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1 IEM, University of Music and Performing Arts, Graz, Austria
2 Ambient Intelligence Group, CITEC, Bielefeld University, Bielefeld, Germany

weger@iem.at

ABSTRACT

For unknown physical objects, we often infer the “ground truth”
(e.g., on material, hollowness, or thickness) that is hidden below
the visual appearance by percussion, i.e., by knocking on them.
Auditory augmentations embed digital information into physical
objects by modulating their auditory feedback in a plausible way.
Based on physically justified sound models, we are able to design
auditory displays that blend seamlessly into the acoustic environ-
ment. We assume that magnitude estimations are easier for physical
parameters than for abstract sound parameters, at least for untrained
users. In two experiments we measured how listeners extract phys-
ical information (size, aspect ratio, material) from the sound of
impacted rectangular plates. First, participants actively explored an
augmented table through a ballpoint pen. The second experiment
evaluated only unisensory auditory identification of physical param-
eters. The results let us estimate the total information capacity of
such interactive sonifications with multidimensional (2D and 3D)
parameter mappings. Despite using only natural sounds, the infor-
mation capacity of both mappings was on par with a comparable
1D auditory augmentation and only slightly below 1D auditory dis-
plays based on more salient but implausible sound parameters. The
results additionally allow a better understanding of human sound
source identification in general.

1. INTRODUCTION

Nothing is more annoying than a bad sonification, not adapted
to the specific environment and users it aims for. If providing
critical information to a single professional, e.g., performing a
surgery or controlling an airplane, the information is best mapped
to the most salient sound parameters in the given environment (e.g.,
hospital or cockpit). If uncritical information should be provided
ambiently to multiple users in a shared office, without disturbing
others, an entirely different approach is necessary; e.g., auditory
augmentation [1, 2, 3]. In its strict sense, the original auditory
feedback that results from physical interaction is modulated for
conveying additional information. Sonifications in general need
time to be perceived by living beings. Interactive sonifications such
as auditory augmentations are living themselves: they cannot be
consumed passively but require active participation. In order to stay
calm and unobtrusive, the augmented auditory feedback stays in a
plausible but usable range, with respect to the physical object and
the performed action.

Besides auditory augmentation, several closely related concepts
have been proposed. Gaver [4] parameterized auditory icons based
on physical models, whereas Barrass [5] fabricated solid physical
from model-based sonifications of digital data [6]. Mauney and
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Figure 1: How many bits fit in a rectangular plate?

Walker [7] used soundscapes for unobtrusive monitoring of periph-
eral data. Ferguson [8] introduced ambient sonification systems for
providing an invisible interface to ambient data by augmenting inter-
actions with physical objects in a domestic environment by sound.
Tünnermann et al. [9] created blended sonifications which “blend
into the users’ environment” without confronting them with any
explicit technology, always ready to hand if needed. Blended soni-
fications manipulate interaction sounds or environmental sounds
in such a way “that the resulting sound signal carries additional
information of interest while the formed auditory gestalt is still
perceived as coherent auditory event” [9]. We assume that due to
their restrictions, such interactive sonifications are rather limited in
information capacity.

Pollack [10, 11] measured the information capacity of per-
ceptual parameters such as pitch or loudness based on absolute
magnitude estimations. Participants estimated the value of a given
sound parameter on an ordinal scale, while parameter range and the
number of discrete levels were varied in several conditions. The
received information of each condition is then the average number
of correctly identified levels. The information capacity is the max-
imum of all conditions, i.e., partitionings. Instead of levels L, it
is usually given in bits: C= log2L. If plotted against sent infor-
mation (i.e., number of discrete levels), the received information
usually starts as a straight line (1 level sent, 1 level received), rising
with increasing sent information, but successively approaches a
maximum that is never exceeded, no matter how much is sent: the
information capacity. This pattern is similar for any perceptual
parameter in any sensory modality; and the information capacity
is always in the region between 2 and 3 bit or around 7 levels: the
capacity of our short-term memory [12]. Due to this strict limi-
tation of human perception, the saliency of the parameter or its
range play only a minor role [11]. However, there is a way out of
this dilemma: combining several parameters to a multidimensional
auditory display.

If combining the two presumably orthogonal perceptual param-
eters of pitch and loudness to a 2D auditory display, the number
of combined discriminable levels doubles from 5 to 10 [13]. But
wait, shouldn’t it rather be 5×5=25 levels, i.e., 2×2.3 bit? That
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is the question. And what if we chose less annoying, less salient,
less orthogonal sound parameters? In fact, we did not have this
prior work on information capacity in mind when designing the
experiments that are presented here.

The research question we want to shed light on now is: “what
is the information capacity of a rectangular thin plate?” We chose
this very specific physical object for several reasons. Aiming at
plausible auditory augmentations, it suits many everyday objects
in our rather rectangular world: tables, walls, windows, houses,
computers, even this article. We are already accustomed to the
sound of rectangular objects; maybe we are even experts in auditory
perception of their sound. The sound of rectangular plates can be
synthesized by simple physical models, e.g., [14, 15, 16]. Modal
synthesis is established in psychoacoustic experiments, e.g., [17,
18], and cannot be discriminated from real recordings [19], even if
applying crude simplifications [20].

In order to answer our research questions, we will first briefly
summarize how the physical properties of a rectangular plate are
encoded in its sound, and how this physical information may be
extracted by human listeners (Sec. 2). A 2D auditory augmentation
of a table with varying length and aspect ratio is evaluated in Sec. 3.
A follow-up listening experiment using pre-rendered sounds then
investigates a 3D display that employs aspect ratio, metallicity,
and rigidity (Sec. 4). The results are discussed with respect to
our research question, i.e., the information capacity of plausible
auditory augmentations of rectangular plates, in Sec. 5. General
conclusions are drawn in Sec. 6.

