
Selective Edge Computing for Mobile Analytics
Apostolos Galanopoulos∗, George Iosifidis†,

Theodoros Salonidis‡, Douglas J. Leith∗

∗School of Computer Science and Statistics, Trinity College Dublin
†Delft University of Technology, The Netherlands

‡IBM T. J. Watson Research Center

Abstract—An increasing number of mobile applications rely on
Machine Learning (ML) routines for analyzing data. Executing
such tasks at the user devices saves the energy spent on transmit-
ting and processing large data volumes at distant cloud-deployed
servers. However, due to memory and computing limitations,
the devices often cannot support the required resource-intensive
routines and fail to accurately execute the tasks. In this work,
we address the problem of edge-assisted analytics in resource-
constrained systems by proposing and evaluating a rigorous
selective offloading framework. The devices execute their tasks
locally and outsource them to cloudlet servers only when they
predict a significant performance improvement. We consider the
practical scenario where the offloading gain and resource costs
are time-varying; and propose an online optimization algorithm
that maximizes the service performance without requiring to
know this information. Our approach relies on an approximate
dual subgradient method combined with a primal-averaging
scheme, and works under minimal assumptions about the system
stochasticity. We fully implement the proposed algorithm in a
wireless testbed and evaluate its performance using a state-of-the-
art image recognition application, finding significant performance
gains and cost savings.

Index Terms—Edge Computing, Data Analytics, Network Op-
timization, Resource Allocation

I. INTRODUCTION

A. Background and Motivation

The recent demand for mobile machine learning (ML) ana-
lytic applications, such as image recognition, natural language
translation and health monitoring, has been unprecedented [2].
These services collect data streams generated by hand-held
or other Internet of Things (IoT) devices, and analyze them
locally or at cloud servers. The challenge with such services
is that they are both resource intensive and delay sensitive.
On the one hand, the cloud offers powerful ML models and
abundant compute resources, but requires data transfers which
consume network bandwidth and device power, as well as
induce significant delays, e.g., due to intermittent connectivity
[3]. On the other hand, executing these services directly at the
devices, as in [4], economizes network bandwidth but degrades
their performance due to the devices’ limited resources. For
example, these nodes may have insufficient memory to support
accurate deep-learning neural networks.

A promising approach to tackle this problem is to follow
a middle-ground solution where the devices outsource their

Part of this work has appeared in the Proceedings of IEEE ICC 2020 [1].

tasks to nearby cloudlets [5]. These edge servers are typ-
ically deployed in locations close to cellular base stations
or Wi-Fi access points, and hence are in proximity with the
users. Therefore, they can increase the service performance by
augmenting the devices’ ML components with more accurate
models, while offering tolerable communication and execution
delay. Nevertheless, the success of such solutions requires
intelligent decision algorithms for selecting which tasks from
each device will be outsourced in order to maximize the
aggregate accuracy. This is a new problem that raises intricate
challenges for the network and the involved computations.

Namely, the cloudlets, unlike the cloud, have limited com-
puting capacity and hence cannot support the requests from
all devices. If overloaded, they will eventually become un-
responsive. At the same time, task execution often involves
the transfer of large data volumes. This calls for prudent
transmission decisions in order to avoid wasting the energy
of devices and congesting the network when link bandwidth
is also a bottleneck. Furthermore, unlike general computation
offloading solutions [6], in ML analytics it is imperative to
identify and outsource only the tasks which can significantly
benefit from cloudlet execution. Otherwise, the system will
spend resources only to gain marginal performance improve-
ments. Finally, these decisions need to be made in a dynamic
fashion accounting for the time-varying network conditions,
user requests and cloudlet availability; and the statistical prop-
erties of these random parameters are unknown in practice.

Our goal is to design and evaluate an online decision
framework that supports edge-augmented mobile analytic ser-
vices. While prior works have studied the problem of offload-
ing computation-intensive tasks and others proposed system
architectures for mobile analytics, see. Sec. VII, we lack
an analytical framework for maximizing the performance of
such services under resource (un)availability, and time-varying
network conditions. Our solution works under such practical
limitations (which we measure experimentally) and is general
enough to be applied to different architectures and services.

B. Methodology and Contributions

In detail, we consider a service where a cloudlet improves
upon request the execution quality of data analytic tasks that
are generated by small user devices. We use as an exemplary
service the processing of image frames captured by nodes
such as wireless IoT cameras or small robots, that need to

1

ar
X

iv
:2

20
1.

02
84

0v
1

 [
cs

.N
I]

 8
 J

an
 2

02
2

be processed for classifying objects of interest. Each device
has a low-precision classifier, while the cloudlet can possibly
execute the task with higher precision. The devices classify the
received objects upon arrival and decide whether to transmit
them to the cloudlet for further processing. This decision
requires an assessment of the potential performance gains,
which are measured in terms of accuracy improvement. To
this end, we propose the usage of a predictor that is installed
at each device and leverages the local classification results.

In terms of resource constraints, we focus on power con-
sumption, a bottleneck issue in small devices; and the com-
puting capacity of the cloudlet which - unlike the cloud -
is finite. The former couples the decisions of each device
across time, while the latter ties the decisions of all devices
sharing the cloudlet. We consider the practical case where
resource availability is unknown and possibly time-varying
and we observe their instantaneous values. We aim to design
an algorithm that enables the coordination of devices and
dictates the task outsourcing policy by carefully tuning the
trade-off between maximizing the aggregate analytics accuracy
and constraining resource consumption.

We formulate the system operation as an optimization pro-
gram with unknown parameters appearing both in the objective
(performance gains) and constraints (power and capacity),
which are learned in an online fashion. This program is decom-
posed via Lagrange relaxation to device-specific problems and
this enables its distributed solution through an approximate
– due to the unknown parameters – dual ascent method.
Leveraging the ε-(sub)gradient information that is produced in
the dual space by each device, we calculate primal solutions
which are applied in real time. Our approach is inspired by
primal averaging schemes for static problems [7], [8], and
yields a tunable optimality bound compared to the hypo-
thetical benchmark policy that has access to an oracle. The
designed algorithm is lightweight in terms of communication
overheads and adapts to resource availability and user requests.
Importantly, it offers deterministic performance bounds (i.e.,
for each sample path) and works under minimal assumptions
for the stochastic perturbations of the resources and task
requests. This is in contrast with extensively-used stochas-
tic optimization toolboxes which presume i.i.d. or Markov-
modulated perturbations and offer only average guarantees,
see [9] and references therein.

Finally, the framework is extended for when the bottleneck
is the wireless link capacity and for services that optimize
jointly the accuracy and execution delay. Other scenario-
specific amendments are also possible, e.g., considering multi-
stage services, multiple cloudlets, or other related constraints
such as the cloudlet energy budget. Given that this is a new
problem, we investigate experimentally its properties in a
wireless testbed; and assess our algorithm using real datasets
[10], [11] and carefully selected benchmarks. Hence, the
contributions of this work are the following:

• Edge-Augmented Analytics. We introduce the novel problem
of augmenting the performance of mobile analytics using
edge infrastructure (e.g., cloudlets), which is increasingly
important for mobile computing services and IoT networks.

Our model can be tailored to different system architectures,
types of analytic services, and resource constraints.

• Decision Framework. A task outsourcing policy is proposed
that achieves near-optimal performance while being obliv-
ious to the system’s statistics. We fully characterize the
performance of the algorithm, i.e., its optimality gap, as
a function of the system parameters, perturbations and the
employed step rule. To the best of our knowledge, our
algorithm is the first to offer deterministic performance
bounds with discrete actions, under such general conditions;
and this is a result of independent interest.

• Implementation & Evaluation. The solution is evaluated in a
wireless testbed with a typical ML service and real datasets.
We show that our algorithm can be implemented as a
lightweight protocol, increasing the task accuracy (up to
15%) and concurrently reduce the energy costs (down to
50%) compared to several benchmarks.

Concluding, this work proposes a new problem, designs a
novel optimization algorithm which is tailored to its needs,
and uses a fully-fledged implementation in a wireless testbed
in order to evaluate the proposal.

Organization. Sec. II introduces the model and problem,
Sec. III presents the algorithm and Sec. IV analyzes its per-
formance. We discuss practical extensions in Sec. V and Sec.
VI presents the system implementation, a series of experiments
and trace-driven simulations. We discuss related work in Sec.
VII and conclude in Sec. VIII. The proofs of the various
lemmas can be found in the Appendix, Sec. IX.

II. MODEL AND PROBLEM FORMULATION

We introduce the system model, the problem and the re-
spective mathematical program. Table I summarizes the key
notation we use throughout the paper. We use calligraphic
capital letters for sets, bold typeface letters for vectors, and
‖ · ‖ denotes the Euclidean norm.

A. Task Model
Time is slotted and we index the slots. There is a set C of C

disjoint object classes and a set N of N devices. Each device
n may receive at slot t an object snt ∈ S for classification,
where S is the set of possible objects, e.g., images captured
by its camera. In case a device n does not produce an image
in slot t (no task), we set snt = ∅. Every device n is equipped
with a local classifier Jn which outputs the inferred class
Jn(snt) ∈ C of object snt and a normalized accuracy (or,
confidence) value dn(snt) ∈ [0, 1] for that inference1. There is
also a classifier J0 at the cloudlet which can classify any object
snt ∈ S with confidence d0(snt). The local classifiers may
have different performance, e.g., due to possibly different ML
components or training datasets, while the cloudlet classifier
has the highest accuracy, i.e., d0(snt) ≥ dn(snt),∀snt ∈ S.
Parameter φnt ∈ [0, 1] denotes the accuracy improvement
when the cloudlet classifier is used:

φnt(snt) = d0(snt)− dn(snt), ∀ snt ∈ S.
1The classifier might output only the class with the highest confidence or

a vector with the confidence for each class and allow the user to decide –
typically selecting the more likely class. Our analysis works for both cases.

