The Stirling number of the second kind, S(n, k), is the number of partitions
of [n] into k blocks. Every partition of [n+1] into k blocks can be obtained either by adjoining
{n + 1} as a singleton block to an existing partition of [n] into k − 1 blocks, or by adding the
element n+1 to one of the blocks of an existing partition of [n] into k blocks. This construction
proves the recursion (1). Here is a table of the first few rows of the Stirling numbers of the
second kind:

n\k 1 2 3 4 5
1 1
2 1 1
3 1 3 1
4 1 7 6 1
5 1 15 25 10 1



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 2 (2002), #A01 3

As explained in the Introduction, for each n ≥ 1 there is a unique integer Kn satisfying

S(n, 1) < · · · < S(n,Kn) ≥ S(n,Kn + 1).

In words, Kn is the location of the maximum Stirling number of the second kind, with the
proviso that should there be two consecutive maxima, Kn is the location of the “leftmore.”
The exceptional set E consists of n such that S(n,Kn) = S(n,Kn+1), and E(x) is the number
of n ≤ x belonging to E.

There is a vast literature on the Stirling numbers to which many people have contributed,
and many properties have been independently rediscovered. Harper’s [6] contributions are
particulary noteworthy. He shows that the polynomials

∑
k S(n, k)xk have only real roots, a

property called total positivity, which is stronger than log concavity. He articulates the unique-
or-double peak property (3), and proves the asymptotic relation Kn ∼ n/ logn, (His formula
contains a superflous factor e which was later corrected.) The asymptotic formula was obtained
by others, for example [18]. Citing Harper’s work, Lieb [13] derives an inequality similar to (2),
based on the general Newton Inequality for coefficients of polynomials whose roots are all real
and negative. The very nice fact that Kn+1 equals either Kn or Kn + 1 appears in [4] and [16].
Using (1) and (2), it can be shown that a necessary condition for n ∈ E is Kn+1 = Kn + 1.
Thus, the growth condition Kn+1 − Kn ∈ {0, 1} plus the asymptotic relation Kn ∼ n/ logn
together imply that E(x) = O(x/ log x), as first pointed out by Wegner [19]. The latter paper
of Wegner makes the explicit conjecture that E = {2}. Prior to the general adoption of more
powerful analytic tools, in a series of papers [1, 8, 10, 11, 12] the authors Bach, Harborth,
and Kanold employ clever elementary arguments to prove many interesting, sharp inequalities
about Kn.

The fact that the signless Stirling numbers of the first kind do indeed have always a unique
maximum is due to Erdős [5].

The status of the “duplicate maximum” problem has been misstated in the literature more
than once. A source of misunderstanding might be the one line abstract, perpetuated in the
Mathematical Reviews, of [4] which states, “For fixed n, Stirling numbers of the second kind,
S(n, r), have a single maximum.” Reading the paper, one sees clearly that the intended meaning
is precisely (3); but certainly the statement can be easily misconstrued when read in isolation.

Canfield [2] and Menon [14] independently showed that Kn is always equal to bκ(n)c or
dκ(n)e, where κ(n) is a certain transcendentally defined function. It will follow from what we
say in Section 3 that for sufficiently large n a simpler definition of κ(n) also satisfies the latter
theorem, namely κ(n) = er−1, where rer = n. Throughout the paper, we shall always use r(x)
for the implicitly defined function

r(x)er(x) = x,
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and the symbol r, with no argument, denotes r(n). For 1 ≤ n ≤ 1200 there is no exception to
the relation

Kn ∈ {ber − 1c, der − 1e}, (4)

although it has been proven true only for n sufficiently large.

3. Asymptotics of the Stirling Numbers S(n, k)

We will neglect polylog factors in our estimates, and so it is convenient to define

F1(x) = O∗(F2(x))

to mean that for a sufficiently large constant C we have

|F1(x)| ≤ C(log x)CF2(x), for x ≥ C.

This given, we may state the lemma that will be of central importance.

Lemma 1. For all sufficiently large n ∈ E we have

er = berc +
1
2

+
1/2

1 + r

where as usual rer = n.