2. FROM PHYSICAL PARAMETERS TO SOUND
PARAMETERS AND VICE VERSA

Our personal experiences suggest that the average person is able to
distinguish between different materials and shapes of rigid phys-
ical objects by exploring the auditory feedback through tapping,
or scratching. On the basis of listening experiments from the lit-
erature1, with synthesized and also with physically struck objects,
we feel safe to say that humans can almost perfectly discriminate
between gross material categories (glass/metal vs. wood/plastic, at
least for small damping) [22, 23], and to some extent even between
materials within categories (e.g., glass vs. metal) [17] or between
different sizes and shapes (e.g., small vs. large [24, 18, 25], or
plate vs. bar [26, 27, 28]). In addition, we know that perception
of physical parameters benefits from combining different sensory
modalities such as audition, vision, and touch [29, 30, 31, 32].

According to a modal synthesis model, we assume that the
sound of impacted rigid objects is a sum of N exponentially de-
caying sinusoids, corresponding to the objects’ so-called modes.
The simplified impulse response, i.e., response to an ideal impact,
is given in Fig. 1. Each individual mode n is defined by the fol-
lowing sound parameters: its starting amplitude An (including also
frequency-dependent sound radiation), its frequency fn or angular
frequency ωn =2πfn, and its decay factor αn.2 The mode with
lowest frequency corresponds to the object’s base frequency. Con-
cerning its sound, the most important physical parameters of a rect-
angular plate are the plate dimensions (thickness h, length lx, width
ly , aspect ratio ra = lx/ly , area S= lxly), density ρ, and elastic ma-
terial constants (either 4 rigidities Di or Young’s modulus E, Pois-
son’s ratio ν, shear modulus Gxy , and orthotropy Ω= 4

√
D1/D3)

1See [21] for a comprehensive literature review on auditory and multi-
sensory perception of physical information.

2Subscript indices are omitted from now on for better readability.

[33, 15]. Additional meta-parameters include longitudinal wave ve-
locity cL =

√
12D/ρ and rigidity D=

√
D1D3=E/[12(1− ν2)].
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with Gx, Gy , Hx, Hy , Jx, and Jy given in [34]. The (frequency-
dependent) damping is expressed by decay factor3 α and includes
loss due to viscoelasticity (αv) [14, 35, 36], thermoelasticity (αt)
[14, 37], viscosity (αf) [14], and radiation (αr) [14]. These either
sum up directly or blend between non-metallic (αv,M) and metallic
(αv,M+αt) via metallicity H [17]:

α = (1−H)αv,M +H (αv,M + αt) + αr + αf . (3)

While αv are proportional to frequency, αt are approximately con-
stant over frequency, but weighted for each mode individually,
depending on the mode shapes [14, 35]. In our simplified model,
the amplitude of a given mode depends on its radiation efficiency
(usually low for low frequencies, i.e., some kind of high-pass fil-
ter, based on an empirical model [38]), its shape at the excitation
position (zero on nodal lines, positive/negative at peaks/troughs
[16, 34]), and the plate’s indentation hardness (temporal Hann win-
dow modeled as 3rd-order low-pass filter at cutoff frequency fcH

[39, 40, 16]). To some extent, it is possible to reverse this process
of physical modeling, in order to derive physical parameters from
measured sound parameters [41, 42, 28, 43, 15]. This direction,
however, exhibits ambiguities, e.g., with size and material both
affecting the base frequency and thus pitch. In such cases we tend
to base our judgments on expectations due to our everyday acoustic
environment (e.g., small metal bars and large glass plates) [22].

In addition, our perceptual resolution differs across sound pa-
rameters and thus also physical parameters.
Decay factor. We employ an empirical formula for the just-notice-
able difference (JND) in time constant [18], based on data from
[44, 45]. Its valid range between 2ms and 200ms fits 45 JNDs.
τ=20ms yields a Weber fraction of 35%. Based on synthesized
plucked strings, a Weber fraction of 40% was measured [46].
Amplitude. An empirical formula for the JND in amplitude was
derived [18], based on measurements with pulsed sinusoids by [47]
and the frequency-dependent threshold of hearing [48]. A plausible
range of 60 dB, roughly equaling the range of music at 1 kHz [49,
17], is divided into 17 JNDs.
Missing partials. A missing lower partial within the first 3 to 6
partials is easily detected (sensitivity d′ between 2 and 8), contrary
to missing higher partials (d′<2) [50].
Base frequency. Within the valid frequency range between 0.2 kHz
and 8 kHz (which usually suffices for everyday objects), the JND
in frequency follows an empirical formula [18]. It fits 1452 JNDs.4

In practice, the discrimination of fundamental frequency f1 of com-
plex tones depends on the signal duration and the number of partials

3Decay factor α connects to loss factor η, Q-factor, time constant τ and
−60dB reverberation time T60 via: η= 1

Q
= 2α

ω
= 2

ωτ
=

2 ln(1000)
ωT60

.
4Note that the underlying JND describes the minimum absolute fre-

quency difference that is needed to identify the sign of the frequency differ-
ence between two pulsed sinusoids [51].
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Table 1: Model coefficients of the rendered plates in experiment 1.
glass wood

thickness h 10 12 mm
viscoelastic loss ηv or ηiv 0.001 [0.0051 0 0.0216 0.0164]
density ρ 2550 415 kgm−3

rigidities Di [6700 – – 10 270] [1320 77 82 227] MPa
orthotropy (fibers in x-direction) Ω 1 2
viscous loss αf 5.8 Hz
upper cutoff frequency (indentation hardness) fcH >20 2.41 kHz
length lx {0.30 , 0.34 (small) , 0.40 , 0.46 (medium) , 0.53 , 0.61 (large) , 0.70} m
aspect ratio ra {1.10 , 1.42 (compact) , 1.82 , 2.35 (longish) , 3.02 , 3.88 (bar-shaped) , 5.00}

Figure 2: Frequencies of a rectangular plate, relative to mode 2/0,
as a function of aspect ratio; including the levels of experiment 1.

