
Evaluation of
in-memory database TimesTen

August 2013

Author:
Endre Andras Simon

Supervisor(s):
Miroslav Potocky

CERN openlab Summer Student Report 2013

https://twiki.cern.ch/twiki/bin/view/DB/Private/TimesTen

CERN openlab Summer Student Report 2013

Project Specification

Oracle TimesTen In-Memory Database is a full-featured, memory-optimized, relational database

with persistence and recoverability. For existing application data residing on the Oracle Database,

TimesTen can serve as an in-memory cache database. This setup can provide great performance

increase and almost instant responsiveness for database intensive applications. Cooperation

between application and database support is needed to test integration, benefits and possibilities

this product provides for database intensive applications in CERN.

Main goal is to test performance improvement in response time when using Oracle TimesTen in-

memory database cache (IMDB) layer between high load CERN applications and their respective

databases.

https://twiki.cern.ch/twiki/bin/view/DB/Private/TimesTen
https://twiki.cern.ch/twiki/bin/view/DB/Private/TimesTen
https://twiki.cern.ch/twiki/bin/view/DB/Private/TimesTen

CERN openlab Summer Student Report 2013

Abstract

In this paper I will introduce the key features of Oracle TimesTen In-memory database, focusing

on the scenario when TimesTen is used as a cache between applications and their databases.

Several industry standard benchmarks will be run against both Oracle database and Oracle

TimesTen In-memory cache, to determine the performance gains when using Oracle TimesTen as

a cache. Based on these results, we will examine the causes and consequences to make future

assumptions. After reading this document, the reader will have a broad overview of uses-cases,

when using TimesTen is advantageous.

CERN openlab Summer Student Report 2013

Table of Contents

Abstract ... 3

1 Introduction .. 6

2 Testing methods... 7

2.1 Technologies .. 7

2.1.1 Oracle database .. 7

2.1.2 Oracle TimesTen In-Memory database ... 8

2.1.3 HammerDB .. 13

2.2 Test network installation and configuration .. 16

2.2.1 Overview of the system ... 16

2.2.2 Load Generation Server configuration ... 16

2.2.3 SUT configuration .. 18

2.3 Creating the test schemas ... 19

3 Test cases and expectations .. 20

3.1 Pre-testing .. 20

3.1.1 Testing the TPC-C schema ... 20

3.1.2 Testing the TPC-H schema ... 21

3.2 Planning and preparation ... 21

3.2.1 Planning the TPC-C tests .. 21

3.2.2 Planning the TPC-H tests .. 22

4 Results ... 22

4.1 TPC-C results ... 22

4.1.1 Tests on Oracle ... 24

4.1.2 Tests on TimesTen .. 25

4.2 TPC-H results ... 26

5 Discussion and conclusion ... 26

CERN openlab Summer Student Report 2013

5.1 TPC-C conclusions .. 26

5.2 TPC-H conclusions .. 28

References .. 30

Appendix A .. 31

Appendix B .. 31

Appendix C ... 32

CERN openlab Summer Student Report 2013

6 | P a g e

1 Introduction

CERN deals with a lot of data, thus the databases are indispensable part of the environment. All

the experiments store their data in databases where most of them is between 1 and 12 TB in size.

The LHC accelerator logging database (ACCLOG) is currently around 160 TB, and produced 110

GB new data in a day during the beam operations, so it has an expected growth up to 70 TB/year.

Not only the experiments, but several other departments rely on database services. Several

administrative, IT and Engineering databases are used for different purposes. In summary, more

than 130 databases are used at CERN day to day, and because of the sensitive and valuable data,

it is crucial to these databases to provide an efficient and reliable service. The DB group of IT

department is responsible for administering these databases, and provide integrated support for

users all around CERN.

Because of the large amount of data, the performances of the databases are not negligible. To

analyse the data, and produce scientific results, there must be a quick way to query and process

all the data, collected by the experiments. For this reason CERN started Openlab over a decade

ago. Within Openlab, CERN is collaborating with leading IT companies, to accelerate the

development of cutting-edge technologies. The DB group, besides the activities mentioned above,

is also a part of the CERN Openlab, and experiments with several new technologies together with

Oracle, to improve the provided services in the future. Oracle TimesTen In-Memory database is

one of the promising opportunities, which can dramatically improve the performance in some

cases. My task is to evaluate the performance of Oracle TimesTen In-Memory Database, and give

a broad overview of the advantages and disadvantages of using TimesTen as a memory cache

between high load CERN applications and their respective databases.

First we will have an overview about the used technologies in this document. We will get familiar

with the basics of Oracle RDBMS and have an overview about the different capabilities of

TimesTen. For benchmarking, HammerDB will be used, thus a short introduction will follow,

about the several benchmark options and TPC standards. With this knowledge we can have an

overview of the test system, and a detailed description of the used database schemas.

In the next section I will introduce the different test scenarios, and evaluation viewpoints. This

section will cover the pre-testing scenarios, the testing schedules and the explanations of tests as

well. I also try to predict the expected performance of TimesTen, providing tests to determine the

upper and lower bounds of the IMDB.

In the fourth section, several results will be provided. This sections goal is to show the gathered

results from different point of view, compared to each other. This section does not aim to

interpret the outcome and solve the different disparities between the expectations and the real

results.

In section Discussion and conclusion, the results will be explained and analysed, to have an

overall picture about the impact of using TimesTen in the different test cases.

CERN openlab Summer Student Report 2013

7 | P a g e

2 Testing methods

2.1 Technologies

In this section I’m summarizing the main properties of the benchmark environment. Below is a

list of software used for the test.

 Oracle TimesTen In-Memory database [3][4][5]

 Oracle database [10]

 HammerDB [1][2][8]

The first two are products to compare, and the third is used to perform the benchmarks. In the

next sections a more complete overview will be given.