2

It is worth stressing that several services, e.g., see YOLO [12]
, provide in real-time feedback on the confidence about the
accuracy of inferences, without requiring labeled data, which
exhibit indeed strong correlation with the actual accuracy [55].
Finally, every device is also equipped with a predictor2 that
is trained with the outcomes of the local and cloudlet classi-
fiers. This predictor can estimate the cloudlet’s improvement
φ̃n(snt) for each object snt, where this assessment might
not be exact, i.e., φ̃n(snt) 6= φnt(snt); and we denote with
σnt(snt) ∈ [0, 1] the normalized predictor confidence.

B. Wireless System

The devices access the cloudlet through high-capacity cel-
lular or Wi-Fi links, see Fig. 1, that do not impose data
transfer constraints (we relax this assumption in Sec. V). Each
device n has an average power budget of Bn Watts that it can
spend on transmitting the images to cloudlet.3 Average power
consumption is a key limitation in such systems [14], because:
the devices might have a small energy budget to spend during;
their small form-factor imposes power consumption limita-
tions; there are protocol-induced transmission constraints; or
users might impose constraints on the power consumption of
this service. Similarly, the cloudlet has an average processing
capacity of H cycles/sec. This resource is shared by all devices
and when the total load exceeds H the task delay increases
fast, eventually rendering the system non-responsive.

When an image that is transmitted in slot t from device
n to cloudlet, it consumes ont Watts of the device’s power
budget. This quantity might change across slots due to channel
conditions variations, shadowing effects, interference from
other transmission, and so on.; and follows a random process
{ont}∞t=1, where ont ∈ O = {o1n, . . . , O

|O|
n } is drawn from

a set of possible values. Also, each transmitted image snt
requires a number of cloudlet processing cycles hnt, which
might vary with time, e.g., due to different image sizes, and
possibly stems from a random process {hnt}∞t=1, with hnt ∈
H = {h1n, . . . , h

|H|
n }. We also define ot = (ont, n ∈ N) and

ht= (hnt ≤, n ∈ N). Our model is general as the requests,
power and computing costs per request can be arbitrarily time-
varying and with unknown statistics.

The devices wish to involve the cloudlet only when they
expect high classification precision gain with high confidence.
When the cloudlet does not offer high-enough gains or, even
worse, lower accuracy, the devices need to refrain from
offloading their tasks. Otherwise, they risk consuming the
cloudlet’s capacity and their own power without significant
benefits. Therefore, the outsourcing decision for each object
snt is based on the weighted improvement gain4:

wnt(snt) = φ̃(snt)− vnσnt(snt), (1)

2This can be a model-based or model-free solution, e.g., a regressor or a
neural-network; our analysis and framework work for any of these solutions.
In the implementation we used a mixed-effects regressor [13].

3Local classifications can induce non-negligible energy costs to devices
but these are not considered for Bn since every object undergoes local
classification anyway.

4Whenever the cloudlet has lower expected accuracy from the device, then
we set wnt = 0, and decide not to offload.

Local
Classifier

Predictor

Offloading
Decision

Device

Cloudlet
Classifier

Fig. 1: System model including the local/cloudlet classifiers and
predictors. Each device is constrained by its average power budget,
and the cloudlet has a limited computation capacity.

where vn ≥ 0 a risk aversion parameter set by the system
designer or each user. For example, assuming normal distri-
bution for the outputs of the predictor we could set vn = 1 and
use a threshold rule of 1 standard deviation. The improvement
gains follow an unknown random process {wnt}∞t=1, where5

wnt ∈ W = {w1
n, . . . , w

|W|
n }.

C. Problem Definition and Assumptions

Our goal is to maximize the long-term accuracy improve-
ment gains for all devices while satisfying the average capacity
constraints. Let us first define the set of possible system states

J = ON ×HN ×WN ,

and introduce parameter πt∈J that indicates the system state
at slot t. We assume the system operation can be described by
the stationary probability distribution ρ=(ρj , j = 1, . . . ,M),
where M = |J |. We introduce variables yjn ∈ [0, 1], ∀n ∈
N , j ∈J that indicate the outsourcing probability of objects
from each device n when the system is in state j. We also
define the vector y=(yjn :n=1, . . . , N, j=1, . . . ,M) and the
set Y = [0, 1]NM . Henceforth we use superscript j to indicate
the values of the random variables when πt=j.

Putting the above together, our optimization goal can be
expressed with the following program:

P1 : maximize
y∈Y

M∑
j=1

N∑
n=1

wjny
j
nρ

j (2)

s.t.
M∑
j=1

yjno
j
nρ

j ≤ Bn, n ∈ N , (3)

M∑
j=1

N∑
n=1

yjnh
j
nρ

j ≤ H. (4)

Constraints (3) impose the average power budget6 of each
device and (4) bounds the cloudlet utilization. Additional
constraints can be included if needed; and we can also replace
the linear objective with any other convex function. For

5We note that most systems use such quantized values for the prediction
gains, and the number of possible values depends on the granularity.

6To capture the total power consumption we should add a term related to the
computation energy cost at the LHS of (3). However, this term is independent
of the decision variable yjn, since the local classifier is used either way and
thus it is omitted.

3

Description Parameter / Variable
Classification confidence of n (cloudlet) dn (d0)
Actual (predicted) offloading improvement φnt (Qn)
Average power (computing) constraint Bn (H)
Power (Computing) resource consumption of task snt at state j ojn (hj

n)
Improvement gain for device n at slot t (quantized value at state j) wnt (wj

n)
Probability of system being in state j ρj

Outsourcing probability for task in state j yjn ∈ [0, 1]

TABLE I: Key Parameters and Variables.

instance, we might wish to enforce a fairness criterion by using
a type of α-fair functions [15] or an objective that maximizes
accuracy while minimizing the total delay. We elaborate on
these extensions in Sec. V. Finally, P1 can also account for
time varying capacities as we can replace Bn with the time
average term

∑
j B

j
nρ

j , and similarly for parameter H; it
suffices to augment the state space J accordingly.

An important comment is in place here. If one knew in
advance the value of ρ, then we could solve P1 to obtain
the optimal offloading solution y?. This solution can then
be implemented as a randomized policy to maximize the
performance of the service. Namely, in each slot t we observe
the state πt and decide to offload or not based on the respective
element of y?. Nevertheless, in practice one does not have
access to ρ and hence cannot devise that optimal static policy,
i.e., cannot solve problem P1. In line with the standard
approach in stochastic optimization, cf. [9], we will use the
unknown solution of P1 as the performance benchmark that
our online algorithm aims to meet while being oblivious to
the task statistics and the system parameters.

III. DECISION FRAMEWORK AND ONLINE ALGORITHM

Our solution approach is the following: we replace the un-
known parameters in P1 with their running averages, which we
calculate in runtime; and we solve the modified problem with
approximate gradient ascent in the dual space and perform
primal averaging. This gives us an online policy that can be
implemented in real time, namely an algorithm that outputs
discrete decisions, while offering performance guarantees.

A. Problem Decomposition and Algorithm

To streamline presentation we define the functions:

f(y)= −
N∑
n=1

M∑
j=1

wjnρ
jyjn, gn(y)=

M∑
j=1

ojnρ
jyjn−Bn,∀n∈ N ,

gN+1(y)=

N∑
n=1

M∑
j=1

hjnρ
jyjn −H,

that appear in problem P1, and we further collect all con-
straints in function g(y) : RNM → RN+1. Since we can only
observe the current system state, we define the respective t-slot
functions that aggregate this information up to t:

ft(yt)=−
N∑
n=1

M∑
j=1

yjntw
j
nρ

j
t , gnt(yt)=

M∑
j=1

yjnto
j
nρ

j
t −Bn,

gN+1,t(yt)=

N∑
n=1

M∑
j=1

yjnth
j
nρ

j
t −H

where ρjt = 1/t
∑t
τ=1 1{πτ=j} measures the distribution of

state j up to slot t and serves as a prediction for the respective
ρj parameter. Our goal is to use the above proxy functions in
order to find a dynamic policy {yt}Tt=1 such that the realized
performance

∑T
t=1 f(yt)/T approaches f(y?), and similarly

the induced constraint violation
∑T
t=1 g(yt)/T approaches

g(y?) � 0, for any value of time horizon T .
The t-slot functions can be expressed as perturbations of

the actual unknown functions:

ft(y) = −
M∑
j=1

N∑
n=1

yjnw
j
nρ

j +

M∑
j=1

N∑
n=1

yjnw
j
n(ρ

j − ρjt)

, f(y) + εt(y),

with εt(y) =
∑M
j=1

∑N
n=1 y

j
nw

j
n(ρ

j−ρjt). Similarly, we write:

gt(y) = g
(
y) + δt(y

)
, δt(y) =

(
δnt(y), n = 1, . . . , N + 1

)
,

where: δnt(y)=
M∑
j=1

yjno
j
n(ρ

j
t − ρj),∀n ∈ N ,

δN+1,t(y)=

M∑
j=1

N∑
n=1

yjnh
j
t (ρ

j
t − ρj)

Next, we can define a new problem for each slot t:

P2(t) : maximize
y∈Y

ft(y) s.t. gt(y) � 0. (5)

We will use {P2(t)}t to perform a dual ascent and obtain the
{yt}t that applied in real time.

First, we dualize P2(t) and introduce the Lagrangian:

Lt(y,λ) = ft(y) + λgt(y)

where λ = (λ1, λ2, . . . , λN , µ) are the non-negative dual
variables for the N + 1 constraints. The dual function is:

Vt(λ) = min
y∈Y

Lt(y,λ).

