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Abstract
The stochastic finite element analysis of composite structures requires the accurate quantification of the
random spatial variation of material properties at different scales [1]. In a recent paper by the authors [2],
a Bayesian framework has been presented for determining the spatial variability of the apparent material
properties of two-phase composites. Bayesian analysis allowed quantifying the uncertainty in the parameters
of the respective mesoscale random fields through sampling from their posterior distribution. Moreover, it
was shown that the exponential correlation model is the most plausible among different models belonging to
the Matérn family through computing their respective posterior probabilities. In this paper, use is made of the
above results to generate sample functions of the mesoscale random fields and to compute the probabilistic
characteristics of the eigenfrequencies of composite structures. Parametric investigations are conducted to
examine the effect of the identified random field parameters on structural response statistics.

1 Introduction

Composite materials display a random spatial variation of mechanical properties, attributed to the mismatch
of the properties of their constituent materials. Structural analysis using the traditional Finite Element
Method (FEM) in this case cannot account for all possible output scenarios. The Stochastic Finite Element
Method (SFEM) [1] tackles this issue by taking the input uncertainty into account, propagating it through
the system and assessing its stochastic response. This paper focuses on the response variability of composite
structures as a continuation of the authors’ previous work, since the parameters of the random input (material
property fields) have been derived in [2].

In the case of composite materials, the macroscopic response of the structure is directly linked to the mi-
croscopic configuration, which is often plagued by uncertainty. Depending on the scale considered, the
mechanical properties of a composite can display various degrees of spatial randomness, as shown in [3],[4].
Mesoscale random fields can be used to model this spatial variability [5], by applying homogenization in
conjunction with the moving window technique [6], [7]. These fields will then serve as input in applying the
SFEM and therefore identifying them is of paramount importance.

In [2], the authors applied Bayesian analysis to identify the parameters defining random property fields,
given available composite microstructure data. In the Bayesian framework, field parameters are modelled as
random variables and their full posterior distribution is obtained instead of a point estimate, while potential
dependencies between these parameters are also revealed. In this particular case, the model parameters
include the mean and standard deviation of the underlying field, as well as the correlation lengths in the x-
and y- direction. Additionally, using the Bayesian approach, the most plausible correlation model belonging
to the Matérn class was determined to be the exponential one, for the given microstructure data.



Having clearly defined the random mechanical properties of the composite sturcture, the next step would be
to calculate the random structural response. Several recent papers have investigated the dynamic response
variability of structures when material uncertainty is present. For example, the generalized variability re-
sponse function (GVRF) methodology is employed in [8] to compute the displacement response and the
effective compliance of linear plane stress systems. Geißendörfer et al. [9] proposed a stochastic multiscale
method for the computation of the natural frequencies of metal foams, analyzing random field data derived
from CT images. In [10], [11], random fields of the mesoscale elasticity tensor of polycrystalline materials
are generated using Stochastic Volume Elements (SVEs) and SFE analysis is carried out, obtaining the res-
onance frequency of MEMS micro-beams using Monte Carlo Simulation (MCS) while establishing a link
between the random field correlation and the SFE mesh size. In [12] random eigenvalue analysis is per-
formed using MCS with an optimally selected start vector, while studying the effect of the material property
field correlation length on the Coefficient Of Variation (COV) of the eigenvalue output. Naskar et al. [13]
computed the stochastic natural frequencies of laminated composite beams with the Radial Basis Function
(RBF) approach, considering randomness in the material properties and matrix cracking damage. A Spec-
tral Stochastic Isogeometric Analysis method is proposed in [14] for free vibration analysis, obtaining the
statistics of the eigenvalues and eigenvectors and showing its efficiency compared to MCS.

As an extension of previous publications by the authors [15], [4], the present work aims to compute the
response variability of a composite structure, whose mechanical properties are modelled by random fields
and their parameters have been obtained from Bayesian analysis for a given microstructure. Stochastic Finite
Element analysis is carried out herein, studying the variability of the system eigenvalues (eigenfrequencies).
The output variability is determined through MCS and the convergence of the eigenvalue statistics (mean,
standard deviation) is investigated. Since the model parameters derived from Bayesian analysis are random
variables, several combinations are tested, including fixing the parameters at their posterior values as well
as accounting for their full uncertainty in assessing the posterior predictive random field. Random fields are
generated with spectral covariance decomposition, which is a discrete form of the Karhunen-Loève (KL)
expansion. The random eigenvalues of a simply supported and a cantilever beam are computed and results
are also given at different scales, depending on the size of the moving window, which shows the amount of
microstructure data taken into account.