2.1.1 Oracle database

Basic introduction

Oracle database is a widespread relational database management system (RDBMS), with several

effective solutions for enterprises. The basic idea of RDBMS is to control the storage,

organization and retrieval of data, hence it has the typically the following elements:

 Kernel code

 Metadata repository

 Query language

The data model which is used by an RDBMS is called relational model, and was invented by

Codd in 1970. It is a well-defined mathematical structure, with operations on this structure.

When an RDBMS moves data into a database, stores the data, or retrieves it, operations on the

data model are done in the background. However the RDBMS distinguishes between two major

types of operations:

 Physical operations

 Logical operations

In the first case, only content is selected through an operation, and this content will be retrieved

as result. The second case is responsible for the low level data access, and optimization.

Oracle Database Architecture

An Oracle database server consists of two entities:

 A database

 At least one database instance

The two entities are strongly related, but not the same. A database is a set of files, which stores all

the data of a database, and is independent from an instance. An instance is a set of structures in

the memory, to manage the database. As you can see on Figure 1 the instance consist the system

global area (SGA), and other background processes. [10]

CERN openlab Summer Student Report 2013

8 | P a g e

Figure 1. Oracle instance and database
1

2.1.2 Oracle TimesTen In-Memory database

Basic introduction

Oracle TimesTen is an In-Memory database with cache capabilities. It is optimized to deal with

data stored in the memory, therefore it provides extremely high throughput and fast response

1
 http://docs.oracle.com/cd/E11882_01/server.112/e25789/intro.htm#i68236

CERN openlab Summer Student Report 2013

9 | P a g e

time. Because of these properties, TimesTen is ideal to use as a database cache for real-time

applications or for applications where the high throughput is mandatory.

This remarkable improvement can be achieved by changing the behaviour of the data access.

TimesTen already assumes that the data resides in memory, so memory optimized algorithms and

data structures can be used. This means, that the complexity of database drops, and data can be

queried faster. Compared to disk-based relational database management systems (RDBMS)

TimesTen can gain impressive performance, because disk-based systems make the assumption

that the data is written on the disk. Even when a disk based RDBMS holds the data in its own

memory cache, the performance is restricted by the assumption that data resides on disk.[3] In

contrast of that, when the assumption of disk-residency is removed, many things can be done

much simpler:

 No buffer pool management is needed

 No extra copies needed

 Index pages shrink

 The number of machine instruction drops

Figure 2. Comparing a disk-based RDBMS to TimesTen
2

2
 http://docs.oracle.com/cd/E21901_01/doc/timesten.1122/e21631/overview.htm

http://docs.oracle.com/cd/E21901_01/doc/timesten.1122/e21631/overview.htm

CERN openlab Summer Student Report 2013

10 | P a g e

The difference can be observed well on Figure 2. The image explains the differences between a

disk-based RDBMS and TimesTen.

In the first case, the traditional RDBMS queries the database with an SQL query through shared

memory. The query optimizer tries to evaluate this statement, and through hash functions finds

the page and table numbers. The corresponding page in the buffer pool contains the data, and

will be copied to a private buffer for further use. The client will receive the content of this private

buffer through shared memory.

In case of TimesTen, the complexity is dramatically reduced. Consider that the application makes

the same query in TimesTen. A direct connection will be used to pass the query to the optimizer.

The optimizer simply determines the memory address of the record. Because the database resides

in memory, the data can be easily copied to the private buffer, and the application can use it

because of the direct link.

TimesTen features

Without further discussion I will introduce the key features of TimesTen, for detailed information

please see the first chapter of [3].

 TimesTen API support

 Access Control

 Database connectivity

 Durability

 Performance through query optimization

 Concurrency

 Database character sets and globalization support

 In-memory columnar compression

 Data replication between servers

 Cached data with the IMDB Cache

 Load data from an Oracle database into a TimesTen table

 Business intelligence and online analytical processing

 Large objects

 Automatic data aging

 System monitoring

 Administration and utilities

Using TimesTen as an IMDB Cache

In this document, the most important features of TimesTen are the caching capabilities. Basic unit

of caching in TimesTen is called cache group. A cache group is a set of related tables in a

database. It can be configured to cache all or just a part of the database tables. Every cache group

has exactly one root table, and one or more child tables. Each child table must reference the root

table or another child table in the same group using a foreign key constraint. When data is loaded

from the database to TimesTen, each row from the root table, and the related child tables are

moved together. This subset of database is called cache instance.

http://docs.oracle.com/cd/E21901_01/doc/timesten.1122/e21631/overview.htm#CEGFFCJG
http://docs.oracle.com/cd/E21901_01/doc/timesten.1122/e21631/overview.htm#BAABIIDD
http://docs.oracle.com/cd/E21901_01/doc/timesten.1122/e21631/overview.htm#BAAFAGCH
http://docs.oracle.com/cd/E21901_01/doc/timesten.1122/e21631/overview.htm#BAAFGFDJ
http://docs.oracle.com/cd/E21901_01/doc/timesten.1122/e21631/overview.htm#BAABDHGJ
http://docs.oracle.com/cd/E21901_01/doc/timesten.1122/e21631/overview.htm#BAACDCEA
http://docs.oracle.com/cd/E21901_01/doc/timesten.1122/e21631/overview.htm#BAAJADIB
http://docs.oracle.com/cd/E21901_01/doc/timesten.1122/e21631/overview.htm#CEGGFEDI
http://docs.oracle.com/cd/E21901_01/doc/timesten.1122/e21631/overview.htm#BAAIEHGB
http://docs.oracle.com/cd/E21901_01/doc/timesten.1122/e21631/overview.htm#BAABEDDE
http://docs.oracle.com/cd/E21901_01/doc/timesten.1122/e21631/overview.htm#CJAEJADB
http://docs.oracle.com/cd/E21901_01/doc/timesten.1122/e21631/overview.htm#CEGDAIEC
http://docs.oracle.com/cd/E21901_01/doc/timesten.1122/e21631/overview.htm#CEGIJAHI
http://docs.oracle.com/cd/E21901_01/doc/timesten.1122/e21631/overview.htm#BAAHFCAH
http://docs.oracle.com/cd/E21901_01/doc/timesten.1122/e21631/overview.htm#CJAEFCGI
http://docs.oracle.com/cd/E21901_01/doc/timesten.1122/e21631/overview.htm#BAAECGJC