The basis of our approach is the application of a dual-ascent
algorithm where the iterations are in sync with the system’s
time slots t. Specifically, in each iteration t we can minimize
the Lagrangian by executing:

yj,?n = arg min
yjn∈[0,1]

yjn
(
− wjn + λnto

j
n + µth

j
n

)
ρjt . (6)

This yields the currently optimal offloading policy for each

4

state j ∈ J , based on which we derive an easy-to-implement
offloading rule. Namely, denoting with jt the state at slot t,
we write for the offloading decision of each device n ∈ N :

yjtn =

{
1 if λnto

jt
n + µth

jt
n < wjtn

0 otherwise.
(7)

Note that in practice, state jt is not entirely known to each
device n ∈ N , but it rather refers to the partial system state
regarding the device. This is possible since each device knows
its own expected power consumption of the current slot by, e.g.
estimating the channel state and also the expected cloudlet
resource consumption through the image’s file size. Eq. (7)
dictates an offloading when the expected accuracy gain wjtn
exceeds the weighted resource cost λntojtn + µth

jt
n .

Then, we improve the current value of Vt(λ) by updating
the dual variables:

λn,t+1 =
[
λnt + at

(M∑
j=1

ojnρ
j
ty
j
n −Bn

)]+
, ∀n ∈ N , (8)

µt+1 =
[
µt + at

(N∑
n=1

M∑
j=1

hjnρ
j
ty
j
n −H

)]+
(9)

where [u]+ = max{0, u} and at is the dual step.
The online task outsourcing algorithm, henceforth called

OnAlgo, is based on eq. (7)-(9). The details are presented in
Algorithm 1. When each device n receives an object snt in
slot t, it uses its classifier to predict its class and the predictor
to estimate the cloudlet’s classification improvement (Steps
5-7). Then, the device uses its threshold decision rule (Step
9) that compares the expected benefits for state jt with the
outsourcing costs for the device and cloudlet. If the cloudlet
is not expected to offer satisfactory gains (or, even worse, has
lower accuracy), the devices refrain from offloading their tasks.
The devices receive the updated state distribution from the
cloudlet (Step 12), and update their local dual variable for the
power constraint (Step 13). The clouldet initially evaluates the
current system state and sends it to the devices (step 15). Then,
it classifies the received objects and updates its congestion
variable (Step 17), which is sent to devices.

It is interesting to observe that OnAlgo is lightweight in its
computation and communication requirements. Namely, the
offloading decision are made simply by using an intuitive
threshold rule that weights the expected performance gains
with the expected costs where the latter are captured in
a systematic way via the dual multipliers (known also as
shadow prices). And this rule can be employed by each device
independently. Similarly, the updates of the dual variables
are very simple as they involve summation of scalars and
projection onto the non-negative orthant, i.e., keeping only the
positive result or setting equal to zero otherwise.

IV. PERFORMANCE ANALYSIS

The gist of our approach is that, as time evolves, the
sequence of problems {P2(t)}t that aggregate the statistical
information up to slot t, approaches the original problem P1.
We note that the following analysis is general as it holds for
different functions f(y) and g(y) than the above, as long as

Algorithm 1: OnAlgo
1: Initialization: t = 0,λ0=0, ∀ n, j
2: while True do
3: for each device n ∈ N do
4: yjnt = 0, ∀j
5: Receive object snt

6: Classify objects and obtain Jn(snt), dn(snt), ∀snt

7: Use classification results on predictor to obtain wnt

8: Observe partial current state jt and send it to cloudlet
9: if λnto

jt
n + µth

jt
n < wjt

n then
10: yjtn ← 1 % Send object to cloudlet
11: end if
12: Receive updated distribution ρjt from the cloudlet
13: λn,t+1 ← [λnt + αt(

∑M
j=1 o

j
nρ

j
ty

j
n −Bn)]

+, ∀n ∈ N
14: end for
15: Cloudlet: Receive partial system states from devices, and

send back ρjt
16: Compute tasks received from all devices
17: µt+1 ← [µt + αt(

∑N
n=1

∑M
j=1 h

j
nρ

j
ty

j
n −H)]+

18: Send µt+1 to devices
19: t← t+ 1
20: end while

they are convex. We first introduce formally the necessary
assumptions and then present a set of technical Lemmas that
lead to our main Theorem.

Assumption 1. The constraint functions and the objective
functions of {P2(t)}t satisfy: |ft(y)| ≤ σf , ‖gt(y)‖ ≤
σg, ∀t, y ∈ Y .

Assumption 2 (Slater Condition). There exists a vector ys ∈
Y such that gt(ys) ≺ 0,∀t.

A. Complementary Slackness and Constraint Bounds

Lemma 1 (Complementary Slackness Lower Bound). Under
the dual update (8)-(9) it holds:

−
T∑
t=1

λ>t gt(yt) ≤
σ2
g

2

T∑
t=1

at +
1

2

T∑
t=1

‖λt‖2
(

1

at
− 1

at−1

)
− ‖λT+1‖2

2aT
(10)

The next result bounds the constraint violation of OnAlgo.

Lemma 2 (Bounded Constraint Violation). Under the dual
update (8)-(9) it holds:∥∥∥∥∥ 1T

T∑
t=1

g(yt)

∥∥∥∥∥ ≤ ‖λT+1‖
TaT

+
1

T

T∑
t=1

‖λt‖
(

1

at−1
− 1

at

)
(11)

+
1

T

T∑
t=1

‖δt(yt)‖.

B. Approximate Primal Averaging Bounds

The basic idea is that OnAlgo converges to an approximate
saddle point. Approximate complementary slackness then al-
lows us to bound the performance gap. We use the next lemma.

5

Lemma 3 (Approximate Saddle Point). When {yt}t are
selected using (7), the t-slot Lagrangian is bounded by:

1

T

T∑
t=1

Lt(yt,λt)− f(y?) ≤
1

T

T∑
t=1

(
εt(zt) + λ

>
t δt(zt)

)
(12)

where zt ∈ argminy∈Y f(y) + λ
>
t g(y).

We can now state and prove the main theorem.

Theorem 1 (Performance Bounds). OnAlgo ensures:

(a) :
1

T

T∑
t=1

f(yt)−f(y?) ≤ CT +
σ2
g

2T

T∑
t=1

at

+
1

2T

T∑
t=1

‖λt‖2
(

1

at
− 1

at−1

)
− ‖λT+1‖2

2TaT

(b) :
∥∥∥ 1
T

T∑
t=1

g(yt)
∥∥∥ ≤ ‖λT+1‖

TaT

+
1

T

T∑
t=1

‖λt‖
(

1

at−1
− 1

at

)
+

1

T

T∑
t=1

‖δt(yt)‖

where CT =
1

T

T∑
t=1

(
εt(zt)− εt(yt) + λ>t δt(zt)

)
,

zt ∈ argmin
y∈Y

f(y) + λ>t g(y).

Proof: Replacing the definition of the t-slot Lagrangian,
Lt(yt,λt) = ft(yt)+λ

>
t gt(yt), in Lemma 3 and subtracting

(1/T)
∑T
t=1 λ

>
t gt(yt) from both sides we can write:

1

T

T∑
t=1

ft(yt)− f(y?) ≤
1

T

T∑
t=1

(
εt(zt) + λ

>
t δt(zt)

)
− 1

T

T∑
t=1

λ>t gt(yt),

and finally expanding ft(yt) = f(yt) + εt(yt) and using
Lemma 1, we eventually get:

1

T

T∑
t=1

f(yt)− f(y?) ≤
1

T

T∑
t=1

(
εt(zt)− εt(yt) + λ>t δt(zt)

)
+
σ2
g

2T

T∑
t=1

at +
1

2T

T∑
t=1

‖λt‖2
(

1

at
− 1

at−1

)
− ‖λT+1‖2

2TaT
.

The second claim of the Theorem follows from Lemma 2.
Theorem 1 characterizes the optimality gap and constraint

violation for any value of the time horizon T . The steps can
be selected either to be constant, e.g., at = a as in [7] or to
be diminishing, e.g., at = a/tβ , with β ∈ (0, 1). Also, the
theorem reveals how the error terms of the proxy functions
affect the convergence; and it is valid even if one uses other
types of estimators, e.g., employing Gaussian Processes to
approximate the objective and constraints.

C. Convergence Analysis

The final step of our analysis is to study the convergence
of the proposed algorithm. First, it is important to see that
Theorem 1 provides a full characterization of the performance
gap, and demonstrates how this depends on the time horizon,
the system parameters (e.g., σg), the system perturbations
(errors), and the update steps {at}t. The convergence rate
depends on all these factors. We start by proving that λt is
bounded ∀t, which is a technical requirement for our analysis.

1) Boundedness of Multipliers: For λt to remain bounded
we need gt(yt) to converge to 0 sufficiently quickly or to be
negative sufficiently often. We start with the following result:

Lemma 4 (Bounded level set). Under Assumptions 1-2 and
defining q :=mint qt with qt=minn{−gnt(ys)}>0, it holds:

N+1∑
n=1

λn ≤
(
σf − v

)
/q, ∀λ ∈ Qv := {λ � 0 | Vt(λ) ≥ v}

Lemma 5 (Dual vector bound). Under Assumptions 1-2, the
dual update (8)-(9) ensures ‖λt‖ is uniformly bounded.

Obtaining an upper bound for the norm ‖λt‖ ensures that
the respective terms ‖λT ‖/T appearing on the bounds of
Theorem 1, are guaranteed to diminish with time.

2) Error Terms: Finally, we characterize the aggregate error
terms that are induced by the employed approximate dual
method, and which affect the bounds of Theorem 1. We write:

1

T

T∑
t=1

εt(zt)−εt(yt) =
1

T

T∑
t=1

M∑
j=1

N∑
n=1

wjn(z
j
nt−y

j
nt)(ρ

j
t−ρj)

(13)

and similarly the other error-related terms of the performance
and constraint bounds:

1

T

T∑
t=1

λ>t δt(zt)=
1

T

T∑
t=1

M∑
j=1

N∑
n=1

ojnλntz
j
nt(ρ

j
t− ρj)

+
1

T

T∑
t=1

M∑
j=1

hjnµtz
j
nt(ρ

j
t − ρj),

1

T

T∑
t=1

δt(yt)=
1

T

T∑
t=1

M∑
j=1

N∑
n=1

ojny
j
nt(ρ

j
t− ρj)

+
1

T

T∑
t=1

M∑
j=1

hjny
j
nt(ρ

j
t − ρj).