[52, 53].
Frequency ratios / intervals. If resonances are far enough apart
from each other (≥10%), they are heard as individual pitches [54].
For complex tones, the JND in frequency ratio is about 1.24% of
the base ratio [55]. One octave (ratio of 2), thus holds 57 JNDs.
Modal density DM . Defined as the average number of partials per
Hz, its JND is about 0.3DM for low to moderate values [56]. A
realistic range between 0.001 (1 mode per kHz) and 0.1 (1 mode
each 10Hz), fits 18 JNDs.
Upper cutoff frequency / low-pass filtering. At high frequencies,
we assume a dense spectrum, so that the principles of perception of
low-pass filtered noise can be applied, at least at low damping. In-
dependent of base cutoff frequency, JNDs are approximately 25%
for 1st order and 4% for 4th-order low-pass filters [57], in line with
previous studies [58]. A low-pass filter with fc between 0.1 and
10 kHz thus fits 18 JNDs in case of 1st order and 100 JNDs in case
of 4th order.

3. MULTISENSORY DISCRIMINATION OF SIZE AND
ASPECT RATIO

Incorporating the perceptual aspects from above, we designed an ex-
periment to explore the perception of size and shape of rectangular
plates in an ecological scenario of percussion. We want to inves-
tigate to what extent participants are able to distinguish between
size (here in the form of length) and shape (here in the form of
aspect ratio), and additionally, with what precision participants are
able to estimate the size and shape of rectangular plates of different
materials. The technical setup is based on the AltAR/table platform
[59].5 During the experiment, participants directly interacted with
the interface plate and identified an unknown plate’s length and
aspect ratio in direct comparison to a reference plate with known

5Demo video of AltAR/table:
https://phaidra.kug.ac.at/o:126460

Figure 3: Apparatus of experiment 1, including the interface plate,
tracked ballpoint pen, and MIDI controller (captured via webcam
during the experiment).

dimensions. The experiment was performed separately for the two
materials glass and wood.

3.1. Stimuli and apparatus

The model parameters of the rendered plates are given in Tab. 1.
Length and aspect ratio took 7 levels each, evenly spaced on a
logarithmic scale, including 4 distractor levels for concealing the
discrete levels and total range. The resulting frequency ratios are de-
picted in Fig. 2. Both length and aspect ratio were jittered randomly
to pretend an interval scale and to prevent participants from sim-
ply remembering distinct sounds. While main levels were jittered
uniformly within ±30% of the logarithmic increment between ad-
jacent levels, distractor levels were jittered within ±40%, with the
exception of the outmost distractor levels which were only jittered
inwards. Viscous damping αf was tuned by ear to equalize the over-
all decay across materials and to shift the unfamiliar low damping
of freely vibrating plates to a more ecologically valid range. The
effect of radiation efficiency was attenuated by taking its 4th root
in order to model a more ecologically valid near-field behavior.

In an acoustically treated room, participants sat in front of the
table and interacted with the interface plate through a ballpoint pen
that was equipped with infrared markers of an OptiTrack motion
capture system (see Fig. 3). Tracking data was recorded for later
analysis. Interaction was only possible within an active region of
297mm× 59.4mm which equaled the dimensions of the smallest
plate that was modeled during the experiment. Within this region, a
paper overlay of the same dimensions was placed. The experiment
software was implemented in Pd, ran on a separate computer, and
sent control data to the auditory augmentation system. A graph-
ical representation was shown on screen; however, participants
responded by using a Behringer BCF2000 MIDI controller. The
motorized sliders copied those on screen.
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3.2. Procedure and participants

The experiment was structured into 4 parts. First, participants fa-
miliarized with the influence of excitation position on the resulting
sound by tapping on prepared physical plates of glass and wood.
Then, participants took a seat at the augmented table. During pas-
sive training, the effect of length and aspect ratio was demonstrated
by playing pre-recorded sounds through the interface. Both param-
eters stepped through the 7 levels, i.e., the whole range of the slider,
from low to high and back, while the other parameter was set to a
constant medium value, respectively. Participants listened to all 4
combinations of parameter and material at least once.

Parts 3 (active training) and 4 (test) shared a similar procedure,
with less trials for training. Active training (part 3) and the actual
test (part 4) were performed separately for both materials (glass
and wood), with balanced order across participants. At the start of
each trial, the augmentation was set to the reference plate A whose
length and aspect ratio were given by two sliders. Participants
could switch to the unknown plate B through a button. The state
of length and aspect ratio was copied from the reference plate at
start. Participants were asked to identify the parameter that differed
between A and B, and set the corresponding slider to an estimated
value. If one slider was moved, the other was instantly reset to
the value of the reference plate to ensure an answer in only one
parameter. Participants could change between both plates at will
before submitting their answer and proceeding to the next trial.
If participants decided for the wrong parameter, the background
color switched to red, and participants were asked to correct their
judgment. After responding in the correct parameter dimension, the
background switched back to green and the next trial was presented.