Proof. The exponential generating function in the letter n for S(n, k) is [3]

∞∑
n=k

S(n, k)
xn

n!
=

(ex − 1)k

k!
.

The Cauchy integral formula thus asserts

S(n, k)
n!

=
1

2πik!

∮
|z|=R

(ez − 1)k

zn+1
dz,

for any R > 0. If we take the radius R of the circle of integration to be the quantity r, and
restrict attention to integers k which satisfy the relations

er − 1 = k + θ, θ = O(1),

while making estimates such as those found in [15], we arrive at

S(n, k) =
(er − 1)k

k!
n!
rn
(
2πkB

)−1/2
(
1 − 6r2θ2 + 6rθ + 1

12rer
)
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where
B = B(r) =

re2r − (r2 + r)er

(er − 1)2

depends on r only.

This is very similar to the formula (1) in [2], although the latter was unnecessarily conser-
vative in the error estimate. Now, with k and θ as above, we find

S(n, k + 1)
S(n, k)

= 1 +
(r + 1)θ − 1

2r − 1
er

+ O∗(n−2).

It is this equation which gives us the assertion (4), for all n large, mentioned earlier, and by
setting the right side equal to 1, we obtain the lemma.

Remark. The asymptotic formula for S(n, k), and the more detailed one appearing in the
proof of Lemma 2 in Section 6, are obtained by using the circle method. We do not include any
details about how to use this method, which is a very standard and widely used technique for
obtaining asymptotic estimates of the coefficients of analytic functions. The reader for whom
this is a new topic should study [20, Section 4.5] before moving on to other papers. A very
good account of the circle method particularly useful for asymptotic enumeration is [7]. The
paper of Moser and Wyman [15] contains a lot of useful information about the particular case
of the Stirling numbers. Another good source for this topic is [17].

4. The Elementary Proof

Our goal in this section is to prove that for any ε > 0

E(x) = O(x2/3+ε).

Let ε > 0 be given. It suffices to show that for all sufficiently large X∣∣∣[X,X +X1/3−ε] ∩ E
∣∣∣ ≤ 2. (6)

If (6) fails, then we have infinitely many n such that n, n + `1, n + `2 ∈ E with 0 < `1 < `2 ≤
n1/3−ε. For each such n, we have r with rer = n, and also ri with rieri = n+ `i. Note that

log x − log log x ≤ r(x) ≤ log x,

whence
ri ∼ r.

Since r(x)er(x) = x, it follows that
eri ∼ er.
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By Taylor’s theorem and the facts that

d

dx
er(x) =

1
r(x) + 1

,
d2

dx2
er(x) =

−1
(r(x) + 1)3er(x)

,
d3

dx3
er(x) =

r(x) + 4
(r(x) + 1)5e2r(x)

,

we have
eri = er +

`i
r + 1

1
ri + 1

=
1

r + 1
− `i

(r + 1)3er

Thus,

(`1 − `2)er + `2e
r1 − `1e

r2 = − `2`
2
1 − `1`22

2(r + 1)3er
+ O∗

(`2`31 + `1`
3
2

n2

)
.

Similarly,
`1 − `2
1 + r

+
`2

1 + r1
− `1

1 + r2
= O∗

(`2`21 + `1`
2
2

n2

)
.

Let us refer to the assertions of Lemma 1, namely,

eri = mi + 1/2 +
1/2
ri + 1

as equation i, with 0 ≤ i ≤ 2, taking r0 = r. If we form (`1− `2) times equation 0 plus `2 times
equation 1 minus `1 times equation 2, and substitute the above expansions, we find

− `2`
2
1 − `1`22

2(r + 1)3er
+ O∗

(`2`31 + `1`
3
2

n2

)
= INTEGER + O∗

(`2`21 + `1`
2
2

n2

)
.

In the previous equation, every term except the one labeled “INTEGER” goes to 0 as n→∞;
thus, for all sufficiently large n that term itself must be 0. Dividing through by `1`2 and
collecting big-oh’s,

`2 − `1
2(r + 1)3er

= O∗
(`21 + `22

n2

)
.