Now, we can upper bound the above terms by their norms
and observe that, since parameters wjn,∀n, j and the offload-
ing variables are uniformly bounded, their overall behavior
depends on terms |ρjt − ρj |,∀j ∈ J . Hence, as long as the
running average of the realizations for each state j converge
to the respective mean value, the errors gradually diminish to
zero. The conditions that ensure this convergence range from
the random variables {1{πt=j}}t,j being i.i.d. where the Law
of Large Numbers applies; to more general settings where they
are independent and we can use Hoeffding’s inequality [59,

6

Theorem 1] to obtain:

Prob
(
|ρjt − ρj | > κ

)
<

1

e2κ2t
. (14)

And one can further relax the assumptions regarding the sys-
tem state statistics, e.g., to allow for a martingale-type weakly
dependence across successive states, and employ the Azuma
inequality for a similar bound. These conditions generalize
the stricter requirements of i.i.d. statistics that other network
optimization frameworks require [9].

Concluding, it is interesting to consider some special cases
in order to shed light on the favorable convergence properties
of our algorithm. Namely, for the case where we use the step
at = a/

√
t, Theorem 1(a) shows that the average gap closes

at a rate of O(1/
√
T). To see this, first note that it holds:

σ2
g

2T

T∑
t=1

at ≤
σ2
g

2T

T∑
t=1

a√
t
≤
σ2
g

2T
2a
√
T =

2aσ2
g√
T

= O
(
T−1/2

)
We can also bound the next term:

1

2T

T∑
t=1

‖λt‖2
(

1

at
− 1

at−1

)
=

1

2aT

T∑
t=1

‖λt‖2
(√

t−
√
t− 1

)
(a)

≤ ‖λmax‖
2

2aT

T∑
t=1

(√
t−
√
t− 1

)
=
‖λmax‖2

2a
√
T

= O
(
T−1/2

)
where (a) follows from Lemma 5 (dual vectors uniformly
bounded). And similarly we can bound the last RHS term
in Theorem 1(a) by O(T−1/2). Now it remains to bound CT .
Indeed, when the perturbations are i.i.d. the gap between the
running average of the state probabilities (ρjt) and their mean
values (ρj) diminishes at the rate of O(T−1/2). Hence, using
the fact that

∑T
t=1 1/

√
t ≤ 2

√
T , and that all variables are

bounded in [0, 1] the error term in (13) diminishes with rate
O(1/

√
T) as well. Finally, it is easy to see that with a similar

argument we find that the constraint violation diminishes with
rate O(1/

√
T) in this case. Hence, overall the algorithm

converges with that rate, both w.r.t. the optimality gap and
the constraint violation.

V. MODEL AND ALGORITHM EXTENSIONS

We extend our framework by jointly optimizing prediction
accuracy and total execution delay, since the latter can also
be crucial for many edge services. Then, we explain how it
can cope with massive demand scenarios where the wireless
bandwidth becomes a bottleneck or the cloudlet’s energy
cost is significant; and finally we elaborate on alternative
designs/usages of the predictor.

Joint Accuracy and Delay Optimization: We extend our
model to capture both the accuracy gains and the impact of
offloading decisions on delay. We do so by adding the total
delay for processing the tasks of all users in the objective
function and using a scaling parameter ζ ∈ [0, 1] to balance
between the two objectives. In detail, we can express the total
delay as:

Dtot(y) =

N∑
n=1

M∑
j=1

(
1− yjn

)
Dpr
n + yjn

(
Dpr
n +Dpr

0 +Dtr
n

)
,

where Dpr
n , Dpr

0 are the delays for processing images at
device n or the cloudlet, respectively; and Dtr

n the delay for
transmitting images to cloudlet. These quantities can vary with
time, similarly to the other system parameters, because each
image has different size or the wireless medium changes. The
processing delays can be modeled with linear functions as we
enforce the processing capacity constraints. Namely, we can
write Dpr

n = kn/Hd,n, where kn is the number of CPU cycles
required for processing the images of device n, and Hd,n is the
processing speed of device n (cycles/sec). Similarly, we can
define the processing delay at the cloudlet as Dpr

0 = kn/H
which may vary with time; we refer the reader also to [16]
and references therein.

Regarding the transmission delay, this depends on the actual
system architecture. For example, if different channels are
employed for the users, we can express it as Dtr

n = `n/(rnW),
where `n is the size of each image, rn the channel gain for user
n, and W the link bandwidth. If there is a CSMA-type network
where users need to share their links, we need to replace W
with the actual airtime Wn that user n receives; and in the case
we have a fair round-robin (vanilla version of CSMA) we can
approximate this with Wn =

∑M
j=1 y

j
n/
∑N
n=1

∑M
j=1 y

j
n. This

model has been used extensively in Wi-Fi service allocation,
see [17], and in mobile code offloading, e.g., in [16].

Following the analysis in Sec. II we can replace in P1

the new objective function f(y) =
∑M
j=1

∑N
n=1 w

j
ny

j
nρ

j −
ζDtot(y), and by following the same process obtain the
offloading rule:

yjtnt =

{
1 if λnto

jt
n + µth

jt
n < wjtn − ζ(Dtr

nt +Dpr
0t)

0 otherwise
,

(15)
where we observe that the device execution delay is nullified
since it is independent of the offloading decision, and the
condition in line 10 of Algorithm 1 will be replaced by (15).

Wireless Bandwidth and Energy Cost Constraints: We
have assumed the system operation is constrained by the
devices’ power budget and the computing capacity of the
cloudlet. Indeed, most often these are the bottleneck resources
[5], [6], [19]. However, in scenarios of massive demand the
wireless link capacity might also be a bottleneck constraint.
Our analysis can be readily extended for this case. If we denote
with {Wt}∞t=1 the link capacity process (uniformly bounded;
well-defined mean value W) assuming a wireless link shared
by all devices7, we can add to P1 the constraint:

N∑
n=1

M∑
j=1

yjnρ
j`n ≤W, (16)

where `n is the size of objects device n transmits. Eq. (16)
can be handled as the computing constraint (4) and will only
affect the convergence bounds. Similarly, we can include other
constraints that couple the actions of all devices, such as the
energy cost at the cloudlet which increases with the aggregated

7This can be either an OFDM-based cellular link or a coordinated access
WiFi link; in the case we have a CSMA-type of mechanism, one needs to
account for the additional bandwidth loss due to collisions, etc.

7

offloaded tasks from all devices and might depend on time-
varying energy prices.

Alternative System Architectures: A different mechanism
is possible, where the devices send objects to the cloudlet
before using their own classifier. This approach can reduce
the consumed energy, since it avoids low-accuracy local clas-
sifications. However, it requires a different type of a predictor,
namely one that can estimate the expected accuracy gain using
some basic features of the object (e.g., its file size), and
without requiring input from the local classifier. In this case,
modeling the power consumption of the devices would modify
constraint (3) of P1 as:

M∑
j=1

(
yjnρ

jon + (1− yjn)ρjνn
)
≤ Bn, ∀n ∈ N ,

where the second term indicates the power νn consumed
by each device when only local classification is performed.
OnAlgo can be extended to this case by changing the predictor.

Similarly, it is possible to have services that are executed
in multiple stages, e.g., a video stream is compressed, then
frames of interest are selected, and objects are identified on
each frame. In this case, the devices might decide to outsource
some of the tasks in the first stage, some others after the second
stage, and so on. Again, our optimization algorithms can be
extended to include these decisions, by defining a separate set
of variables for each stage while accounting for the costs and
properties (e.g., data volumes) in each case. In specific, (3)
would be transformed to:

M∑
j=1

(
yjnρ

jon + (1− yjn)ρjνcln
)
≤ Bn, ∀n ∈ N ,

where νcln is the classification computing cost, which is sig-
nificantly smaller than νn. Observe that the computing load of
stage 1, i.e. feature extraction, is not accounted for since it is
again induced regardless of the offloading decision.

VI. IMPLEMENTATION AND EVALUATION

We have fully implemented the proposed architecture, eval-
uated OnAlgo with real datasets, and complemented our anal-
ysis with large-scale synthetic simulations. This section has
four goals: (i) investigate the accuracy performance of well-
known classifiers for different sizes of training datasets, hence
revealing why edge augmentation is needed; (ii) Measure the
energy and computing costs of image classification tasks; (iii)
Perform a parameter-sensitivity analysis of OnALgo; and (iv)
Compare OnALgo with several benchmark algorithms.

A. Experiments Setup

1) Testbed and Measurements: We used 4 Raspberry Pis
(RPs) as end-nodes, and a cloudlet with specs as in [20],
see Fig. 2a. The RPs are placed in different distances from
the cloudlet, and all plots are using data from at least 50
experiments. We measured energy using a Monsoon Power
Monitor, and used Python libraries and TensorFlow for the

classifiers. We have used vanilla versions of libraries and
classifiers so as to facilitate observation of the results.8

We measured the average power consumption when a RP
transmits with different rates, Fig. 2b. Then we fitted a linear
regression model that estimates the consumed power (Watts)
as a function of the rate r, p(r) = −0.00037r2 + 0.0214r +
0.1277. This result is used by OnAlgo to estimate the energy
cost for each image, given the data rate in each slot (which
might differ for the RPs). Also, we measured the average
computing cost (cycles/task) for the classification task for a
convolutional neural network (CNN) in the RPs and cloudlet.
Since the images have different sizes, we observed that the
computation load varies, with a mean of 441 Mcycles and
std. 90 Mcycles for the cloudlet (see Fig. 2c), and a mean
of 3044 Mcycles and std. 173 Mcycles for RPs. Regarding
the delays, we measured device and cloudlet average process-
ing and transmission delays and found that Dpr

n = 2.537,
Dpr

0 = 0.191 and Dtr
n = 0.157 ms. This result suggests that

local processing is about 10 times slower than offloading in
our system. Hence, it is possible that the extra offloading delay
experienced by the devices can be worth trading off for the
enhanced accuracy of the cloudlet.