CERN openlab Summer Student Report 2013

11 | P a g e

Figure 3. A cache group and three cache instances.
3

The four main types of cache groups are:

 Read-only cache group

Read only cache groups can cache and automatically refresh cache data from the

underlying database. Read only cache group is suitable for caching heavily used data.

 Asynchronous writetrough cache group (AWT)

AWT cache groups propagate committed data from the cache to the underlying database

in asynchronous way. AWT is intended for high speed data capture and OLTP.

 Synchronous writetrough cache group (SWT)

3

http://download.oracle.com/otn_hosted_doc/timesten/1122/doc/timesten.1122/e21634/concepts.htm#BABF

BIEC

CERN openlab Summer Student Report 2013

12 | P a g e

SWT is the same as AWT, but it propagates data in a synchronous way.

 User managed cache group

User managed cache groups can implement customized caching behaviour.

TimesTen exchanges committed data with the Oracle Database. There are different types of data

exchange operations, based on the direction of the transmitted data, and based on the way they are

performed.

Figure 4. Data propagation between TimesTen and Oracle Database
4

As you can see on Figure 4, Flush and Propagate operations transfer the committed data from

TimesTen to Oracle Database. Flush is a manual operation and Propagate is executed

automatically.

Load, Refresh and Autorefresh are used to transfer committed changes from the Oracle Database

into cache tables. Load operation can load a selected set of data into the cache group. Refresh

only looks for committed changes, and keeps the cached data up-to-date. Both operations are

performed manually. Autorefresh does the same as refresh, but it is done automatically.

Another categorization can be based on how data is loaded into a cache group. There are

explicitly loaded and dynamic cache groups. In an explicitly loaded cache group, cache instances

are loaded manually, before any query occurs. The most common use-case of explicitly loaded

cache groups is for data which is static, and can be predetermined before the application begins to

perform queries. In dynamic cache group, data is loaded on demand from Oracle Database.

Dynamic cache groups are used, when data cannot be predetermined before the application

performs queries.

4

http://download.oracle.com/otn_hosted_doc/timesten/1122/doc/timesten.1122/e21634/concepts.htm#BABF

BIEC

CERN openlab Summer Student Report 2013

13 | P a g e

Cache groups can be classified based on how they share data across the grid as well. A cache

group can be either local or global. The tables in a local cache groups are not shared across the

grid members. Therefore, the cached tables in different grid members can overlap, and when data

is committed, further coordination is needed between grid members to preserve consistency. Any

types of cache group can be declared as a local cache group. Global cache groups share data

between the other grid members. To keep the data consistent, committed data is propagated in a

strict order in which they were executed within the grid. Only AWT cache groups can be defined

as global.

 Explicitly loaded Dynamic

Local Global Local Global

Read only X X

AWT X X X X

SWT X X

User managed X X

Table 1 The table shows the different types of cache groups

2.1.3 HammerDB

Basic introduction

HammerDB is a free, open source database benchmarking tool for Oracle, SQL Server,

TimesTen, PostgreSQL, Greenplum, Postgres Plus Advanced Server, MySQL and Redis. It

supports TPC-C and TPC-H industry standard benchmarks, and supports scripting, so the

benchmarks can be easily extended. In our case it will be used to perform both TPC-H and TPC-

C benchmarks against Oracle database and Oracle TimesTen In-Memory database.

An overview of TPC-C benchmarking

TPC-C is the benchmark of the Transaction Processing Performance Council (TPC), which

measures the performance of online transaction processing systems (OLTP). The goal of the

benchmark is to define operations that are supported by all transaction processing systems, and to

define a schema which is used for benchmarking. The documentation of the benchmark is open to

the public, so everybody can implement and use it for reliable benchmarking.

CERN openlab Summer Student Report 2013

14 | P a g e

TPC-C simulates a real-life example of online transaction processing, where transactions are

executed against the database. The benchmark implements a company that delivers orders,

records payments and monitors several business parameters in the database.

The company has some warehouses, and each warehouse has ten sales districts. Each sales district

maintains three thousand customers. The distribution of transactions are modelled after realistic

scenarios, thus the most frequent transactions are entering a new order and receive payment from

users. Less frequent transactions are transactions from operators, to maintain a particular sales

district. As the company expands, the database grows with it, hence TPC-C benchmarks are

easily scalable. Figure 5 shows the organization structure described above.

CompanyCompany

Warehouse1Warehouse1 Warehouse2Warehouse2 Warehouse3Warehouse3 WarehouseNWarehouseN

Each warehouse has 10 sales districtEach warehouse has 10 sales district

3000 users is server by each
warehouse

Figure 5. The organization structure of TPC-C

An overview of TPC-H benchmarking

TPC-H benchmark is a data warehousing benchmark, thus it executes a couple of business

oriented ad-hoc queries and concurrent data modifications. This benchmark illustrates high-load

systems that examine large volume of data, and executes complex queries to answer important

questions.