Since, however, `2 − `1 ≥ 1, this last equality is impossible. Our initial assumption that (6)
does not hold is contradicted, and the proof is complete.

5. The Proof of Theorem 1

The theorem due to Huxley which we shall apply, [9, (1.7)], bounds the number of integer pairs
(n,m) which satisfy |m− f(n)| ≤ δ for n ∈ [X, 2X]. We shall apply this result to the function

f(x) = er(x) − 1/2 − 1/2
1 + r(x)

,

with δ = Xε−1. With these choices, by Lemma 1, for X sufficiently large, we include all
members of E ∩ [X, 2X] in the count.
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The hypotheses required of f(x) are that there be numbers C ≥ 1, ∆ < 1 such that

C∆ ≤ 1

∆
C
≤ |f ′′(x)| ≤ C∆, x ∈ [X, 2X]

and
|f (3)(x)| ≤ C∆

X
, x ∈ [X, 2X].

The conclusion of Huxley’s theorem is that the number of integer pairs (n,m) is no greater
than an unspecified constant times

1 +
1
b

√
Cδ

∆
+ C2δX(logX − log 2C)ciδdi ,

where b is the least positive integer such that for some x ∈ [X, 2X] we have bf ′(x) within
distance δ of an integer, and the exponents (ai, bi, ci, di) in the sum assume the four values
(2

5 , 1,
1
10 , 0), ( 1

5 ,
4
5 ,

1
10 , 0), ( 2

7 , 1,
1
7 ,

1
7 ), and (1

7 ,
6
7 ,

1
7 ,

1
7 ).

If we take ∆ = X−1, then the quantity C satisfying the hypotheses of Huxley’s Theorem
may be taken as O(Xε), and we obtain the result that between X and 2X there are O(X3/5+ε)
elements of E. This estimate suffices to prove the Theorem. (By being a bit more careful,
one may use Huxley’s Theorem to show that the number of members of E up to X is at most
X3/5(logX)O(1).)

6. A Heuristic

In this section we give a strengthening of Lemma 1 that leads to a heuristic argument that the
set E is finite. Note that already the estimate of Lemma 1 heuristically supports the conclusion
that E(x) = O(xε), and with more care, E(x) ≤ (log x)O(1). To push this heuristic further we
need a more precise version of Lemma 1.

Lemma 2. For n ∈ E and rer = n, we have

er = berc+
1
2

+
1/2

1 + r
+
Ar
er

+ O∗
(
n−2

)
,

where Ar is a rational function in r with rational coefficients.

Proof. With the same meaning for k, θ,B as in the proof of Lemma 1, it is possible to show
that uniformly for |θ| = O(1), we have

S(n, k) =
(er − 1)k

k!
n!
rn

(2πkB)−1/2
(
1 − F1

er
+

F2

e2r
+ O

( r3

e3r

))
,
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where

F1(θ) =
1 + 6rθ + 6r2θ2

12r
,

F2(θ) =
1

288r2

(
r4(−36− 144θ − 144θ2 + 36θ4)

+ r3(96 + 144θ − 288θ2 − 24θ3) + r2(−144θ − 24θ2)

Returning to the proof, it follows from the above formula that

S(n, k + 1)
S(n, k)

=
er − 1
k + 1

( k

k + 1

)1/2(1− F1(θ − 1)e−r + F2(θ − 1)e−2r

1− F1(θ)e−r + F2(θ)e−2r
+ O∗

(
n−3

))
. (7)

Suppose now that n ∈ E, so that S(n, k + 1)/S(n, k) = 1. Write

θ = u+
1
2

+
1/2
r + 1

,

so that Lemma 1 implies that u = O∗(n−1). Hence, if g(x, y) ∈ Q[x, y], then

g(r, θ) = g
(
r,

1
2

+
1/2
r + 1

)
+ O∗

(
n−1

)
.