2) Data Sets and Classifiers: We focus on image classi-
fication, a widely employed analytic task, and use two well-
known data sets: (i) MNIST which consists of 28×28 pixel
handwritten digits, and includes 60K training and 10K test
examples; (ii) CIFAR-10 that consists of 50K training and
10K test examples of 32× 32 color images of 10 classes.
We used two very different classifiers: the normalized-distance
weighted k-nearest neighbors (KNN) algorithm [21], and the
more sophisticated Convolutional Neural Network (CNN),
implemented with TensorFlow [22]. Both classifiers output
a vector where each coordinate represents the probability
that the object belongs to the respective class. These clas-
sifiers differ substantially in their performance and resource
requirements, hence allowing us to build diverse experiment
scenarios. Our goal is to evaluate both and determine which
one is more suitable depending on other system parameters
like the number of available training samples at each location.

The predictors are trained with labeled images and the
outputs of the local (dn(snt)) and cloudlet (d0(snt)) classifiers.
We implemented an ordinary least squares regressor and a
model-free random forest that estimate φnt (dependent vari-
ables) based on the classifier outputs (independent variables).
Recall that the dependent variables are calculated using (1).
We have used training sets of different sizes and two different
regressors: (i) a general model, where the prediction does not
consider the locally inferred class as an independent variable;
and (ii) a class specific model that is based on the output of
the local classifier.

3) Benchmark Algorithms: We compare OnAlgo with three
different algorithms:

• Accuracy-Threshold Offloading (ATO), where a task is of-
floaded when the confidence of the local classifier is below

8For instance, the memory footprint of NNs can be made smaller [26], [27]
but such actions possibly affect their performance. Our analysis is orthogonal
to such interventions.

8

Cloudlet
Core-i7 @1.8

GHz 16 GB RAM

Raspberry Pi 3B
ARM Cortex-A53
@ 1.2 GHz, 1 GB

RAM 802.11n

(a) Testbed Layout

0 5 10 15 20
Throughput (Mb/s)

0.1

0.2

0.3

0.4

0.5

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 (

W
)

Average Tx power
Tx Fitted curve

(b) Tx power consumption

400 500 600 700

Cycles per task (Mcycles)

0

0.2

0.4

0.6

0.8

1

C
D

F

Edge device

Mean: 441.34 Mcycles

Std: 90.45 Mcycles

(c) Cloudlet cycles per task

1 2 4
Hidden Layers

0

200

400

600

800

1000
Model size (MB)

(d) CNN Model Size

Fig. 2: (a): Testbed: 4 RPs and a cloudlet (laptop). (b): Transmit power consumption measurements and the fitted curve for the RPs. (c)
CDF of computing cycles per task for the cloudlet. (d) Increasing the number of layers in CNN increases the model size (MB) up to 100%.

a threshold, without considering the resource consumption.
This is basically the non-distributed version of [23], where
if the local result is not sufficiently reliable, further CNN
layers in the edge or cloud are invoked.

• Resource-Consumption Offloading (RCO), where a task is
offloaded when there is enough energy, without considering
the expected classification improvement.

• Online Code Offloading and Scheduling (OCOS) [24],
where the devices always try to exploit the cloudlet’s
classifier, and the cloudlet tries to schedule as many tasks
as possible in each slot, given its available resources.

B. Initial Measurements

1) Limitations of Mobile Devices: We used our testbed
to verify these small resource-footprint devices require the
assistance of a cloudlet. These findings are in line with
previous studies, e.g., [23], [25]. The performance of a CNN
model increases with the number of layers (as we will show
next), but so does the model size, see Fig. 2d. We find that,
even with 4 layers, a CNN trained for CIFAR has 1GB size
and hence cannot be stored in the RPs (e.g., even more so in
a smaller IoT node). Similar conclusions hold for the KNN
classifier, the accuracy of which is directly linked to the
number of labeled local data (KNN needs the training data
available locally). Clearly, despite the efforts to reduce the
size of ML models by using, for instance, compression [26] or
residual learning [27], the increasing complexity of analytics
and the small form-factor of devices will continue to raise the
local versus cloudlet execution trade off.

2) Classifier and Predictor Assessment: Here we evaluate
the different classifier and predictor designs towards building
a more efficient system. In Fig. 3a we see that the accuracy
(defined as the ratio of correct predictions over the sum of
all predictions) of the KNN classifier improves with the size
Kn of labeled data when applied to MNIST. Figure 3b depicts
the accuracy improvement for CNN as more hidden layers are
added. The performance increase is higher for the digits that
are more difficult to recognize (e.g., 4 and 5), up to about 20%.
Notice, that the performance of the CNN classifier is superior
to KNN, when we use fewer layers, or samples respectively. In
addition, we present the CNN performance on CIFAR, for 1,
2 and 4 hidden layers in Fig. 3c. CIFAR is more complex than
MNIST due to the properties of its objects (colored images,
etc.), and this results in lower accuracy. Overall, we see that

the classifier performance depends on the algorithm (KNN,
CNN, etc.), the settings (datasets, layers, etc.), and differ also
for each object class. Hence, an algorithm is required that
can adapt to all these parameters (as OnAlgo does). Since we
have verified the superiority of CNN classifiers, we continue
our evaluation using only these, instead of KNN.

Finally, we studied the training dataset impact on the
predictor’s error, using both general and class-specific (i) linear
regressors and (ii) random forests. In Fig. 4, we plot the
prediction error of the accuracy improvement for both cases
of general and class-specific predictors for CNN local device
and cloudlet classifiers. We observe that the random forest is
superior to the simpler linear regressor only when the number
of samples is small. Moreover, random forests display an
inconsistency when comparing general to class-based models
as the number of training samples varies. The class specific
regressor for 5K samples achieves the lowest average absolute
error, thus it is used throughout the following experiments,
while its error is rapidly decreasing from 35% for 100 points
to 12.3% for 5K points on the CIFAR dataset.

C. Performance Evaluation

Next, we evaluate the performance of OnAlgo in terms
of achieved accuracy, offloading frequency and resource con-
sumption. First, we evaluate OnAlgo for different values of
the power consumption constraint Bn. Then, we use a variable
non-i.i.d. traffic load to compare its performance against the
competitors, by considering these different criteria. The traffic
load is an exponentially distributed sequence of task bursts,
with a uniform duration of 5 − 10 seconds. This way we
emulate the real-world scenario of sensor-activated cameras
that generate images for short time periods.

1) Resource Availability: We evaluate OnAlgo, by using a
1-layer CNN for the RPs and a 4-layer CNN for the cloudlet.
In Fig. 5 we show the average accuracy achieved by the four
devices, as well as the fraction of requests offloaded to the
cloudlet when we vary the devices’ power budget Bn, for
MNIST and CIFAR. Evidently, as Bn increases there are more
opportunities for exploiting the cloudlet and obtaining a better
result than the local classifier. Furthermore, some interesting
remarks can be made by comparing the two datasets. As
shown in Fig. 3(b-c), MNIST is easier to classify and the
gain of using a better classifier is not as important as on
the CIFAR dataset. In particular, with MNIST the gains are

9

0 1 2 3 4 5 6 7 8 9
Class

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra
cy

Kn=5×104 Kn=200 Kn=50

(a) KNN on MNIST

0 1 2 3 4 5 6 7 8 9
Class

0.5

0.6

0.7

0.8

0.9

1

A
cc

u
ra

cy

4 Layers 2 Layers 1 Layer

(b) CNN on MNIST

Airp
lan

e

Auto
m

obile
Bird Cat

Dee
r
Dog

Fro
g

Hors
e
Ship

Tru
ck

0

0.2

0.4

0.6

0.8

A
cc

u
ra

cy

4 Layers 2 Layers 1 Layer

(c) CNN on CIFAR

Fig. 3: Per class Accuracy of MNIST and CIFAR-10 for KNN and CNN classifiers of various labeled data sizes and hidden layers. For
details of training and validation see Section V.A.

100 200 400 800 2000 5000
Samples

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ab
s.
Er
ro
r

General
Class Based

(a) Linear regressor

100 200 400 800 2000 5000
Samples

0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200

Ab
s.
Er
ro
r

General
Class Based

(b) Random forest

Fig. 4: Predictor assessment.

5 10 20
Bn(×10−6)

0

20

40

60

80

100

Ac
cu
ra
cy

 (%
)

MNIST

Accuracy
Offloadings

(a)

5 10 20
Bn(×10−6)

0

20

40

60

80

Pe
rc
en

ta
ge

 (%
)

CIFAR
Accurac
Offloadings

(b)

Fig. 5: Accuracy and offloading percentage of OnAlgo for various
resource constraints, on MNIST and CIFAR-10.

about 6% in accuracy as the resources (and thus the offloaded
tasks) increase. With CIFAR, on the other hand, the potential
performance gain when using the cloudlet is higher; and as
Bn increases, the accuracy gains are up to 15%. These two
experiments demonstrate the agility of our algorithm, which
assesses the potential accuracy gains and shapes accordingly
the offloading strategy, based on resource availability.