To speed up the experiment, the unknown plate B of a trial
stayed as reference plate A in the next trial. This included the reso-
lution of the previous trial as feedback, and let participants directly
proceed to the unknown plate B as they were already familiar with
A. The test was organized in a series of 48 trials per material, which
formed a trajectory through the 2D parameter space where only
one parameter changed between successive trials (i.e., between A
and B). Active training included only 8 trials per material. The
trajectories were pre-computed in Matlab so that each of the 9 com-
binations of main levels was reached as the unknown plate by all 4
combinations of main levels that were possible for the correspond-
ing reference plate. This led to a total of 36 main trials per material.
In addition, distractor trials were generated which appeared always
in pairs so that a parameter changed to a random distractor level
and then returned back to a random main level. Six such pairs
of distractor trials were inserted at random positions within the
trajectory, but exactly once in a row of 9 main trials. There was
always at least one main trial between two pairs of distractor trials.

A total of 14 participants (8 female, 6 male) were recruited to
form a diverse mix of experts (4 colleagues, 4 graduate students in
sound design) and non-experts (4 undergraduate students, family
members, and friends). They received no compensation for their
participation; all reported normal hearing.

3.3. Results

For sonification, parameter confusion and direction confusion are
assumed to be the most critical. The respective accuracies are
plotted against each other in Fig. 4. Average accuracies are 0.888
(SD = 0.093) for direction confusion, 0.818 (SD = 0.065) for
level confusion (confusion between the 3 parameter levels), and
0.763 (SD=0.100) for parameter confusion. Participants 7, 9, and

Figure 4: The individual participants’ performance: accuracy in
direction (increase vs. decrease) and parameter (length vs. aspect
ratio) discrimination.

14 (all more than 1.5 standard deviations away from the average
in at least one of the 3 categories of accuracy) are considered as
outliers and are excluded from further analysis.

A fundamental task for the participants was to decide which of
the two parameter dimensions (length or aspect ratio) had changed
between A and B. Each trial can be attributed to one of 4 fields in the
confusion matrix of true parameter and selected parameter. Overall
accuracies (i.e., probabilities for choosing the correct parameter)
were 0.75 for glass and 0.81 for wood.

For comparison between main levels of length and aspect ratio,
we exclude trials with a distractor as plate B, take only the last
answer into account (either correct or corrected), and round jitter-
corrected estimated values to the nearest main level. The overall
accuracy for length in case of wood is a bit higher (Acc = 0.87)
than for all other combinations (between 0.83 and 0.84).

As we cannot assume normally distributed data, Mann-Whit-
ney U tests were used for pairwise comparisons between median
values. If not stated differently, any given p-values are Bonferroni-
Holm adjusted, and a threshold for statistical significance of 5%
is employed. A larger value of true aspect ratio always led to a
significantly larger estimated aspect ratio. In particular, longish and
bar-shaped were perceived significantly more elongated than com-
pact, and bar-shaped was perceived significantly more elongated
than longish (all p<0.001, respectively). Length follows the same
trend: medium and large were perceived significantly larger than
small (p<0.001, respectively, for both materials), and large was
perceived significantly larger than medium (p= 0.026 for glass,
p<0.001 for wood). For the discrimination of the direction (i.e.,
sign) of a parameter change, accuracies were generally high. In par-
ticular, accuracy for length in case of wood (0.97) was significantly
higher than for the other combinations (0.89 and 0.92).

Figure 5 shows estimated lengths and aspect ratios, pooled over
participants. The second main level (medium length or longish
aspect ratio), can be reached by either a parameter increase (up-
ward jump) or decrease (downward jump), if only main levels are
considered. First and third main level can be reached from only one
direction, but with different step size (one or two levels). For wood,
the judgments of length following an increase were significantly
larger than those following a decrease (p<0.001), which leads to
hysteresis. In all other cases, the difference between increase and
decrease towards the unknown plate was not significant.

A sonification designer might seek to know the number of
discriminable levels for each parameter. It obviously depends on the
amount of error we tolerate. Such a function is derived via the effect
size Cohen’s d (see also [60]). For both steps between adjacent
main levels, d is calculated, and the number of discriminable levels
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Figure 5: Estimated vs. true value for all combinations of material
and parameter. Triangles are medians, error bars are 5-, 25-,
75-, and 95-percentiles. △ = increase by 1 level, △= increase by
2 levels, ▽ = decrease by 1 level, and ▽= decrease by 2 levels.
Dashed lines are the true values.

is obtained with respect to a desired threshold dt:

D =

∑2
i=1 (di,i+1)

dt
+ 1 , d =

√
2Φ−1(Ps) . (4)

Via the cumulative standard normal distribution Φ, any d can also
be expressed in terms of probability of superiority Ps, i.e., the
probability that a larger true value leads to a larger estimated value
[61]. The resulting estimates are shown in Fig. 6.

The participants’ answers can be interpreted as a confusion
between the estimated plate and the true plate. If only main levels
are considered, and estimated values are rounded to main values,
each pair of true and answered plate is interpreted as a confused
pair. Based on the frequency for each pair (the order of reference
and unknown plate doesn’t matter), a probability of confusion is
constructed. The top 10 most confused pairs of plates exhibit a
confusion probability larger than 5% and differ in area by less
than factor 3. We could observe that plates of equal area are likely
to be confused. This may be attributed to the assumption that
participants sometimes tend to answer in terms of area instead of
the demanded parameter. Note that any pair of the four parameters
length, width, aspect ratio, and area is sufficient to describe the 2D
plate dimensions. If estimated areas are correlated with the true
areas of the modeled plates, we could observe that judgments in
the correct parameter dimension (glass: R2 =0.69, wood: R2 =
0.80) led to much stronger agreement with the true area than those
judgments where participants changed the wrong parameter (glass:
R2=−0.21, wood: R2=0.17).6

Although all participants received the same introductions, in-
cluding the recommendation to tap everywhere within the tapping
region, they developed quite different tapping strategies to explore
the rendered plates. Especially interesting were the patterns of
participants 6, 8, and 11, who independently from each other con-
centrated on three distinct spots for tapping. As their performance
was pretty average (see Fig. 4), no conclusions can be drawn about
possible benefits or drawbacks of this strategy. On average, partici-
pants took 15.0 s to form an answer, measured from the time they
first switched to plate B.