The TPC-H schema size is not fixed, it can be manipulated trough a Scale Factor, so schemas can

be either small or large depending on the system that you want to test. While performing TPC-H

you will create a performance profile, based on the execution time of all 22 TPC-H queries. To

CERN openlab Summer Student Report 2013

15 | P a g e

calculate the Composite-Query-per-Hour Performance metric (Qph@Size), you have to know the

following things:

 Database size

 Processing time of queries in a single user case (Power test)

 Processing time of queries in a multi user case (Throughput test)

In the last case, the number of concurrent user is based on the size of the database, for more

details please see [2] or [7].

Figure 6. The TPC-H schema
5

5
 http://www.tpc.org/tpch/spec/tpch2.16.0.pdf

CERN openlab Summer Student Report 2013

16 | P a g e

2.2 Test network installation and configuration

2.2.1 Overview of the system

The test system, shown on Figure 7, is very simple, but straightforward. There are three main

components which are necessary for successful testing:

 System Under Test

 Load Generation Server

 Administrator PC

The System Under Test (SUT) is the server running the Oracle Database and Oracle TimesTen

In-Memory Cache. It is very important during the benchmarks to leave SUT configuration the

same, to gain consistent results.

The Load Generation Server runs the HammerDB with TPC-C and TPC-H benchmarks. To be

able to connect to the Oracle database and to the TimesTen In-Memory Cache, Oracle Instant

Client and TimesTen libraries are required.

The Administrator PC is the PC which runs the monitoring tools, to gather information while

benchmarks are running. Because this activity does not need high computing capacity, I choose to

run this tool on the Load Generation Server.

The parts of the test system are connected through network connection, considering that network

remains the same during the test, network latency will not cause notable problems in the test

results.

Database server

Load generation server

Administrator PC

NAS

Figure 7. The infrastructure of the test-system.

2.2.2 Load Generation Server configuration

The configuration process of the load generation server is pretty simple. In this section, I will

describe the main steps to set up the environment. You can download the software mentioned in

this section by following the links in Appendix A. Because the Load Generation Server runs on

Windows, I will describe the configuration process for Windows machines, but the main steps are

the same for other operating systems.

CERN openlab Summer Student Report 2013

17 | P a g e

Installing Oracle Instant Client

1. Download Oracle Instant Client, and unpack it somewhere (for example:

C:/instantclient)

2. Create C:/instantclient/tnsnames.ora, and configure the appropriate

settings to reach your SUT [11]. The following is an example for proper

setting:

TTDB1 =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(Host = 10.16.6.151)(Port = 1521))
)
 (CONNECT_DATA =
 (SERVICE_NAME = ORCL)
)
)

TTCACHE1 =
 (DESCRIPTION =
 (CONNECT_DATA =
 (SERVICE_NAME = TTCACHE1)
 (SERVER = timesten_client)
))

3. Create C:/instantclient/sqlnet.ora and write the following code inside. This

is required to the proper use of HammerDB [1].

TCP.CONNECT_TIMEOUT=15
SQLNET.AUTHENTICATION_SERVICES = (NTS)
DIAG_ADR_ENABLED=OFF
DIAG_SIGHANDLER_ENABLED=FALSE
DIAG_DDE_ENABLED=FALSE

4. Go to the Control Panel/System/Edit environment variables and add new

system variable SQLPATH with the appropriate path (C:/instantclient/ in

this example). Add this path to the system’s PATH variable too.

Installing Oracle TimesTen libraries

1. Download the appropriate version of Oracle TimesTen.

2. Run the setup, if you only need the client libraries select client only option

[12].

Installing HammerDB

CERN openlab Summer Student Report 2013

18 | P a g e

1. Download HammerDB.

2. Use the setup to install the software.

2.2.3 SUT configuration

This section will provide a guide to set up TimesTen on your server. Setting up TimesTen as an

In-Memory Cache will be also covered.

Preparing the system to install TimesTen

1. Large pages

In order to use TimesTen you have to enable large page support. If enabled, you have to set

the appropriate values. Consider an example, where TimesTen database is around 100GB.

First you have to determine the huge page size.

[root@itrac1301 TTDB1]# cat /proc/meminfo | grep Hugepagesize
Hugepagesize: 2048 kB

Now you can calculate the number of huge pages easily [4]:

100GB = 102400MB
2048kB = 2MB
nr_hugepages = 102400MB / 2MB = 51200

Now, you have to edit /etc/sysctl.conf, and set the value, calculated above. After you

are done editing, execute the command sysctl –p to let make changes immediately.

2. Semaphores

TimesTen uses 155 semaphores, plus one per each connection [4]. To set this number you

have to edit the /etc/sysctl.conf files kernel.sem parameter. This parameter looks

like this:

[root@itrac1301 TTDB1]# sysctl -a | grep kernel.sem
kernel.sem = 250 32000 100 128

The first parameter is SEMMSL, the maximum number of semaphore per array. The second

parameter SEMMNS is the maximum number of semaphores. The third parameter is the

maximum number per semop call (SEMOPM), and the last parameter is the number of arrays.

As you can see the SEMMNS = SEMMSL * SEMMNI equation is satisfied, although is not

necessary.

To set this parameter properly, you have to decide the maximum connections per TimesTen

instance, and calculate the relevant number. For example if you want to allow 100

connections, you have to set SEMMSL to 255. After editing, use sysctl –p.

3. Shared memory

You have to set shared memory settings as well. The recommended value for the maximum

shared memory size (SHMMAX) equals the size of the database. After this you have to set the

CERN openlab Summer Student Report 2013

19 | P a g e

total number of memory pages (SHMALL). This value should be equal to

ceil(SHMMAX/PAGE_SIZE) [4]. Page size is generally 4KB on x86 systems and 16KB on

Itanium. For example, if you have a 64GB database on Itanium, set the following values:

kernel.shmmax=68719476736
kernel.shmall=4194304

Creating TimesTen admin user

To use TimesTen you have to specify the users group, who are allowed to use the IMDB. By

default it is the primary group of the user, who installs the instance. You can modify the default

setting, by giving the name of the group explicitly or by making the instance world accessible.