2) Comparison with Benchmarks: Next, we compare On-
Algo to ATO, RCO and OCOS for a varying non-i.i.d. traffic
load in Fig. 6 using the criterion of accuracy and power con-
sumption. Ideally, we would like an algorithm to perform well
in both these dimensions. To ensure a realistic comparison,
we set the rule for all algorithms that the cloudlet will not
serve any task if the computing capacity constraint is violated;
while for RCO the availability of energy is determined by
computing the average consumption by each device during
the experiment. We employ two scenarios to demonstrate the
algorithms’ performance and energy costs under different data
sets and resource availability states.

Scenario 1: Low accuracy improvement; high resources. In
this case, we set9 Bn = 0.02 mW , H = 2 GHz allowing
the devices to offload many tasks, and the MNIST dataset
(has small improvement between 1 layer and 4 layer CNNs).
We depict the average accuracy achieved by the devices and
the average power consumption versus the task load in bursts
per minute in Fig. 6a and 6b respectively. We observe that
OnAlgo shows a smaller slope in the decrease of accuracy, as
the load increases than all the competitors. The performance
of ATO quickly drops because the cloudlet’s resources are
insufficient for high loads. RCO’s performance is good for the
most part, but it quickly deteriorates for high task loads as the
devices refrain from offloading due to the power constraints. It
is interesting also to note that RCO even outperforms OnAlgo
in terms of accuracy (by approx. 2%) but this happens at the
expense of larger energy cost, namely it spends more than
double the energy of OnAlgo. OCOS performs similarly to
RCO since performance degradation is caused by cloudlet
resource exhaustion. The problem with both algorithms is
that they do not offload intelligently, based on both the im-
provement potential and the availability of resources. Hence,
when considering both performance and energy cost criteria,
and especially in the non-trivial higher load cases they are
significantly outperformed by OnAlgo.

Scenario 2: High accuracy improvement; low resources.
The settings for this scenario are Bn = 0.01 mW , H =
500 MHz not allowing many offloadings and cloudlet clas-
sifications. We used the CIFAR dataset that demonstrates a
substantial performance difference between local and cloudlet
classifiers. We see from Fig. 6c that OnAlgo is up to 12%
more accurate than ATO/RCO for high task load, and in any
case significantly higher than in Scenario 1. OCOS performs
slightly better than ATO/RCO, but at the cost of very high
power consumption. Since the potential of improvement is
higher in Scenario 2, ATO marginally outperforms RCO by
spending up to 50% more power than RCO (see Fig. 6d).
OnAlgo consumes about 50 % less power than OCOS since
the latter always tries to offloads tasks but does not leverage
the cloudlet efficiently due to the lack of computing capacity.

Summing up the 2 scenarios above, we see that OnAlgo

9We have explicitly set a small power budget so as to highlight the impact
of power constraints on the system performance; higher power budgets will
still be a bottleneck for higher task request rates or images of larger size.

10

1 2 3 4 5 6

Load in bursts per minute

86

88

90

92

94

96

A
c
c
u

ra
c
y
 (

%
)

Scenario 1

OnAlgo

ATO

RCO

OCOS

(a)

1 2 3 4 5 6

Load in bursts per minute

0

0.005

0.01

0.015

A
v
e
ra

g
e
 P

o
w

e
r

(m
W

)

Scenario 1

OnAlgo

ATO

RCO

OCOS

(b)

1 2 3 4 5 6

Load in bursts per minute

25

30

35

40

45

50

55

A
c
c
u

ra
c
y
 (

%
)

Scenario 2

OnAlgo

ATO

RCO

OCOS

(c)

1 2 3 4 5 6

Load in bursts per minute

0

0.005

0.01

0.015

0.02

A
v
e
ra

g
e
 P

o
w

e
r

(m
W

)

Scenario 2

OnAlgo

ATO

RCO

OCOS

(d)

Fig. 6: Comparison of different offloading algorithms w.r.t. their accuracy and energy cost, under different task load conditions.

(a) (b)

Fig. 7: Comparison of different key metrics (normalized): (a) On-
Algo for low, medium and high traffic load. (b) Algorithm comparison
for high load in scenario 2.

achieves a smooth performance across varying traffic loads,
while its competitors struggle, especially as the load in-
creases. Moreover, it achieves reasonable power consumption
regardless of the resource availability as opposed to RCO in
Scenario 1, ATO in Scenario 2, and OCOS in both scenarios.
Even when in some cases OnAlgo is being outperformed by
some competitor with respect to one criterion (e.g., by RCO
w.r.t. accuracy in Scenario 1), this happens at the expense of
losing at much larger rates w.r.t. the other criterion (power
consumption).

3) Trade-off Analysis: Next we demonstrate the trade-
offs between number of offloadings, accuracy and resource
consumption between OnAlgo and the competitor algorithms
using net graphs. Fig. 7a displays the performance of OnAlgo
for low medium and high task load. Observe that as the load
increases, OnAlgo rapidly increases resource consumption to
maintain high accuracy. For instance, comparing low to high
load, we see that performance drops only by about 7% as the
computing and power consumption is increased by 75%. In
Fig. 7b we compare the same metrics for high traffic load,
and the different competitors. Observe that OnAlgo achieves
the highest accuracy, while being (closely) second best (behind
RCO) in terms of computing resource and power consumption.
Moreover it achieves high accuracy despite offloading less
frequently than OCOS, due to the intelligent way it makes
the offloading decisions. In summary, OnAlgo achieves the
highest accuracy between the competitors, and at the same
time has a moderate resource consumption.

Next, in Fig. 8 we explore the accuracy-resource
consumption-delay trade-off when problem (P3) is considered,

(a) (b)

Fig. 8: (a) OnAlgo performance for problem (P3). (b) Pareto front
between accuracy and delay efficiency obtained by tuning ζ.

i.e. total delay is jointly optimized with accuracy. Notice
in Fig. 8a, that the increasing traffic load will not only
result in lower accuracy (about 20%) and higher resource
consumption, but also in significantly higher delay (up to
25%). Hence, despite consuming extra resources in high load
cases, OnAlgo still maintains high accuracy standards. Finally,
Fig. 8b displays the Pareto front between accuracy and delay10.
This shows the effect of parameter ζ (ranging from 0.1 to
0.3) on the resulted offloading policy and consequently on the
performance of accuracy and delay. For instance, in order to
double the delay efficiency (from 0.1 to 0.2), we would have to
sacrifice roughly 10% accuracy, by offloading less frequently.

VII. RELATED WORK

Edge & Distributed Computing. Most solutions parti-
tion compute-intense mobile applications and offload them to
cloud [28]. This approach cannot support applications with
stringent requirements due to possible large delays in data
transfers [29]. Cloudlets on the other hand, achieve lower delay
by leveraging edge computing [5], [19] but have limited serv-
ing capacity. A different line of work proposes the distribution
of tasks among collaborating nodes [52]–[54] using intuitive
allocation metrics or static optimization models. Hence, there
is need for an intelligent cloudlet offloading strategy and this
idea lies at the core of our proposal which, unlike previous
works: (i) considers the quality of outcome (accuracy) and
resource costs of devices and cloudlet; and (ii) is adaptive and

10In fact delay is inversed (1/s) so that increasing the value towards either
the x-axis or the y-axis yields better performance with respect to the relevant
metric.

11

oblivious to statistics of system parameters and user requests.
O

Previous works in this area consider simple performance cri-
teria, such as reducing the computation load and focus on the
architecture design. For example, Misco [30] and CWC [31]
implement frameworks for parallel task execution on mobile
devices; and similarly MobiStreams [32], Swing [33] and [34],
focus on collaborative data stream computations. These sys-
tems either do not optimize the offloading policy [32] or use
heuristics that do not cater for task accuracy [33], [34]. Instead,
OnAlgo ensures optimal performance, subject to resource
availability, even when the latter is unknown.

System Designs for Mobile Analytics. The increasing
importance of these services has motivated the design of
wireless systems that can execute such tasks. For instance,
[35]–[37] tailor deep neural networks for execution in mobile
devices, and [38] focuses on how to maximize accuracy in
edge-cloud deployments. These works however, focus either
only on execution delay or accuracy. Glimpse [39] reduces
delay in video tracking applications using an active cache of
frames at the device; Cachier [40] uses edge servers as caches
for image recognition requests so as to minimize latency;
and Precog [41] prefetches trained classifiers on devices to
accelerate image recognition. In a different approach, [42]
selects in runtime the the DNN size, in order to balance
accuracy and resource consumption. Similarly, [43] considers
a richer set of decisions, including model selection; image
compression; and frame rate, aiming to maximize the accuracy
of frames. Finally, [44] minimizes execution time and energy
cost for a single device, for known system parameters and
task loads; while [50] optimizes again delay but through the
orchestration of the edge resources. The plethora of such
system proposals underlines the necessity for an analytical
framework for task outsourcing that can optimize performance.

Optimization of Analytics. Prior analytical works in the
context of computation offloading focus on different met-
rics, such as the number of served requests, e.g., see [45]
and overview in [6], and hence are not applicable here. In
our previous work [46], we proposed a static optimization
framework for a peer-to-peer collaborative task execution
scheme, which does not employ predictions of gains nor
accounts for computation constraints. The authors of [47]
employ a Lyapunov optimization approach to configure a
video analytics application towards balancing the accuracy
and energy costs, under i.i.d. requests and system dynamics.
In [48], video quality and computing resources are selected
to maximize the approximate analytics accuracy. FastVA [49]
is a video analytics system that leverages neural processing
units at the mobile devices and proposes a heuristic offloading
policy towards maximizing accuracy. Other works that cater
for accuracy either rely on heuristics or static models and
complete knowledge of system parameters [42], [43], [51].

Clearly, these assumptions are invalid for many practical
systems where the expected accuracy improvements, power
availability, wireless channels, and cloudlet resources not only
vary with time, but often do not follow an i.i.d. process.
This renders the application of max-weight type of policies
[9] inefficient. Our approach is fundamentally different and

leads to a more robust algorithm that converges as long as the
perturbations are bounded (in each slot), and have well defined
mean values (which can be unknown). Our methodology is
inspired by dual averaging and primal recovery algorithms for
static problems, see [7], [8], [18]. We have extended here this
idea and succeeded in obtaining deterministic bounds and for
a broad range of perturbations. It is also important that the
employed algorithm is lightweight and amenable to distributed
execution, hence can be implemented as a network protocol.
This is in contrast with other optimization approaches, e.g.
using Bayesian learning [55], [56], which require a centralized
computation-demanding execution.