The contents of this paper are as follows: In Section 2, the Bayesian approach for identification of random
field parameters is explained and previous findings are reported. Section 3 contains a thorough description of
the method adopted for the calculation of the structural response variability. Numerical results are presented
and analyzed in Section 4, while useful conclusions are drawn in Section 5.

2 Bayesian identification of random material property fields

Before conducting a response analysis, it is vital to obtain accurate estimates of the random material prop-
erty fields serving as model input. In the case of limited data, a Bayesian approach is well suited for the
identification of the parameters of these random fields. In [4], starting with a computer simulated image of a
two-phase composite, which can be seen in Fig.1, realizations of random fields of the elasticity tensor com-
ponents are obtained, through homogenization and application of the moving window technique. Through
this procedure, the composite is divided into Stochastic Volume Elements (SVEs) which are smaller than
the Representative Volume Element (RVE) and possess random homogenized mechanical properties. The
random field is then constructed from considering these properties at the center of the SVEs.

Different mesoscale random fields are obtained from the same composite image, depending on the moving
window size. The non-dimensional scale factor δ = L/d is used to characterize each mesoscale model,
where L is the moving window size, d is the inclusion diameter and δ ∈ [1,∞]. By adjusting the moving
window size, random fields at two different scale factors are obtained, δ1 = 11.21 and δ2 = 22.42, leading
to 3249 and 625 SVEs, respectively [5]. While using a larger scale factor can save computational cost from
analyzing fewer SVEs, the modelling of the composite is considered less accurate.

The examined composite contains a volume fraction vf = 40% of randomly dispersed circular inclusions
with a diameter d = 7.14 µm, while it has a stiffness ratio Eincl/Em = 1000. According to [4], a lognormal



marginal distribution is well suited for a property field with such a high stiffness ratio. The elasticity compo-
nents investigated are the axial stiffness C11 and the shear stiffness C33 of the 2-D elasticity tensor, which,
under the isotropy assumption, is given by the following equation:

Cij =

 C11 C12 0
C22 0

symm C33

 (1)

with C11 = C22 and C12 = C11 − C33.

Figs.2, 3 show the computed realization of the random field, as well as its empirical marginal distributions
and 2-D autocorrelation functions for the C11 and C33 components of the apparent elasticity tensor. As the
scale factor increases, i.e. less microstructure data is taken into account, the correlation length is increased,
leading to reduced spatial variability. In the limit case of δ → ∞, the random fields become fully correlated,
as the moving window reaches the RVE size. Having obtained one realization of the random property fields
and with no additional microstructure information available, Bayesian inference can be applied to learn the
parameters of an adopted model of the mesoscale random fields.

Figure 1: Illustration of the composite material and the moving window technique.

Figure 2: Mesoscale random fields of elasticity tensor component C11



Figure 3: Mesoscale random fields of elasticity tensor component C33

2.1 Bayesian identification of model parameters and model selection

In the Bayesian approach, model parameters are regarded as random variables and using Bayes’ rule, their
full posterior distribution is determined given available microstructure data, instead of a single point estimate.
Consider a homogeneous random field A(ω,x), with x ∈ Bδ , defined in terms of a model M with parameter
vector θ ∈ Rm. Bδ is a SVE of the composite (see Fig.1) and ω denotes the randomness of a quantity.
A(ω,x) models a component of the apparent elasticity tensor, for some mesoscale size δ. We are interested in
learning the vector θ using direct measurements of the random field d = [a1; ...; and ] at locations x1, ...,xnd .
The measurement locations refer to the midpoint positions of the moving window and the data d refers to the
corresponding homogenized property values. Bayesian analysis is employed to learn the vector θ. That is, a
prior density f(θ|M) given the model M is imposed, describing prior knowledge on the model parameters,
i.e. before measurements become available, and Bayes’ rule is applied to update the prior density given the
data. Bayes’ rule states:

f(θ|d,M) = c−1
E|ML(θ|d,M)f(θ|M) (2)

where f(θ|d,M) is the posterior density of the parameters given the data d and model M , and L(θ|d,M)
is the likelihood function, describing the measurement information. The reciprocal of the proportionality
constant, cE|M , is the evidence of model class M and is given by the integral:

cE|M =

∫
Rm

L(θ|d,M)f(θ|M)dθ (3)