To install TimesTen, you also have to create an instance registry [4]. To do this, do the following:

[root@itrac1301 TTDB1]# groupadd ttadmin
[root@itrac1301 TTDB1]# mkdir /etc/TimesTen
[root@itrac1301 TTDB1]# chgrp –R ttadmin /etc/TimesTen
[root@itrac1301 TTDB1]# chmod 770 /etc/TimesTen

Now you can install TimesTen.

Installing Oracle TimesTen

Now, if you downloaded the TimesTen package, simply use the setup.sh command, located in

the main directory and follow the instructions. After the installation is complete, the instance will

be started. The last step is to set the environment for TimesTen, to make administrative things

easier. To do this, login as the TimesTen user, and edit your .bashrc file like this, of course you

should change the paths to your install directory:

export ORACLE_BASE=/ORA/dbs01/oracle/product/ttcache/
export ORACLE_HOME=/ORA/dbs01/oracle/product/ttcache/TimesTen/TTCACHE1
export
TIMESTEN_INSTALL_ROOT=/ORA/dbs01/oracle/product/ttcache/TimesTen/TTCACHE1
source $ TIMESTEN_INSTALL_ROOT/bin/ttenv.sh
export ORACLE_SID=TTCACHE1
export PATH=$ ORACLE_BASE
/TimesTen/TTCACHE1/bin:/usr/sue/sbin:/usr/sue/bin:/sbin:/bin:/usr/sbin:/usr
/bin
export TNS_ADMIN $ORACLE_BASE/TimesTen/TTCACHE1/network/admin

Setting up TimesTen as an In-Memory Cache

2.3 Creating the test schemas

HammerDB makes it easy, to create the TPC-C and TPC-H schemas, because of the built-in

schema creator. Although, the TPC-C schema created by HammerDB cannot be cached in

TimesTen, due to some missing primary and foreign keys. The create_tpcc_cacheable.tcl

CERN openlab Summer Student Report 2013

20 | P a g e

script will create a totally equivalent scheme, with fixed properties. To create the TPC-H scheme

you can easily use the built in schema generator. For more details using HammerDB schema

generator see [1], [2] and [9].

3 Test cases and expectations

3.1 Pre-testing

Pre-testing aims to verify the test cases, database configurations and previously created TPC-C

and TPC-H schemas. This ensures you that everything is fine before beginning the real

benchmarking. After pre-testing, it is advisable, to back up the database, and to use this backup

later as a starting point for the benchmarks. This will provide consistent and clean results.

3.1.1 Testing the TPC-C schema

Testing the TPC-C schema includes two things:

 Verifying that the schema is correct

 Verifying that the AWR snapshots are taken

Figure 8. HammerDB after successfully finished benchmark

For this, you have to create a driver script which connects to the database, run a short test, and

saves the changes in an AWR Snapshot. You can create it by the Driver Script creator in

HammerDB, or you can use the scripts provided in Resource download links

CERN openlab Summer Student Report 2013

21 | P a g e

Appendix B. If the script finishes properly, you can ensure that the created schema works, and

you can also check the created AWR reports. For more information see [1] and [13].

3.1.2 Testing the TPC-H schema

According to [2] and [7], to do proper test we have to find the optimal Degree of Parallelism

(DOP), when using TPC-H. To do this, you have to run the TPC-H benchmark several times, with

different DOP values. At the end, you will have a similar graph to Figure 9, and you can easily

determine the proper value for DOP. Note that you only need to calculate the value, when you use

Oracle Database. For more details, see [2].

Figure 9. Finding optimal DOP.

3.2 Planning and preparation

3.2.1 Planning the TPC-C tests

As I need to compare the performance of the Oracle Database with and without TimesTen In-

Memory cache, I have to run several tests both on TimesTen and on Oracle Database.

Additionally, I had an opportunity to test the performance of the database when running on local

disk and on NAS.

Because disk reads and writes are always bottlenecks, I tried to experiment with solutions which

try to avoid these factors. The commit_read parameter of Oracle Database can modify the way

of handling transactions [14]. When this parameter is set to IMMEDIATE,WAIT transactions are

committed immediately and the client waits until the redo is flushed to disk. This is the default

parameter, and this is the recommended setting to use. Although, when a lot of small transactions

are executed in a row, this approach is not very effective. When BATCH, NOWAIT is used, the

redo writes are buffered, and the real disk operation is executed after the buffer reach a limit. The

NOWAIT option indicates that the client can continue without waiting for the transaction commit.

This setting can result better performance, but there are data consistency risks associated.

However for the tests performed the risk is negligible.

0 s

100 s

200 s

300 s

400 s

500 s

600 s

700 s

800 s

900 s

1000 s

1 2 4 8 16 20 24 28 32 64 128

e
xe

cu
ti

o
n

 t
im

e
 [

s]

degree of paralleism

Optimal DOP

CERN openlab Summer Student Report 2013

22 | P a g e

Because I also wanted to find out the upper limit of throughput on local disk and NAS, I executed

benchmarks both in IMMEDIATE,WAIT and BATCH, NOWAIT mode.