Improvement of ML Models. Clearly, despite the efforts
to improve the execution of analytics at small devices, e.g., by
compressing NN models [26] or using residual learning [27],
the trade off between low-accuracy local and high-accuracy
cloudlet execution is still important due to the increasing num-
ber and complexity of these tasks. This observation has spurred
efforts for designing fast multi-tier deep neural networks [23];
for dynamic model selection [42], [57]; and for threshold-
based task allocation to DNNs [25]; see also discussion in
[43]. These works are orthogonal to our approach and can be
readily incorporated in our framework.

VIII. CONCLUSIONS

We propose the idea of augmenting the execution of data
analytics at end devices with more accurate libraries, or rou-
tines, running at a cloudlet. The key feature of our proposal is a
dynamic and distributed algorithm that makes the outsourcing
decisions based on the expected performance improvement,
and the available resources at the devices and cloudlet. It was
shown, theoretically and through experiments, that this joint
performance-costs design outperforms other efforts that do not
cater for the analytics accuracy or the resource availability.
The proposed algorithm achieves near-optimal performance in
a deterministic fashion, and under minimal assumptions about
the system behavior. Namely it suffices the perturbations to be
bounded in each slot and have well-defined means. This makes
it ideal for the problem at hand where the stochastic effects
(e.g., expected accuracy gains) might not follow an i.i.d. or a
Markov-modulated process.

REFERENCES

[1] A. Galanopoulos, et al., “Improving IoT Analytics through Selective
Edge Execution”, in Proc. of IEEE ICC, 2020.

[2] E. Siow, T. Tiropanis, W. Hall, “Analytics for the Internet of Things: A
Survey”, ACM Comp. Surv., vol. 1, no. 1, 2018.

[3] Cisco White Paper, “Cisco Global Cloud Index: Forecast and Method-
ology, 2016–2021”, Document ID:1513879861264127.

[4] Microsoft Hololens, [Online]: https://www.microsoft.com/en-ie/hololens
[5] M. Satyayanan, et al., “The Case for VM-Based Cloudlets in Mobile

Computing”, IEEE Per. Comp., vol. 8, no. 4, 2009.
[6] Y. Mao, C. You, J. Zhang, K. Huang and K. B. Letaief, “A Survey on

Mobile Edge Computing: The Communication Perspective”, in IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, 2017.

[7] A. Nedic, and A. Ozdaglar, “Approximate Primal Solutions and Rate
Analysis for Dual Subgradient Methods”, SIAM Journal on Optimiza-
tion, vol. 19, no. 4, 2009.

[8] K. Kiwiel, et al., “Lagrangian Relaxation via Ballstep Subgradient
Methods”, Math. Oper. Res., vol. 32, no. 3, 2007.

12

https://www.microsoft.com/en-ie/hololens

[9] L. Georgiadis, M. J. Neely, and L. Tassiulas, “Resource Allocation and
Cross-Layer Control in Wireless Networks”, Foundations and Trends in
Networking, vol. , no. 1, pp. 1-144, 2006.

[10] Y. Lecun, et al., “Gradient-based Learning Applied to Document Recog-
nition”, Proc. of the IEEE, vol. 86, no. 11, pp. 2278 - 2324, 1998.

[11] Alex Krizhevsky,“Learning Multiple Layers of Features from Tiny
Images”, Tech Report, 2009.

[12] J. Redmon, and A. Farhadi, “YOLOv3: An Incremental Improvement”,
arXiv:1804.02767 , 2018.

[13] A. Gelman, and J. Hill, “Data Analysis Using Regression and Multilevel
Models”, Cambridge University Press, ISBN:9780511790942, 2012.

[14] M. Neely, “Energy Optimal Control for Time-Varying Wireless Net-
works”, IEEE Trans. on Inform. Theory., vol. 52, no. 7, pp. 2915 -
2934, 2006.

[15] T. Lan, D. Kao, M. Chiang, A. Sabharwal, “An Axiomatic Theory
of Fairness in Network Resource Allocation”, in in Proc. of IEEE
INFOCOM, 2010.

[16] X. Chen et al., “Efficient Multi-User Computation Offloading for
Mobile-Edge Cloud Computing”, IEEE/ACM Trans. on Networking, vol.
24, no. 5, 2015.

[17] L. Li, et al., “Proportional Fairness in Multi-rate Wireless LANs”, in
Proc. of IEEE INFOCOM, 2008.

[18] V. Valls, D. Leith, “A Convex Optimization Approach to Discrete
Optimal Control”, IEEE Trans. Aut. Cont., vol. 64, no. 1, pp. 35 - 50,
2018.

[19] J. He, et al., “Multi-tier Fog Computing with Large-scale IoT Data
Analytics”, IEEE Internet of Things, vol. 5, no. 2, pp. 677-686, 2018.

[20] Z. Chen, et al., “An Empirical Study of Latency in an Emerging Class
of Edge Computing Applications for Wearable Cognitive Assistance”,
in Proc. of IEEE/ACM SEC, 2017.

[21] S. Dudani, “The Distance-weighted k-Nearest-Neighbor Rule”, IEEE
Trans. on Systems, Man, & Cyb., vol. 6, no. 4, 1976.

[22] M. Abadi, et al., “TensorFlow: A System for Large-scale Machine
Learning”, in Proc. of USENIX OSDI, 2016.

[23] S. Teerapittayanon, B. McDanel and H. T. Kung, “Distributed Deep
Neural Networks Over the Cloud, the Edge and End Devices”, in Proc.
of IEEE ICDCS, 2017.

[24] B. Zhou et al., “An Online Algorithm for Task Offloading in Hetero-
geneous Mobile Clouds”, ACM Trans. Internet Technol., vol. 18, no. 2,
2018.

[25] C. Lo, Y. Y. Su, C. Y. Lee and S. C. Chang, “A Dynamic Deep Neural
Network Design for Efficient Workload Allocation in Edge Computing”,
in Proc. of IEEE ICCD, 2017.

[26] V. Chandrasekhar et al., “Compression of Deep Neural Networks for
Image Instance Retrieval”, IEEE Data Comp., 2017.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition”, arXiv:1512.03385, Dec. 2015.

[28] B. Chun, et al., “CloneCloud: Elastic Execution Between Mobile Device
and Cloud”, in Proc. of ACM EuroSys, 2011.

[29] K. Ha, P. Pillai, G. Lewis, S. Simanta, S. Clinch, N. Davies, and M.
Satyanarayanan, “The Impact of Mobile Multimedia Applications on
Data Center Consolidation”, in Proc. of IEEE IC2E, 2013.

[30] A. Dou, et al., “Misco: A MapReduce Framework for Mobile Systems”,
in Proc. of ACM Petra, 2010.

[31] M. Arslan, et al., “Computing While Charging: Building a Dis-
tributed Computing Infrastructure Using Smartphones”, in Proc. of ACM
CoNEXT, 2012.

[32] H. Wang, et al, “MobiStreams: A Reliable Distributed Stream Processing
System for Mobile Devices”, IEEE IPDPS, 2014.

[33] S. Fan, T. Salonidis, and B. Lee, “Swing: Swarm Computing for Mobile
Sensing”, in Proc. of IEEE ICDCS, 2018.

[34] D. O’Keefe, T. Salonidis, P. Pietzuch, “Frontier: Resilient Edge Process-
ing for the IoT”, PVLDB, vol. 11, no. 10, 2018.

[35] X. Ran, H. Chen, Z. Liu, J. Chen, “Delivering Deep Learning to Mobile
Devices via Offloading”, in Proc. ACM VR/AR Network Workshop, 2017.

[36] N. Lane, et al., “Deepx: A Software Accelerator for Low-power Deep
Learning Inference on Mobile Devices”, in Proc. of IEEE/ACM IPSN,
2016.

[37] A. G. Howard et. al, “MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications”, in CoRR, abs/1704.04861,
2017.

[38] Y. Wang et al., “Enabling Edge-Cloud Video Analytics for Robotics
Applications”, in Proc. of IEEE INFOCOM, 2021.

[39] T. Chen, et al., “Glimpse: Continuous, Real-time Object Recognition on
Mobile Devices”, in Proc. of ACM SenSys, 2015.

[40] U. Drolia, et al. , “Cachier: Edge-Caching for Recognition Applications”,
in Proc. of IEEE ICDCS, 2017.

[41] U. Drolia, et al., “Precog: Prefetching for Image Recognition Applica-
tions at the Edge”, in Proc. of IEEE/ACM SEC, 2017.

[42] S. Han, et al., “MCDNN: An Approximation-Based Execution Frame-
work for Deep Stream Processing Under Resource Constraints”, in Proc.
of ACM Mobisys, 2016.

[43] X. Ran, H. Chen, X. Zhu, Z. Liue and J. Chen, “DeepDecision: A Mobile
Deep Learning Framework for Edge Video Analytics”, in Proc. of IEEE
INFOCOM, 2018.

[44] Y. Li, Y. Chen, T. Lan, G. Venkataramani, “MobiQoR: Pushing the En-
velope of Mobile Edge Computing via Quality-of-Result Optimization”,
in Proc. of IEEE ICDCS, 2017.

[45] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient Multi-User Computation
Offloading for Mobile-Edge Cloud Computing”, IEEE/ACM Trans.
Netw., vol. 24, no. 5, pp. 2795 - 2808, 2016.