Consider first the case where the random field A(ω,x) is Gaussian. Then, θ includes the mean µ, standard
deviation σ and parameters of the correlation kernel of the field ρ(ξ|θρ), with ξ = (ξx, ξy) being the space
lag; i.e. θ = [µ;σ;θρ]. If A(ω,x) is a non-Gaussian homogeneous translation field, then it is given by:

A(ω,x) = F−1 · Φ[U(ω,x)] (4)

where F−1 is the inverse of the marginal cumulative distribution function (CDF) of A(ω,x), U(ω,x) is
a standard Gaussian field and Φ is the standard normal CDF. In such case, θ includes the parameters θF
of the marginal distribution of A(ω,x) and the parameters θρ of the correlation kernel of U(ω,x), i.e.
θ = [θF ;θρ]. We note that the finite dimensional distribution of the random field defined by Eq.4 is a



Gaussian copula model and its likelihood function can be found in [2]. For the case that the marginal
distribution of translation field is of the lognormal type, Eq.4 takes the following form:

A(ω,x) = exp[µG + σGU(ω,x)] (5)

where U(ω,x) is an underlying Gaussian field and µG, σG are auxiliary parameters of the transform.

The posterior distribution is often obtained numerically, due to the difficulty in evaluating the normalizing
constant c. An adaptive version of the BUS approach (Bayesian Updating with Structural reliability methods)
combined with Subset Simulation (SuS) is adopted in [2], yielding a sample approximation of the posterior
distribution along with an estimate of the model evidence. More details regarding the implementation of the
BUS-SuS approach can be found in [16].

The Bayesian approach is not limited to parameter identification but can also be used for model selection
by computing the posterior probabilities Pr(Mi|d,M) of different candidate random field models Mi (with
various correlation kernels or marginal distributions) given the data. The probabilities Pr(Mi|d,M) provide
a rational means for selecting the most appropriate (plausible) model among a set of models as the one that
maximizes Pr(Mi|d,M) with respect to i.

2.2 Bayesian analysis results

Bayesian analysis was first performed to obtain the most plausible correlation model, belonging to the Matérn
class, by varying the smoothness parameter ν. The anisotropic version of the Matérn auto-correlation func-
tion adopted herein is given by the following equation [17]:

ρν (r) =
21−ν

Γ (ν)

(√
2νr

)ν
Kν

(√
2νr

)
(6)

where Γ is the gamma function, Kν is the modified Bessel function of the second kind, ν is a non-negative
smoothness parameter and r is defined as:

r =

√(
ξx
bx

)2

+

(
ξy
by

)2

(7)

with (ξx, ξy) being the space lags along the axes x, y and bx, by the respective non-negative correlation length
parameters. The exponential (ν = 1/2), modified exponential (ν = 3/2) and squared exponential (ν → ∞)
models belong to the Matérn family of autocorrelation functions [18]. Results showed the most plausible
model to be the exponential one (ν = 1/2) for the C11 component. In that case, the autocorrelation function
is reduced to the following equation:

ρ1/2(r) = exp(−r) (8)

For the shear stiffness C33, all correlation models were nearly equally matching, with a slight preference for
the exponential one. As a result, this model is adopted for both tensor components in the present paper.

Following the correlation model selection, the posterior distributions of all model parameters are obtained,
which are depicted in Fig.4 for stiffness components C11, C33 and scale factors δ1 and δ2. Note that Bayesian
analysis revealed a positive correlation between the correlation lengths bx, by and the standard deviation of
the underlying Gaussian field σG (see [2]). Subsequently, characteristic values of these parameters can be
drawn from the given PDFs and used in a response analysis. For instance, the mean values of all parameters
can be used or even the posterior predictive random field can be derived through generating random fields
conditional on samples from the posterior distribution. It is also worth noting that Bayesian analysis results
are affected by the moving window size and a smaller window (smaller scale factor) will lead to less variable
model parameters, since more microstructure data is taken into account.