For summary, the benchmarks on Oracle Database are:

 Local disk, BATCH, NOWAIT mode

 Local disk, IMMEDIATE,WAIT mode

 NAS, BATCH, NOWAIT mode

 NAS, IMMEDIATE,WAIT mode

In case of TimesTen, data resides in main memory, thus I/O is not a bottleneck anymore. One

aspect of the benchmarks is to find the upper limit of performance. This consideration can be

easily achieved, when we cache the whole underlying database in TimesTen, so we avoid data

propagation between the database and TimesTen. In the other hand, I wanted to find out the

performance when the database is not fully cached. This is important, because in real life, the

databases cannot fit in the main memory.

The other aspect of testing TimesTen was to experiment with different cache groups. Running

these tests, requires readable and writable cache instances, so I could only test Asynchronous

Write through and Synchronous Write trough cache groups.

The benchmarks executed on Oracle TimesTen are the following:

 FULLY CACHED, AWT

 FULLY CACHED, SWT

 PARTIALLY CACHED, AWT

 PARTIALLY CACHED, SWT

For details please see

CERN openlab Summer Student Report 2013

23 | P a g e

Appendix C.

3.2.2 Planning the TPC-H tests

Because TPC-H tests are rather CPU than I/O intensive, the considerations above are not true for

these benchmarks. Because of this, I didn’t considered any special cases for TPC-H, I ran the

TPC-H power and throughput [2][7] tests against Oracle Database and TimesTen.

For details please see

CERN openlab Summer Student Report 2013

24 | P a g e

Appendix C.

4 Results

4.1 TPC-C results

Results are available in Table 2 and Table 3. Following columns are presented:

 Virtual users: number of parallel virtual users

 tpm: raw transactions per minute

 noPM: TPC-C normalized transactions per minute

 Average response time: average response time for queries

 CPU load: average CPU load during the benchmark

 Disk reads/write: average disk read/write speed during the benchmark

CERN openlab Summer Student Report 2013

25 | P a g e

4.1.1 Tests on Oracle

Oracle
(E01) Local Disk, IMMEDIATE

virtual users tpm noPM Average response time [ms] CPU load Disk reads [kB/s] Disk writes [kB/s]

1 1576 511 38.071

0.754688832 916.668 916.668

2 1746 572 34.364

4 2206 719 27.199

8 3408 1128 17.606

16 3034 988 19.776

32 2603 892 23.050

64 1557 557 38.536

(E02) Local Disk, BATCH
virtual users tpm noPM Average response time [ms] CPU load Disk reads [kB/s] Disk writes [kB/s]

2 13699 4555 4.380

0.718584884 988.459 988.459

4 22568 7526 2.659

8 22839 7626 2.627

16 9377 3178 6.399

32 8390 2798 7.151

64 8124 2456 7.386

(E04) NAS, IMMEDIATE
virtual users tpm noPM Average response time [ms] CPU load Disk reads [kB/s] Disk writes [kB/s]

1 5769 1948 10.400

7.535618878 0.096 0.096

2 21500 7194 2.791

4 103614 34525 0.579

8 139729 46611 0.429

16 262690 87760 0.228

32 368560 123393 0.163

64 364169 123175 0.165

(E05) NAS, BATCH
virtual users tpm noPM Average response time [ms] CPU load Disk reads [kB/s] Disk writes [kB/s]

1 32611 12127 1.840

13.36701291 0.117 0.117

2 54620 18124 1.098

4 105142 35144 0.571

8 181038 60470 0.331

16 356755 119403 0.168

32 490354 164443 0.122

64 454420 153174 0.132

Table 2 Oracle TPC-C benchmark results

CERN openlab Summer Student Report 2013

26 | P a g e

4.1.2 Tests on TimesTen

TimesTen
(E08) AWT, Full cache

virtual users tpm noPM Average response time [ms] CPU load Disk reads [kB/s] Disk writes [kB/s]

1 60903 18998 0.985

13.15290231 4.410 4.410

2 25313 7923 2.370

4 193985 61044 0.309

8 326518 102078 0.184

16 428839 133810 0.140

32 311485 98485 0.193

64 310349 97634 0.193

(E09) SWT, Full cache
virtual users tpm noPM Average response time [ms] CPU load Disk reads [kB/s] Disk writes [kB/s]

2 27512 8608 2.181

8.307428571 2.315 2.315

4 32625 10116 1.839

8 50456 15652 1.189

16 113333 35332 0.529

32 88161 27383 0.681

64 153954 47907 0.390

(E10) AWT, Partial cache
virtual users tpm noPM Average response time [ms] CPU load Disk reads [kB/s] Disk writes [kB/s]

1 87956 29845 0.682

3.598264642 4.102 4.102

2 110429 34245 0.543

4 98267 30544 0.611

8 231255 71917 0.259

16 224658 69819 0.267

32 209213 64958 0.287

204134 63308 0.294

(E11) SWT, Partial cache
virtual users tpm noPM Average response time [ms] CPU load Disk reads [kB/s] Disk writes [kB/s]

1 17049 5262 3.519

3.678125 9.158 9.158

2 30582 9514 1.962

4 47008 14477 1.276

8 52108 16186 1.151

16 13659 4237 4.393

32 50058 15516 1.199

64 56101 17372 1.069

Table 3 TimesTen TPC-C benchmark results

CERN openlab Summer Student Report 2013

27 | P a g e

4.2 TPC-H results

Table 4 contains the execution times for each query, on the different configurations. Best

performance is highlighted with red.