6A negative R2 in this case means that true areas perform worse than

Figure 6: The number of discriminable levels, plotted against the
probability of superiority.

3.4. Discussion

The two parameters length and aspect ratio are mainly connected
to absolute frequency factor (and thus pitch) and relative frequency
ratios between modes (and thus intervals and modal density), re-
spectively. The range of length corresponds to a frequency ratio of
1.77 (0.607/0.343, at constant aspect ratio). If mode 3/0 is inter-
preted as base frequency, then the whole frequency range, averaged
across materials, takes about 558 JNDs.

The range of aspect ratio defines a ratio of frequency ratios,
i.e., the frequency ratio between modes n/0 and 0/n. Between bar-
shaped and compact, it equaled 2.74. Some of the lower resonant
frequencies are more than 10% apart from each other and can
thus be perceived as individual pitches [54]. This way, the range
of intervals holds about log1.012(2.74) = 84.5 JNDs. The ratio
between modal densities of bar-shaped and compact aspect ratios is
almost constant across lengths and materials, on average 2.22. The
range of modal densities that is given through the ratio of aspect
ratios fits about log1.3(2.22)=3.0 JNDs. This equals the about 3
discriminable levels of aspect ratio at Ps = 0.75. It seems likely
that participants exploited mainly modal density when judging
aspect ratio. Figure 2 visualizes the frequency ratios (relative to the
frequency of mode 2/0 for a quadratic plate) as a function of aspect
ratio, for isotropic materials. For orthotropic plates, the effective
aspect ratio is divided by Ω (=2 in our case). If the lowest modes
cross each other, their frequency ratios are ambiguous. In case of
glass (Ω=1), modes 1/1 and 2/0 cross just above the lowest main
level (compact). In case of wood (Ω=2), this effect is even stronger.
Surprisingly, the accuracies of level and direction discrimination of
aspect ratio did not significantly differ between materials. Due to
crossing modes, aspect ratio may also significantly affect pitch, i.e.,
perceived length. One may argue that the lower modes are anyway
barely radiated, especially for bar-shaped plates, so that only higher
modes are evaluated for estimating the aspect ratio. The radiation
efficiency can be roughly approximated by a 1st-order high-pass
filter with cutoff at the critical frequency fcr of radiation damping
[14, 38]. It equals 1162Hz for glass and 1763Hz for wood. As
mode 3/0 is mostly below this frequency (see above), participants
are barely able to utilize interval relationships of single modes
for estimating aspect ratios. The slightly better performance in
parameter identification for wooden plates might even be attributed
to this attenuation of lower modes which otherwise confound the
perceptual descriptors of length and aspect ratio. While inaudible
lower partials can be reconstructed computationally by matching a
theoretical model of a rectangular plate [15], participants failed to

their geometric mean when predicting estimated areas.
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Table 2: Model coefficients of the rendered plates in experiment 2.
non-metal metal

plastic wood glass gold brass aluminum

thickness h 8.557 10.602 8.000 6.659 7.105 7.707 mm
density ρ 1150 590 2550 19 300 8500 2700 kgm−3

Young’s modulus E 3.20 3.29 66.90 80.00 95.00 72.00 GPa
Poisson’s ratio ν 0.300 0.100 0.250 0.423 0.330 0.340
upper cutoff frequency (indentation hardness) fcH 9.37 6.67 >20 7.82 14.68 9.60 kHz

thermoelastic constants [14, 37] R1t 64.31 22.42 24.84 64.31 22.42 24.84 10−3 radm2 s−1

c1t 1.251 0.489 0.977 1.251 0.489 0.977 10−3 rad s−1

metallicity [17] H 0 1
viscoelastic loss factor [36, 62] ηv 5.7/cL 0.57/cL

longitudinal wave velocity cL 1748.7 2373.6 5290.0 2246.9 3541.5 5491.1 m s−1

length lx 0.420 m
aspect ratio ra {2, 4, 8}

evaluate this information.
In summary, participants encountered several difficulties when

performing the demanded task. A follow-up experiment is therefore
designed, based on these considerations.

4. AUDITORY DISCRIMINATION OF MATERIAL AND
ASPECT RATIO

We have learned from the first experiment that size and aspect ratio
can indeed be employed as carrier parameters of a 2D auditory
display. Aspect ratio and orthotropy, however, confound each other
and their parameter range should be carefully chosen to avoid
crossing partials. According to Fig. 2, ra ≥ 2 seems appropriate.
Instead of the length (i.e., surface area) from experiment 1, we
try another approach based on material perception, using a 3D
parameter space of aspect ratio, metallicity, and density. As density
mainly affects pitch, it seems convenient to employ a more high-
level meta-parameter such as longitudinal wave velocity cL for this
purpose — we call it rigidity to underline its physical meaning. Due
to the common effect on pitch, length is set constant. While the
participants of experiment 1 actively explored the model plates
through a physical interface, experiment 2 tested pure auditory
perception of sounds based on the same physical model.

4.1. Stimuli

While all three meta-parameters affect the plate on a continuous
interval scale, only discrete levels are used during the experiment.
Metallicity takes 2 levels (non-metallic, metallic). Aspect ratio
takes 3 levels (compact, longish, and bar-shaped). Rigidity takes 3
levels, with labels for individual material categories that depend on
the state of metallicity. For non-metals, these are plastic, wood, and
glass. For metals, these are gold, brass, and aluminum. Metallicity
blends between the pair of non-metal and metal material of same
rigidity.