Figure 4: Random field parameter posterior distributions for elasticity tensor components C11 and C33 at
mesoscale sizes δ1 = 11.21 and δ2 = 22.42

3 Computation of structural response variability

Following the random field parameter identification, response variability analysis of the composite structure
is the next step in the SFEM approach. As the use of finite elements with random properties is involved, a
technique for assigning discrete values of the random property fields is needed. In this paper the discrete
form of the KL-expansion is applied to discretize the random fields, which is also called the covariance
decomposition method. SFEM is conducted via MCS, meaning a large number of samples are generated
and analyzed. The response variability is studied and the effect of the input random field parameters derived
through Bayesian analysis is investigated across different scales.

3.1 Random field discretization using covariance decomposition

Uncertainty propagation and computation of the response requires not only identifying the parameters of the
input random fields, but also their discretization and generation of respective sample functions. Among the
existing methods used for random field discretization, a discrete form of the KL expansion is adopted in this
work, which is also called spectral or modal covariance decomposition [19]. In the general case when the
random field to be generated is non-Gaussian, covariance decomposition can be applied on an underlying
Gaussian random field U(ω,x) and then realizations of the non-Gaussian random field can be obtained
through the transformation of Eq.4. From this point on ω, which denotes the randomness of a quantity, will
be omitted for simplicity.

Consider an approximation of a standard Gaussian random field U(x), expressed in terms of the finite random
vector U = [U1, . . . , Un]

T , whose values are given, for instance, at the midpoints of a finite set of subdomains
called stochastic elements [20]. The covariance matrix ΣUU of the random vector U can be obtained through
evaluating the autocovariance of the random field U(x) at the element midpoints. Since the covariance
matrix is n×n bounded, symmetric and positive semi-definite, it has n real non-negative eigenvalues λ̃i and
corresponding eigenvectors vi. Thus it can be decomposed as follows:



ΣUU =
n∑

i=1

λ̃iviv
T
i (9)

The eigenvectors are orthogonal and we further assume that they have been normalized. Therefore, they form
a basis in Rn, meaning every element of Rn can be expressed as a linear combination of the eigenvectors
vi. Since the random vector U is an element of Rn, it can be represented as a linear combination of the
eigenvectors vi multiplied by random amplitudes. As a result, the random vector can be expressed as follows:

U =

n∑
i=1

√
λ̃iviζi (10)

where ζi, i = 1, ..., n are random variables, which due to the orthonormality of the eigenvectors are given
by:

ζi =
1√
λ̃i

vT
i U (11)

From Eq.11 it becomes apparent that the variables ζi have zero mean and are orthonormal, i.e., it holds:

E[ζi] = 0 , E[ζiζj ] = δij (12)

Since U is Gaussian, the random variables ζi are independent standard normal random variables. As a result,
simulation of the standard Gaussian random field U(x) can be achieved by drawing realizations of ζi and
applying Eq.10.

3.2 Structural response variability

Stochastic finite element analysis of 2-D composite structures is carried out herein. The input uncertainty is
limited to the elastic tensor components, which are described by random fields. These fields are homoge-
neous, have lognormal distributions and their correlation structure is of the Matérn class. Through Bayesian
analysis, the parameters defining these fields have been identified from given computer generated microstruc-
ture data. Subsequently, sample functions of these fields are generated with the covariance decomposition
method. As a result, input uncertainty can be propagated through the structure with a suitable technique and
the macroscopic response can be computed.

Response variability analysis is therefore conducted with MCS. A number of samples of the material property
fields are generated, finite element analysis is carried out for each sample and the statistics of the eigenvalues
are examined. The convergence of the estimated response statistics is observed through plotting the mean
and COV of the response quantity against the number of MCS samples. The effect of random field param-
eter variability derived from Bayesian analysis is investigated. Results are reported at two different scales,
corresponding to scale factors δ1 and δ2.

According to [1], care must be taken, in order to match the stochastic element mesh size with the spatial
variability of the random fields and as a result, the element length should lie between b/4 and b/2, where
b is the correlation length. In the present work, since the property fields are statistically anisotropic, the
minimum of both correlation lengths (x- and y- direction) is used to calculate the element length.

In all FE models analyzed, the plane stress assumption is made while using a unit thickness. The response
variability is studied by conducting random eigenvalue analysis. The first 15 eigenvalues are computed,
sorted in increasing order and their statistics are analyzed. Eigenvalues are vital in the calculation of the
dynamic response of structures in the framework of modal analysis and it is crucial to investigate how they
are affected by input uncertainty. It should be noted that this paper only focuses on uncertain mechanical
properties and thus the composite density affecting the mass matrix is not considered spatially varying.