 Response time
 Oracle Local Oracle NAS TimesTen

Query 1 8.749 s 24.807 s 41.317 s

Query 2 0.857 s 1.487 s 2.472 s

Query 3 13.925 s 33.413 s 24.787 s

Query 4 2.945 s 23.958 s 55.604 s

Query 5 22.817 s 24.214 s 35.073 s

Query 6 1.717 s 26.039 s 2.822 s

Query 7 3.571 s 24.216 s 87.917 s

Query 8 3.441 s 26.487 s 43.625 s

Query 9 8.196 s 27.717 s 48.977 s

Query 10 7.753 s 29.902 s 35.599 s

Query 11 9.461 s 13.656 s 28.651 s

Query 12 3.004 s 24.115 s 11.921 s

Query 13 3.987 s 4.024 s 49.601 s

Query 14 2.880 s 24.431 s 15.040 s

Query 15 1.875 s 23.604 s 10.704 s

Query 16 1.580 s 3.474 s 24.968 s

Query 17 2.280 s 24.360 s 201.330 s

Query 18 8.230 s 49.218 s 100.170 s

Query 19 3.231 s 24.639 s 17.092 s

Query 20 2.657 s 24.952 s 63.516 s

Query 21 7.830 s 52.097 s 0.013 s

Query 22 1.470 s 1.520 s 6.389 s

Table 4 TPC-H performance profiles

5 Discussion and conclusion

5.1 TPC-C conclusions

As you could see the different Oracle performances, it turned out that disk I/O speed is the key

aspect of high throughput. The test system with performs way better than with local disk. On

Figure 10 you can see the results on a plot. As expected, BATCH mode performs better on both

local disk and NAS. Although higher performance comes with more CPU load and more

intensive disk usage.

CERN openlab Summer Student Report 2013

28 | P a g e

Figure 10. Benchmark results of Oracle Database.

Using TimesTen with fully cached database tables, with AWT cache groups gives remarkable

results, but in real-life scenarios caching a whole database is not always possible. Partial cached

database tables come with lower performance, but the usage of system resources is less, and

scalability seems to be better.

On the other hand, SWT cache groups have moderate performance, because of the immediate

synchronisation of data. They scale better than AWT groups, and CPU and disk usage is also

moderate.

Figure 11. Benchmark results of TimesTen

0

100000

200000

300000

400000

500000

600000

1 2 4 8 16 32 64

tp
m

Virtual users

Oracle, local disk,
IMMEDIATE

Oracle, local disk,
BATCH

Oracle,NAS,
IMMEDIATE

Oracle, NAS, BATCH

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

1 2 4 8 16 32 64

tp
m

Virtual users

AWT, Full cache

SWT, Full cache

AWT, Partial cache

SWT, Partial cache

CERN openlab Summer Student Report 2013

29 | P a g e

In conclusion, for heavy OLTP workload TimesTen can be quite good, considering that NAS

storage based traditional database can only reach similar throughput by sacrificing data

consistency in BATCH commit mode. If TimesTen is used in grid, the performance can be even

better, and data consistency will be also preserved.

5.2 TPC-H conclusions

Based on the performance profile, TPC-H results are surprising. As shown on Figure 12, Oracle

on local disk performs better than Oracle on NAS and even better as TimesTen. The main reason

of disparity is not obvious, but with the AWR and TTSTATS reports I tried to find the main

reason.

Figure 12. Performance profile

On Figure 13 and Figure 14 we can see the TOP 5 wait events. It is clear, that in the second case,

direct path read is responsible for the performance drop. This means, that in this particular case,

NAS had a higher latency than local disk. Fixing this problem avoids this kind of bottleneck.

Figure 13. Oracle on local disk AWR report

0.000 s

50.000 s

100.000 s

150.000 s

200.000 s

250.000 s

Ex
e

cu
ti

o
n

 t
im

e
s

[s
]

Benchmark queries

Oracle on local disk

Oracle on NAS

TimesTen

CERN openlab Summer Student Report 2013

30 | P a g e

Figure 14. Oracle on NAS AWR report

In the second case, the average performance of TimesTen is similar to the performance of Oracle

Database on NAS, although the distribution is very different. The TTSTATS report shows

nothing suspicious. The explanation of that is when the query hits the cached data, queries are

executed extremely fast, but on the other hand, if the data is not cached, it takes some time to load

it from the underlying database.

The conclusion is that performance of TimesTen really depends on actually cached data and on

the size of memory cache. If somehow higher hit rate can be achieved, TimesTen would

outperform Oracle Database. To examine these aspects exactly, more difficult test configuration

(i.e. Real application testing – workload capture), and more time is needed to perform related

tests.

CERN openlab Summer Student Report 2013

31 | P a g e

References

[1] Oracle OLTP (Transactional) Load Testing,

http://hammerora.sourceforge.net/hammerora_oracle_oltp_v2.8.pdf,

[2] Oracle DSS/Data Warehousing Testing Guide,

http://hammerora.sourceforge.net/hammerora_oracle_dss_v2.7.pdf

[3] Oracle TimesTen Introduction,

http://download.oracle.com/otn_hosted_doc/timesten/1122/doc/timesten.1

122/e21631/toc.htm

[4] Oracle TimesTen Installation guide,

http://download.oracle.com/otn_hosted_doc/timesten/1122/doc/timesten.1

122/e21632/toc.htm

[5] Oracle TimesTen Cache Users Guide,

http://download.oracle.com/otn_hosted_doc/timesten/1122/doc/timesten.1

122/e21634/toc.htm

[6] TPC-C Benchmark Standard Specification, Revision 5.11, February 2010,

http://download.oracle.com/otn_hosted_doc/timesten/1122/doc/timesten.1

122/e21634/toc.htm

[7] TPC-H Benchmark Standard Specification, Revision 2.1.6.0, June 2013,

http://download.oracle.com/otn_hosted_doc/timesten/1122/doc/timesten.1

122/e21634/toc.htm

[8] Oracle TimesTen OLTP Load Testing Supplement,

http://hammerora.sourceforge.net/hammerdb_timesten_oltp.pdf

[9] Todd M. Helfter, Oratcl Users’s Guide and Reference, Revision5,

http://oratcl.sourceforge.net/OraTcl_Users_Guide_and_Reference.pdf

[10] Oracle Database Documentation Library, 11g Release 3,

http://www.oracle.com/pls/db112/homepage

[11] Oracle whitepaper, Instant client: An overview, May 2004,

http://www.oracle.com/technetwork/database/features/oci/instant-client-

wp-131479.pdf

[12] Working with the TimesTen client and Server, 11.2.2. E21633-05.,

http://docs.oracle.com/cd/E11882_01/timesten.112/e21633/client_server.