For blending between non-metals and metals, we chose pairs
of materials with approximately equal longitudinal wave velocity
cL (and thus base frequency). cL can be only perceived in combi-
nation with thickness h [15]; their product hcL scales the overall
frequency. We therefore use the freely adjustable thickness to align
selected material categories with their corresponding value of cL to
an equally-spaced grid of base frequencies (on a logarithmic scale).
Glass is selected as reference with a plausible thickness of 8mm
for a table. Rigidity levels below are tuned to 0.75 and 1.5 octaves
below. Metals are equalized likewise.

Length is set constant to 0.42m, large enough for a table, but

sufficiently high in pitch. Aspect ratio (length :width) ranges from
2 (compact) via 4 (longish) to 8 (bar-shaped). A plausible physical
interpretation might be that the table is made from many narrow
planks in the latter case. Excitation position is set constant, on the
edge of the plate, so that as many modes are excited as possible7, but
in the maximum of mode 3/0, at normalized position [0.3083, 0]
in order to stabilize pitch. Possible disturbing modes (1/1 and 2/0)
are thereby attenuated while mode 3/0 is boosted.

In the experiment, metallicity takes only the extreme values 0
(non-metallic) and 1 (metallic). In addition to damping, H blends
between non-metallic and metallic material constants on an expo-
nential scale. The actual constants are given in Tab. 2. Thermoe-
lastic constants R1t and c1t are pre-computed via the underlying
physical constants [14]. We argue that almost any frequency-de-
pendent damping higher than that of the ideal free plate can be
achieved by physical suspension or dampers. The decay factors are
therefore equalized by an individual (positive) bias so that mode
3/0 matches a desired (shorter) decay time. Mode 3/0 roughly
controls pitch and is usually the longest decaying mode if those
below are neglected due to excitation in its maximum. Within the
experiment, 2 decay times T60 of 0.15 s and 0.45 s are used as
different conditions.

Stimuli are pre-rendered by using the a physical model similar
to the ones described by [14, 16, 15, 17]. As excitation signal
for a single impact, a Hann window of constant length 0.5ms
is used. The duration is chosen to perceptually match the pen
excitation through a paper overlay in experiment 1. Each stimulus
consists of the same model plate that is excited by 4 successive
impacts in time intervals of 200ms. A natural rhythm is achieved
by randomization of the onset time by ±10ms. All combinations of
levels of metallicity, rigidity, and aspect ratio lead to 18 model plates
for each of the 2 damping conditions, or 36 different stimuli in total.
To prevent participants from directly memorizing individual sounds,
the 3 meta-parameters (normalized between 0 and 1) are jittered
uniformly by ±0.05. Each individual impact is jittered by ±3 dB
in amplitude and ±10% in duration. Each of the 36 stimuli is
rendered in 4 different variations, two for training and two for the
two repetitions in the test.

4.2. Apparatus, procedure, and participants

The experiment was implemented in form of a web page, with
the help of the open-source JavaScript library jsPsych which
is designed for running cognitive experiments online in the web
browser [63]. The experiment was hosted free of charge on the

7Note that free boundary conditions are used on all edges.
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related Cognition8 platform. Its source code including the rendered
sound files is available online.9

Participants had to indicate if they would classify themselves as
trained listeners (e.g., due to musical training or professional back-
ground). In addition, they were asked to put on the best headphones
available. During a passive introductory phase, all parameter dimen-
sions were explained individually with the help of sound examples.
During an active training phase, participants compared all 18 combi-
nations within the current damping condition via two 9×9 matrices
of play buttons for non-metals and metals, respectively. They were
free to decide when ready to start the test for this condition. Both
conditions (each consisting of active training and subsequent test)
were presented one after another in randomized order. Each test
contained 2 repetitions of 18 stimuli in random order. The possibil-
ity to take a break was announced in between. During the test, they
had to identify the given stimuli in all three parameter dimensions,
with the possibility of replay.

20 anonymous participants (recruited among students and per-
sonal acquaintances) finished the experiment. As remuneration, a
lottery of 2 vouchers worth 50EUR each was initiated. 14 of them
classified themselves as trained listeners.

4.3. Results

From all stimuli, 16% were correctly identified in all three pa-
rameter dimensions (95% confidence interval CI 95 between 13%
and 18%). Note the chance level of 1/18 = 5.6%. Damping
had no significant effect on this result. As the number of trials
was balanced across classes, this simple metric of percent correct
classifications, i.e., accuracy, is an appropriate measure of the par-
ticipants’ performance. When discriminating between non-metal
and metal, pooled accuracy was 0.80. For rigidity (plastic/gold
vs. wood/brass vs. glass/aluminum), pooled accuracy was 0.55. For
aspect ratio (compact vs. longish vs. bar-shaped), pooled accuracy
was 0.36. As the participants’ individual pooled accuracies spread
rather symmetrically around their average, with low standard de-
viation (0.07 for metallicity, 0.12 for rigidity, and 0.06 for aspect
ratio), none were excluded as outliers. Neither the average trial
duration nor the average number of replays had a significant effect
on the average accuracy. Trained participants achieved a slightly
(but not significantly) higher accuracy than untrained participants
(0.61 vs. 0.57).

One-tailed Wilcoxon signed-ranks tests were used for pair-
wise comparisons between adjacent levels of rigidity and aspect
ratio, taking ordinal values between 1 and 3, with a 5% threshold
for statistical significance. For rigidity, level 2 (wood/brass) was
judged significantly higher than level 1 (plastic/gold) (Z=30142,
p<0.001), and level 3 (glass/aluminum) was judged significantly
higher than level 1 (wood/brass) (Z = 50806, p < 0.001). For
aspect ratio, level 2 (longish) was judged significantly higher than
level 1 (compact) (Z = 31539, p < 0.001), but the difference
between level 3 (bar-shaped) and 2 (longish) was not significant.
Metallicity included only 2 categorical levels (1 and 2). According
to Fisher’s exact test, metals were judged significantly different to
non-metals (p<0.001, odds ratio: 15.6).