However, such an extension is possible through the authors’ proposed multiscale framework and can be
implemented in future works.

4 Results and discussion

This section contains the results of the SFE analysis. For each model, 1000 MCS are performed for different
samples of the mesoscale random property fields and statistical convergence is achieved within this number
of MCS. The parameters defining these fields, given by the random vector θ = [µG, σG, bx, by], are the
mean and standard deviation of the marginal distribution of the underlying Gaussian field, as well as the
correlation lengths in the x- and y- directions. Four different types of random field parameter combinations
are examined: the (mean), (mean–COV · mean), (mean + COV · mean) as well as a predictive case,
for which a random field realization is generated for posterior samples from the parameter vector θ. The
difference in analyzing the microstructure in more detail (smaller scale factor δ1) versus less detail (larger
scale factor δ2) is also visualized. It should be noted that random field parameters in the predictive case for δ2
have been selected such that correlation lengths lower than 2 µm are excluded from MCS in order to achieve
a reasonable finite element size and computational cost.

4.1 Simply supported beam

In this problem, the first 15 eigenvalues (eigenfrequencies) of a simply supported beam, which is shown in
Fig.5, are calculated. Results are displayed in Figs.6 and 7.

For both scale factors, the means of the eigenvalues appear unaffected by the Bayesian analysis-derived
random field parameters. The choice of parameters does affect the eigenvalue COV, however, and a more
variable COV is observed in the higher mesoscale size δ2. This can be explained by the Bayesian analysis
yielding random field parameters with more variability, as the moving window size increases, due to limited
microstucture data being available. While the eigenvalue COV is more variable in the higher mesoscale
size, for all parameter combinations examined, it is lower than the COV of the lower mesoscale size δ1.
Additionally, the mean eigenvalues in the lower mesoscale size are higher than those of the higher mesoscale
size. Increased variability of the response in the lower mesoscale sizes is expected due to the more detailed
modelling of the heterogeneous microstructure and has also been observed in [4].

Regarding the specific parameter combinations, the COV appears to increase as parameters are chosen to-
wards the right tail of their distributions. For instance, the response variability for the (mean+COV ·mean)
case is the largest compared to that of the other parameter combinations tested. This effect is also expected,
since simultaneously increasing the correlation lengths and the point variance σG will lead to an increased
output COV in the structural problem. Lastly, random selection of the random field parameters (predictive
distribution) is shown to lead to a response resembling the one given by the mean parameters for both scale
factors.

Figure 5: Simply supported beam



Figure 6: Mean, COV of eigenvalues for δ1, simply supported beam

Figure 7: Mean, COV of eigenvalues for δ2, simply supported beam

4.2 Cantilever beam

In the second example, the eigenvalues of a cantilever beam, shown in Fig.8, are examined. Results are
displayed in Figs.9 and 10.

Similarly to the previous results, the mean does not depend on the input field parameters chosen. Significant
differences in the eigenvalue COV are observed for different field parameters for the higher mesoscale size
δ2 with the (mean + COV · mean) parameter case again showing the highest COV among the selected
parameters combinations. Nonetheless, the output COV for the higher mesoscale size δ2 is lower than that
of the lower mesoscale size δ1.



Figure 8: Cantilever beam

Figure 9: Mean, COV of eigenvalues for δ1, cantilever beam

Figure 10: Mean, COV of eigenvalues for δ2, cantilever beam



5 Conclusions

In this paper, a complete link is established between composite microstructure and the dynamic response
characteristics at the macroscale. The uncertain parameters of the mesoscale random fields describing the
spatially variable material properties serve as input in the SFE analysis of composite structures and their
effect on the statistical characteristics of the eigenvalues is examined.

In all cases studied, the means of the eigenvalues appear unaffected by the chosen random field parameters.
For the smaller mesoscale size, the output COV is only slightly affected by the random field parameters.
In the larger mesoscale size, however, different parameter choices have significant effect on the response
COV. The substantial effect of uncertain random field parameters on the response variability observed in
higher mesoscales can be explained by the fact that Bayesian analysis results are more variable in this case
due to the smaller amount of microstructure data. Despite being less affected by the model parameters, the
eigenvalue COV in the lower mesoscale size is shown to be larger than that in the higher mesoscale size. The
methodology followed herein can be useful for the computation of the dynamic response (e.g. displacement)
of composite structures using modal analysis.
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