htm

[13] Automatic Workload Repository (AWR) in Oracle Database 10g,

http://www.oracle-base.com/articles/10g/automatic-workload-repository-

10g.php

[14] Oracle Database Reference, 11.1, B28320-03,

http://docs.oracle.com/cd/B28359_01/server.111/b28320/initparams032.h

tm

http://hammerora.sourceforge.net/hammerora_oracle_dss_v2.7.pdf
http://download.oracle.com/otn_hosted_doc/timesten/1122/doc/timesten.1122/e21631/toc.htm
http://download.oracle.com/otn_hosted_doc/timesten/1122/doc/timesten.1122/e21631/toc.htm
http://download.oracle.com/otn_hosted_doc/timesten/1122/doc/timesten.1122/e21632/toc.htm
http://download.oracle.com/otn_hosted_doc/timesten/1122/doc/timesten.1122/e21632/toc.htm
http://download.oracle.com/otn_hosted_doc/timesten/1122/doc/timesten.1122/e21634/toc.htm
http://download.oracle.com/otn_hosted_doc/timesten/1122/doc/timesten.1122/e21634/toc.htm
http://download.oracle.com/otn_hosted_doc/timesten/1122/doc/timesten.1122/e21634/toc.htm
http://download.oracle.com/otn_hosted_doc/timesten/1122/doc/timesten.1122/e21634/toc.htm
http://download.oracle.com/otn_hosted_doc/timesten/1122/doc/timesten.1122/e21634/toc.htm
http://download.oracle.com/otn_hosted_doc/timesten/1122/doc/timesten.1122/e21634/toc.htm
http://hammerora.sourceforge.net/hammerdb_timesten_oltp.pdf
http://oratcl.sourceforge.net/OraTcl_Users_Guide_and_Reference.pdf
http://www.oracle.com/pls/db112/homepage
http://www.oracle.com/technetwork/database/features/oci/instant-client-wp-131479.pdf
http://www.oracle.com/technetwork/database/features/oci/instant-client-wp-131479.pdf
http://docs.oracle.com/cd/E11882_01/timesten.112/e21633/client_server.htm
http://docs.oracle.com/cd/E11882_01/timesten.112/e21633/client_server.htm
http://www.oracle-base.com/articles/10g/automatic-workload-repository-10g.php
http://www.oracle-base.com/articles/10g/automatic-workload-repository-10g.php

CERN openlab Summer Student Report 2013

32 | P a g e

Appendix A

Resource name Url

HammerDB installer http://hammerora.sourceforge.net/download.html

Oracle Instant Client http://www.oracle.com/technetwork/database/features/instant-

client/index-097480.html

Oracle TimesTen http://www.oracle.com/technetwork/products/timesten/downloads/inde

x.html

Table 5 Resource download links

Appendix B

List of tcl script I used.

Script name Description

Oraclestats.tcl Creates TPC-C benchmark for Oracle, and

stores some custom statistics in stats.stats

schema.

Timestenstats.tcl Creates TPC-C benchmark for TimesTen, and

stores some custom statistics in stats.stats

schema.

tpcc_scheme_cacheable.tcl Creates the TPC-C schema, which is easily

cacheable in TimesTen.

Table 6 List of scripts I used.

CERN openlab Summer Student Report 2013

33 | P a g e

Appendix C

Description Code DB User Folder

Oracle database, IMMEDIATE,WAIT 1 TPCC E01

Oracle database, BATCH,NOWAIT 2 TPCC E02

Oracle database TPCH 3 TPCH E03

Oracle database, IMMEDIATE,WAIT - NAS 4 TPCC E04

Oracle database, BATCH,NOWAIT - NAS 5 TPCC E05

Oracle database TPCH - NAS 6 TPCH E06

TimesTen TPCH 7 TPCH E07

TimesTen, full cache, AWT 8 TPCC E08

TimesTen, full cached, SWT 9 TPCC E09

TimesTen, partially cached, AWT 10 TPCC E10

TimesTen partially cached, SWT 11 TPCC E11

Table 7 Benchmark scenarios

	Evaluation of in-memory database TimesTen
	August 2013
	Author:
	Endre Andras Simon
	Supervisor(s):
	Miroslav Potocky
	CERN openlab Summer Student Report 2013

	Project Specification
	Table of Contents
	1 Introduction
	2 Testing methods
	2.1 Technologies
	2.1.1 Oracle database
	2.1.2 Oracle TimesTen In-Memory database
	2.1.3 HammerDB

	2.2 Test network installation and configuration
	2.2.1 Overview of the system
	2.2.2 Load Generation Server configuration
	2.2.3 SUT configuration

	2.3 Creating the test schemas

	3 Test cases and expectations
	3.1 Pre-testing
	3.1.1 Testing the TPC-C schema
	3.1.2 Testing the TPC-H schema

	3.2 Planning and preparation
	3.2.1 Planning the TPC-C tests
	3.2.2 Planning the TPC-H tests

	4 Results
	4.1 TPC-C results
	4.1.1 Tests on Oracle
	4.1.2 Tests on TimesTen

	4.2 TPC-H results

	5 Discussion and conclusion
	5.1 TPC-C conclusions
	5.2 TPC-H conclusions

	References
	Appendix A
	Appendix B
	Appendix C