In special cases, even two different plates may sound similar.
For each combination of two stimuli, the probability that one was
identified as the other was computed. The 16 most confused pairs

8Cognition platform: https://www.cognition.run
9Experiment source code: https://github.com/m---w/

experiment_listening_to_rectangular_plates

Figure 7: The number of discriminable levels of the three parame-
ters (metallicity, material, aspect ratio), plotted against the prob-
ability of superiority Ps. Markers show Ps computed from raw
responses. Lines show estimates based on effect size.

had confusion probabilities above 0.13. 12 of them involve con-
fusion between aspect ratios (top 5: longish vs. bar-shaped), 12
involve a bar-shaped plate, and 5 refer to rigidity confusions.

When discriminating non-metals and metals, a significantly
higher accuracy (0.82) was achieved for weakly damped plates than
for strongly damped plates (Acc=0.77, CI 95=[0.74, 0.80]). This
is mainly attributed to false negatives for metal in case of strong
damping. While accuracy was equally high for plastic/gold and
wood/brass (0.91), it was significantly lower for glass/aluminum
(Acc=0.57, CI 95=[0.53, 0.62]). While accuracy of metallicity
identification was equally high for compact and longish plates (0.81
and 0.82, respectively), it was significantly lower for bar-shaped
plates (Acc=0.76, CI 95=[0.72, 0.80]).

Concerning rigidity identification, participants were signifi-
cantly better in discriminating non-metals (Acc=0.62) than metals
(Acc=0.49, CI 95=[0.45, 0.52]). While discrimination between
rigidities was equal for longish and bar-shaped plates (on aver-
age, Acc = 0.57), accuracy was lower for compact plates (0.51,
CI 95=[0.47, 0.56]).

When estimating aspect ratio, despite low accuracy, the answers
were significantly different from chance (weak damping: χ2(4)=
82.7; strong damping: χ2(4) = 32.3; both p ≤ 0.001). While
accuracy was similar for compact and longish plates (on average:
0.38), it was significantly lower (equal to chance) for bar-shaped
plates (0.32, CI 95=[0.28, 0.36]).

Other than in experiment 1, the responses are only ordinal.
Nevertheless, we can get a rough estimate of the number of dis-
criminable levels as a function of the probability of superiority,
based on Cohen’s d (see Fig. 7). In addition, we have one reference
data point for each parameter: the probability of superiority that is
achieved for the number of levels that were tested in the experiment.
In case of 2 levels (metallicity), Ps is equal to the accuracy. In case
of 3 levels, Ps of both adjacent pairs are averaged. For material and
aspect ratio, the responses are additionally reduced to two levels,
in order to also obtain Ps for that case. This can be done in two
ways, by combining either levels 1 and 2, or 2 and 3, referring to
different decision thresholds. Assuming that participants choose
the best decision threshold, the maximum of both values is selected.
The resulting reference values are marked in Fig. 7.

4.4. Discussion

Combined identification of metallicity, rigidity, and aspect ratio was
demanding for the participants. For metallicity and rigidity iden-
tification, accuracy was acceptable (0.80 and 0.55, respectively),
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Figure 8: Gaussian model for estimating information capacity.

but incorporated a negative effect of damping. Metallicity is per-
ceptually expressed through (a) damping of some lower partials
due to thermoelasticity, and (b) the amount of frequency-dependent
damping due to viscoelasticity. (a) is almost completely masked by
the small amount of damping that is included, even in the condition
with weak damping, while (b) affects only higher modes beyond
the critical frequency. Participants could hardly discriminate be-
tween glass and aluminum (Acc = 0.57) while plastic/gold and
wood/brass discrimination was excellent (Acc=0.91). This may
be attributed to the high base frequency of glass and aluminum
plates, leading to a small number of audible partials due to strong
damping above the critical frequency. Overall accuracy for aspect
ratio discrimination was only slightly better than chance (0.36).
However, it was still better for plastic/gold and wood/brass (0.36)
than for glass/aluminum (0.32). The latter case was not signifi-
cantly different from chance performance. Similar to metallicity,
the low number of audible partials made it difficult to judge aspect
ratio. The results for the 3 parameters show that an actual sonifica-
tion would require different parameter ranges and segmentations.
While experiment 1 yielded similar accuracy in both dimensions,
aspect ratio identification in experiment 2 is unacceptable for soni-
fication. We assume, however, that a reduced parameter range in
combination with decimation to 2 levels per parameter would yield
almost perfect identification, with theoretical information capacity
of 3 bit.

5. INFORMATION IN AUDITORY AUGMENTATIONS

In order to compare the results with others from the literature, we
need to transform them to a common domain based on information
theory. In the literature, the information capacity of an auditory
display is obtained by performing the same experiment with dif-
ferent resolutions, i.e., numbers of discrete levels that partition the
total parameter range [12, 10]. Contrary to this straightforward
approach, we performed our experiments only at one single par-
titioning for each parameter — obviously not enough for fitting a
curve and finding a maximum. Under some assumptions of signal
detection theory, however, we are able to predict the results of other
parameter partitionings, based on measured effect sizes.