Thus,

er − 1
k + 1

=
er − 1
er − θ = 1 +

θ − 1
er

+
θ2 − θ
e2r

+ O∗
(
n−3

)
= 1 +

θ − 1
er

+
ar
e2r

+ O∗
(
n−3

)
,

where ar is a rational function of r with rational coefficients. Also(
k

k + 1

)1/2

= 1− 1/2
er

+
1/8− θ/2

e2r
+ O∗

(
n−3

)
= 1− 1/2

er
+

br
e2r

+ O∗
(
n−3

)
,

where again, br is in Q(r). And

1− F1(θ − 1)e−r + F2(θ − 1)e−2r

1− F1(θ)e−r + F2(θ)e−2r
=

1− F1(θ − 1)− F1(θ)
er

+
F2(θ − 1)− F2(θ) + (F1(θ − 1)− F1(θ))F1(θ)

e2r
+ O∗

(
n−3

)
= 1 +

1/2− r/2 + rθ

er
+

cr
e2r

+ O∗
(
n−3

)
,

where cr ∈ Q(r).

Thus (7) and the above estimates imply that

1 =
(
1 +

θ − 1
er

+
ar
e2r

)(
1− 1/2

er
+

br
e2r

)(
1 +

1/2− r/2 + rθ

er
+

cr
e2r

)
+ O∗

(
n−3

)
.

Subtracting 1 from both sides and multiplying by er, we get

(r + 1)θ − 1
2 − 1

2 (r + 1)

= − e−r
(
ar + br + cr − 1

2 (θ − 1) + (θ − 3
2 )( 1

2 − 1
2r + rθ)

)
= dre

−r + O∗
(
n−2

)
,
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where dr ∈ Q(r). Thus, we have Lemma 2.

We now give a heuristic argument, based on Lemma 2, that the set E is finite. With rer = x,
let

g(x) = er − 1
2
− 1/2
r + 1

− Ar
er

=
x

r
− 1

2
− 1/2
r + 1

− rAr
x
.

The function g(x) is smooth with

g′(x) ∼ 1
log x

, g′′(x) ∼ −1
x log2 x

, g(3)(x) ∼ 1
x2 log2 x

.

There is no reason to believe that g(n) has a prediliction to be close to an integer over any
other transcendental number. But Lemma 2 implies that for n ∈ E, we have ‖g(n)‖ = O∗(n−2),
where ‖ ‖ denotes the distance to the nearest integer. Heuristically, the number of such integers
n is

∑
O∗(n−2) = O(1). (One might view the expression O∗(n−2) as an upper bound for the

“probability” that n ∈ E, and the sum of these probabilities is O(1).)

7. Numerics

To verify that E ∩ (1, 106] = ∅, we wrote a program to compute S(n, k) mod 231 − 1. We
computed all such residues for 2 ≤ n ≤ 106 and 2 ≤ k ≤ min{87890, n}, finding 33 pairs (n, k)
satisfying the conditions:

2 ≤ n ≤ 106

2 ≤ k < min{87890, 2n/ log(n), n}
S(n, k) = S(n, k + 1) mod 231 − 1.

We may impose the stated bounds on k for these reasons: (1) by Lemma 3, stated and proven
below, Kn < 2n/ log(n) for n ≥ 151; (2) an independent computation of exact values of S(n, k),
using maple, had already shown E ∩ (1, 1200] = ∅; (3) S(106, 87848) > S(106, 87890).

The third of these facts was established by making rigorous numerical estimates, with con-
siderable help from maple. The basis for these estimates is the pair of inequalities

kn

k!

O∑
j=0

(
k

j

)
(−1)j(1− j/k)n ≤ S(n, k) ≤ kn

k!

E∑
j=0

(
k

j

)
(−1)j(1− j/k)n (8)

for any positive odd integer O and nonnegative even integer E . These are the Bonferroni
inequalities ([3], Section 4.7 ). We used O = 5 and E = 4 to prove

logS(106, 87848) > 10 471 198

logS(106, 87890) < 10 471 197.992
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Later, by taking E = 10 and O = 11 we were able to show conclusively that

K106 = 87846.