[46] A. Galanopoulos, T. Salonidis and G. Iosifidis, “Cooperative Edge
Computing of Data Analytics for the Internet of Things”, in IEEE Trans.
on Cognitive Communications and Networking, vol. 6, no. 4, pp. 1166-
1179, 2020.

[47] S. Zhang, et al., “Adaptive Configuration Selection and Bandwidth
Allocation for Edge-Based Video Analytics”, IEEE/ACM Trans. on
Networking, 2021, Early Access.

[48] P. Yang, F. et al.,“Edge Coordinated Query Configuration for Low-
Latency and Accurate Video Analytics”, in IEEE Trans. on Industrial
Informatics, vol. 16, no. 7, pp. 4855-4864, 2020.

[49] T. Tan, and G. Cao, “Deep Learning Video Analytics Through Edge
Processing and Neural Processing Units in Mobile Devices”, IEEE
Trans. on Mobile Computin, 2021, Early Access.

[50] W. Zhang, et al., “Hetero-Edge: Orchestration of Real-time Vision Appli-
cations on Heterogeneous Edge Clouds”, in Proc. of IEEE INFOCOM,
2019.

[51] S. Yi, Z.g Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li. Lavea,
“Latency-aware Video Analytics on Edge Computing Platform”, in Proc.
of IEEE/ACM Symp. on Edge Computing , 2017.

[52] J. C. S. Dos Anjos, et al., “Data Processing Model to Perform Big Data
Analytics in Hybrid Infrastructures”, IEEE Access, vol. 8, pp. 170281-
170294, 2020.

[53] A. M. Ghosh, and K. Grolinger, “Edge-Cloud Computing for Internet of
Things Data Analytics: Embedding Intelligence in the Edge With Deep
Learning”, IEEE Trans. on Industrial Informatics, vol. 17, no. 3, 2021.

[54] H. Jin, L. Jia, and Z. Zhou, “Boosting Edge Intelligence With Collabo-
rative Cross-Edge Analytics”, IEEE Internet of Things Journal, vol. 8,
no. 4, 2021.

[55] A. Galanopoulos, et al., “AutoML for Video Analytics with Edge
Computing”, in Proc. of IEEE INFOCOM, 2021.

[56] J. Romero-Ayala, A. Garcia-Saavedra, X. Costa-Perez, and G. Iosifidis,
“EdgeBOL: Automating Energy Savings for Mobile Edge AI”, in Proc.
of ACM CoNEXT, 2021.

[57] L. Liu, and J. Deng, “Dynamic DNNs: Optimizing Accuracy-Efficiency
Trade-offs by Selective Execution”, arXiv:1701.00299, Mar. 2018.

[58] H. Uzawa, “Iterative Methods in Concave Programming”,in Studies in
Linear and Nonlinear Programming, K. Arrow, L. Hurwicz, and H.
Uzawa, eds., Stanford University Press, pp. 154-165, 1958.

[59] W. Hoeffding, “Probability Inequalities for Sums of Bounded Random
Variables”, Journal of the American Statistical Association, vol. 58, no.
301, pp. 13-30, 1963.

IX. APPENDIX

Proof of Lemma 1: For any θ ∈ RN+1
+ we can write:

‖λt+1 − θ‖2=‖[λt+αtgt(yt)]+−θ‖2 ≤ ‖λt+αtgt(yt)−θ‖2

=‖λt−θ‖2+α2
t ‖gt(yt)‖2+2αt(λt − θ)>gt(yt),

where we used the non-expansiveness property of the Eu-
clidean projection. Rearranging:

‖λt+1−θ‖2−‖λt−θ‖2≤α2
t ‖gt(yt)‖2+2αt(λt − θ)>gt(yt).

Dividing with at, setting θ = 0, and applying the telescopic
summation we obtain the final result.

Proof of Lemma 2: We have λt+1 = [λt + atgt(yt)]
+ �

λt + atgt(yt), and dividing by at we get:

λt+1

at
− λt
at
� gt(yt).

13

http://arxiv.org/abs/1804.02767

Summing telescopically for the first T slots and setting λ1=0,
we obtain:

T∑
t=1

gt(yt) �
λT+1

aT
+

T∑
t=1

λt

(
1

at−1
− 1

at

)
.

Expanding gt(yt) = g(yt)+δt(yt), dividing with T and taking
the norms yields the result.

Proof of Lemma 3: Recall that we defined: Lt(y,λ) =

ft(y)+λ
>gt(y)=f(y)+λ

>g(y)+εt(y)+λ
>δt(y). (17)

Next, we bound the t-slot dual function Vt(λt) =
miny∈Y Lt(y,λt) in terms of the dual function of prob-
lem P, V (λt) = miny∈Y f(y) + λ>t g(y). Since yt ∈
argminy∈Y Lt(y,λt), we have:

Vt(λt) = f(yt) + λ>t g(yt) + εt(yt) + λ>t δt(yt)

(a)

≤ f(zt) + λ
>
t g(zt) + εt(zt) + λ

>
t δt(zt)

= V (λt) + εt(zt) + λ
>
t δt(zt)

where (a) follows from the minimality of yt. Hence:

f(y?) = V (λ?)
(a)

≥ 1

T

T∑
t=1

V (λt)

≥ 1

T

T∑
t=1

Vt(λt)− εt(zt)− λ>t δt(zt)

(b)

≥ 1

T

T∑
t=1

(
Lt(yt,λt)− εt(zt)− λ>t δt(zt)

)
where (a) follows from the maximality of λ? and (b) due to
our primal update.

Proof of Lemma 4: ∀λ∈ Qv we have:

v ≤ Vt(λ)= min
y∈Y

{
ft(y) + λ

>gt(y)
}
≤ ft(ys) + λ>gt(ys)

= ft(ys) +

N+1∑
n=1

λngnt(ys)

Hence it holds: −
∑N+1
n=1 λngnt(ys) ≤ ft(ys) − v. Since

gnt(ys) < 0, and λn ≥ 0 we get:

min
n
{−gnt(ys)}

N+1∑
n=1

λn ≤ ft(ys)−v ⇒
N+1∑
n=1

λn ≤
ft(ys)− v

qt
.

Using that |ft(ys)| ≤ σf , the definition of q and the fact that
qt > 0, we arrive at the result.

Proof of Lemma 5: We use an induction argument to show:

‖λt − λ‖ ≤ λmax :=
2σf + ‖λ‖σg

q
+
σ2
g

2q
+
ε

q
+ ‖λ‖ (18)

+ ‖λ1‖+ aσg, ∀λ � 0.

Trivially, ‖λ1 − λ‖ ≤ ‖λ‖+ ‖λ1‖ ≤ λmax, and assume (18)
holds at t. We consider two cases.

Case (i): Vt(λt) < Vt(λ) −
atσ

2
g

2 . Then we can write:
2at
(
Vt(λt)− Vt(λ)

)
< −a2tσ2

g ⇒ −2at
(
Vt(λ)− Vt(λt)

)
+

a2tσ
2
g < 0. Hence, we have:

‖λt+1 − λ‖2 ≤ ‖λt + atgt(yt)− λ‖2

≤ ‖λt − λ‖2 + 2atgt(yt)
>(λt − λ) + a2tσ

2
g

(a)

≤ ‖λt − λ‖2 − 2at
(
Vt(λ)− Vt(λt)

)
+ a2tσ

2
g

(b)
< ‖λt − λ‖2,

where (a) follows from the fact that gt(yt) is a subgradient of
Vt(λt) and (b) from the assumptions of the case considered.
Hence, it holds ‖λt+1 − λ‖ ≤ λmax.

Case (ii): Vt(λt) ≥ Vt(λ)−
atσ

2
g

2 .

‖λt+1−λ‖=‖[λt + atgt(yt)]
+ − λ‖ ≤ ‖λt + atgt(yt)− λ‖

≤ ‖λt − λ‖+ atσg

≤ ‖λt‖+ ‖λ‖+ atσg ≤
N+1∑
n=1

λnt + ‖λ‖+ atσg

≤ σf − v
q

+ ‖λ‖+ atσg

≤ σf
q
− 1

q

(
σf + ‖λ‖σg −

atσ
2
g

2

)
+ ‖λ‖+ atσg

≤ −‖λ‖σg
q

+
atσ

2
g

2q
+ ‖λ‖+ atσg

≤ −‖λ‖σg
q

+
a1σ

2
g

2q
+ ‖λ‖+ a1σg,λmax

where we used that, by Holders inequality, ‖λt‖ ≤∑N+1
n=1 λnt; and applied Lemma 4 with:

v = Vt(λ)−
atσ

2
g

2
≤ σf + ‖λ‖σg −

atσ
2
g

2

and used that α1 ≥ αt,∀t. It follows that ‖λt − λ‖ ≤ λmax
and so ‖λt‖ ≤ λmax + ‖λ‖.

14

	I Introduction
	I-A Background and Motivation
	I-B Methodology and Contributions

	II Model and Problem Formulation
	II-A Task Model
	II-B Wireless System
	II-C Problem Definition and Assumptions

	III Decision Framework and Online Algorithm
	III-A Problem Decomposition and Algorithm

	IV Performance Analysis
	IV-A Complementary Slackness and Constraint Bounds
	IV-B Approximate Primal Averaging Bounds
	IV-C Convergence Analysis
	IV-C1 Boundedness of Multipliers
	IV-C2 Error Terms

	V Model and Algorithm Extensions
	VI Implementation and Evaluation
	VI-A Experiments Setup
	VI-A1 Testbed and Measurements
	VI-A2 Data Sets and Classifiers
	VI-A3 Benchmark Algorithms

	VI-B Initial Measurements
	VI-B1 Limitations of Mobile Devices
	VI-B2 Classifier and Predictor Assessment

	VI-C Performance Evaluation
	VI-C1 Resource Availability
	VI-C2 Comparison with Benchmarks
	VI-C3 Trade-off Analysis

	VII Related Work
	VIII Conclusions
	References
	IX Appendix