Similar to before, we assume a normal distribution of parameter
estimations on a continuous scale, centered around the true value,
with equal variances. This leads to overlapping normal distributions,
as visualized for 4 levels in Fig. 8. We further assume a perfect
decision criterion midway between adjacent levels. The tails of the
distributions that exceed the criteria thus quantify wrong answers,
i.e., identifications as different level. The probability of correct
identification is the area below the whole probability distribution
(=1) minus the exceeding tail(s). For the lowest and highest level
(P1 in Eq. 5, gray region in Fig. 8), it is larger than that of the
in-between levels (P2 in Eq. 5, black region):

P1 = 1− Φ(−|d|/2) , P2 = 1− 2Φ(−|d|/2) . (5)

Assuming that all levels occur equally often (as in our experiments)
the weighted average of probabilities, for the given number of levels

(a) experiment 1 (b) experiment 2

Figure 9: Received vs. sent information per parameter.

D, yield the probability of correct identification:

Pc =
(D − 2)P2 + 2P1

D
. (6)

Under the given assumptions, for D = {2, 3, ...}, the computed
values for Pc are exact. The number of levels D actually represents
the amount of transmitted information Isent = log2(D) bit. The
amount of received information Irec is thus:

Irec = log2(D · Pc) bit = Isent + log2(Pc) bit . (7)

Received vs. sent information is plotted in Fig. 9 for both experi-
ments. While the underlying effect sizes of experiment 2 are only
approximate, the actual measurements marked in the plot suggest
a good fit. For the 2D sonification in experiment 1, we achieve an
information capacity of about 1.3 bit for length and 0.9 bit for as-
pect ratio, in case of a wooden plate. The total information capacity
with two dimensions A and B and confusion accuracy AccAB is

Irec = Irec,A + Irec,B + log2(AccAB ) bit . (8)

In case of wood, we obtain 1.9 bit. For experiment 2, parameter
confusion is already contained in the estimate effect size. The 3D
information capacity is the sum of the individual dimensions, i.e.,
1.5 bit. How good is that in comparison to the literature? We didn’t
even reach the 2.5 bit of 1D pitch or amplitude identification, but
that was not expected anyway, due to our choice of parameters.
Even a 1D auditory augmentation based on virtual room acoustics
yielded only 2 bit [60]. The logical consequence is to circumvent
the hard limit of 1D displays by adding more dimensions. Pollack
and Ficks already took it to the extreme with an 8D display that
used 8 independent sound parameters of 2 levels or 1 bit resolution
each [13]: listeners perceived about about 7 bit of the 8 bit sent.

6. CONCLUSIONS

Our approach to use two or three sound parameters of low resolu-
tion was already the right choice, but not yet enough. Note that
the physically-inspired parameter dimensions partly interfere with
each other, so that participants were possibly forced to distinctly
remember every single parameter combination. Furthermore, we
investigated only absolute identification without reference, similar
to absolute pitch perception. Even a lower information capacity
would therefore seem acceptable for interactive sonifications, as
most information is conveyed relatively, as a change over time. Ab-
solute identification of the extreme levels in each parameter within
a multi-dimensional sonification may then serve as guidance to
facilitate the correct identification of relative parameter changes.
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pp. 77–84.
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“Klangsynthese und akustische Erkennung rechteckiger Plat-
ten,” in DAGA Jahrestagung für Akustik, Vienna, Austria,
2021.

[16] P. Troccaz, R. Woodcock, and F. Laville, “Acoustic radiation
due to the inelastic impact of a sphere on a rectangular plate,”
J. Acoust. Soc. Am., vol. 108, no. 5, pp. 2197–2202, 2000.

[17] S. McAdams, V. Roussarie, A. Chaigne, and B. L. Giordano,
“The psychomechanics of simulated sound sources: Material
properties of impacted thin plates,” J. Acoust. Soc. Am., vol.
128, no. 3, pp. 1401–1413, 2010.

[18] R. A. Lutfi and C. N. J. Stoelinga, “Sensory constraints on
auditory identification of the material and geometric proper-
ties of struck bars,” J. Acoust. Soc. Am., vol. 127, no. 1, pp.
350–360, 2010.

[19] R. A. Lutfi, E. Oh, E. Storm, and J. M. Alexander, “Classifi-
cation and identification of recorded and synthesized impact
sounds by practiced listeners, musicians, and nonmusicians,”
J. Acoust. Soc. Am., vol. 118, no. 1, pp. 393–404, 2005.

[20] J. Traer, M. Cusimano, and J. H. McDermott, “A perceptually
inspired generative model of rigid-body contact sounds,” in
DAFx, Birmingham, UK, 2019.

[21] Marian Weger, Plausible auditory augmentation of physical
interaction, Ph.D. thesis, University of Music and Performing
Arts, Graz, Austria, 2022.

[22] B. L. Giordano and S. McAdams, “Material identification of
real impact sounds: Effects of size variation in steel, glass,
wood, and plexiglass plates,” J. Acoust. Soc. Am., vol. 119,
no. 2, pp. 1171–1181, 2006.

[23] G. Lemaitre and L. M. Heller, “Auditory perception of mate-
rial is fragile while action is strikingly robust,” J. Acoust. Soc.
Am., vol. 131, no. 2, pp. 1337–1348, 2012.

[24] C. Carello, K. L. Anderson, and A. J. Kunkler-Peck, “Percep-
tion of Object Length by Sound,” Psychological Science, vol.
9, no. 3, pp. 211–214, 1998.

[25] S. Tucker and G. J. Brown, “Modelling the auditory per-
ception of size, shape and material: Applications to the clas-
sification of transient sonar sounds,” in AES Convention,
Amsterdam, Netherlands, 2003.

[26] A. J. Kunkler-Peck and M. T. Turvey, “Hearing Shape,” Jour-
nal of Experimental Psychology: Human Perception and Per-
formance, vol. 26, no. 1, pp. 279–294, 2000.

[27] S. Lakatos, S. Mcadams, and R. Caussé, “The representation
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