For anyone wishing to duplicate the computation, we provide these checkpoints:

• the first of the 33 pairs is (n, k) = (124322, 16581)

• the last of the 33 pairs is (n, k) = (965756, 12911)

• S(106, 87890) = 1111899618 mod 231 − 1

• S(124322, 16581) = 1636672468 mod 231 − 1

• S(965756, 12911) = 897942184 mod 231 − 1

The program was modified to compute S(n, k) mod 219 − 1, and run a second time. This
second modulus was able to distinguish 31 of the pairs found in the first run; for example,

S(124322, 16581) = 31493 mod 219 − 1 and S(124322, 16582) = 504717 mod 219 − 1.

However, all four of the numbers S(n, k) for n = 526314, k = 51889, 51890 and n = 559358, k =
52358, 52359 are 0 mod 219 − 1. To distinguish among these a further calculation was needed.
Note that the bounds given in equation (8) are in fact equalities if E , or as appropriate O, is
equal to k. For a prime p > k this provides a way to compute S(n, k) mod p directly, without
computing any other Stirling numbers in the process. This identity shows, as shown in [19,
(4.1)], that S(n, k) ≡ S(A, k) mod p for prime p > k and n ≡ A 6≡ 0 mod (p− 1). For the first
few primes p larger than k, we have 0 < A < k, so for these primes S(n, k) is congruent to 0.
The first prime larger than 51889 for which S(526314, 51889) is not congruent to 0 is p = 52639.
We have

S(526314, 51889) = 4890 mod 52639, and S(526314, 51890) = 43718 mod 52639.

In a similar manner, the pair for n = 559358 is distinguished by the prime p = 55949. In this
way, then, we prove there are no duplicate maxima for 1 < n ≤ 106.

We now conclude with the above referenced lemma.

Lemma 3. For all integers n ≥ 151 we have Kn < 2n/ logn.

Proof. For any positive integer k with 1 ≤ k ≤ n, we have

kn

k!
− (k − 1)n

(k − 1)!
≤ S(n, k) ≤ kn

k!
. (9)

These inequalities are the case E = 0 and O = 1 of equation (8). We include a from-scratch
proof since it is not difficult. Indeed, the number of assignments of the integers 1, . . . , n into
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k labeled boxes with no box remaining empty is at most kn, and each set partition of [n]
corresponds to k! such assignments. Thus, we have the upper bound in (9). Further, the
number of assignments without the restriction that no box remain empty is exactly kn, and
the number of assignments where box i remains empty is exactly (k − 1)n. Thus, the number
of assignments with no box remaining empty is at least kn − k(k − 1)n. From this, the lower
bound in (9) follows easily.

We now let k = bn/ lognc. We will show that for n ≥ 151,

(2k)n

(2k)!
<

kn

k!
− (k − 1)n

(k − 1)!
. (10)

Note that (9) and (10) show that S(n, k) > S(n, 2k), and so from (3), we must have Kn < 2k.
To see (10), let

α =
(2k)n/(2k)!
kn/k!

, β =
(k − 1)n/(k − 1)!

kn/k!
.

We will show that for n ≥ 151 we have α, β < 1/2, so that (10) follows for these values of n.

We have

β = k(1− 1/k)n ≤ ke−n/k = bn/ lognce−n/bn/ log nc

≤ (n/ logn)e− log n = 1/ logn.

Thus, for n ≥ 151, we have β ≤ 1/ log 151 < 1/5. The estimation for α is a little more difficult.
We have

α−1 =
(2k)!
k!

2−n = k!
(

2k
k

)
2−n.

Using the inequalities k! > (k/e)k,
(

2k
k

)
≥ 22k/(2k), which are both easy to see, we have

α−1 > kk−1e−k22k−1−n,

so that
log(α−1) > (k − 1)(log k + log 4− 1)− ((n− 1) log 2 + 1).

An elementary check shows that this last expression exceeds 1 for all integers n ≥ 151, so that
α < 1/e in this range. This completes the proof of (10) and the lemma.
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