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Abstract

Goldbach’s conjecture is one of the most difficult unsolved problems in
mathematics. This states that every even natural number greater than
2 is the sum of two prime numbers. The Goldbach’s conjecture has been
verified for every even number N < 4 . 10'®. In this note, we prove
that for every even number N > 4 . 108, if there is a prime p and a
natural number m such that n < p < N —1,p+ m = N, % +

n088% 41 4 m2_1 > m and p is coprime with m, then m is necessarily
a prime number when N = 2 - n and o(m) is the sum-of-divisors

function of m. The previous inequality % 4+ n0889 L1 4 m2_1 >n
holds whenever m 4+ n088 4 1 4 m2_1 > n also holds
and m > 11 is an odd number, where v = 0.57721 is the Euler-
Mascheroni constant and log is the natural logarithm. This implies that

the Goldbach’s conjecture is true when the Riemann hypothesis is true.
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1 Introduction

As usual o(n) is the sum-of-divisors function of n
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where d | n means the integer d divides n. Define s(n) as @ In number
theory, the p-adic order of an integer n is the exponent of the highest power of
the prime number p that divides n. It is denoted v, (n). Equivalently, v,(n) is
the exponent to which p appears in the prime factorization of n. We can state

the sum-of-divisors function of n as
pl’p(n)"‘l —1

o(n) = — T

pln b

with the product extending over all prime numbers p which divide n. In
addition, the well-known Euler’s totient function ¢(n) can be formulated as

¢my—n!1(1;).

Chen’s theorem states that every sufficiently large even number can be written
as the sum of either two primes, or a prime and a semiprime (the product of
two primes) [1]. Tomohiro Yamada using an explicit version of Chen’s theorem
showed that every even number greater than e¢’ as 1.7 - 101872344071110343 j¢
the sum of a prime and a product of at most two primes [2]. A natural number
is called k-almost prime if it has k prime factors [3]. A natural number is prime
if and only if it is 1-almost prime, and semiprime if and only if it is 2-almost
prime. Let N be a sufficiently large even integer. Ying Chun Cai proved that
the equation
N=p+P, p<NO»,

is solvable, where p denotes a prime and P, denotes an almost prime with at
most two prime factors [3]. The Goldbach’s conjecture has been verified for
every even number N < 4 -10'® [4]. In mathematics, two integers a and b
are coprime, if the only positive integer that is a divisor of both of them is 1.
Putting all together yields the proof of the main theorem.

Theorem 1 For every even number N > 4- 1018, if there is a prime p and a natural
number m such thatn < p < N—-1,p+m = N, a(];[n) +n0'889+1+mT_1 >n
and p is coprime with m, then m is necessarily a prime number when N = 2-n. The

previous inequality U(Iyn) +n089 1 4 mT_l > n holds whenever W +

n0889 4 1 4 mT_l > n also holds and m > 11 is an odd number, where v ~ 0.57721
is the Fuler-Mascheroni constant and log is the natural logarithm. This implies that
the Goldbach’s conjecture is true when the Riemann hypothesis is true.

2 Proof of Theorem 1

Proof Suppose that there is an even number N >4 -1 which is not a sum of two
distinct prime numbers. We consider all the pairs of positive integers (n — k,n + k)
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where n = %, k < n —1is a natural number, n + k and n — k are coprime integers
and n + k is prime. By definition of the functions o(x) and ¢(x), we know that

2-N=o((n—k)-(n+k)—e((n—Fk) (n+k))
when n — k is also prime. We notice that
2-N<o((n—k)-(n+k)—p((n—=Fk) - (n+k))

when n — k is not a prime. Certainly, we see that (n — k) + (n + k) = N and thus,
the inequality

2-(n—k)+(n+k)+e((n—Fk) - (n+k) <o((n—k)-(n+k))
holds when n — k is not a prime. That is equivalent to
2-(n—K)+n+k)+en—k)  -on+k)<on—k) on+k)

since the functions o(z) and (x) are multiplicative. Let’s divide both sides by (n —
k) - (n+ k) to obtain that

(n—k)+(n+k) p(n—k) on+k)
2'(m—m.m+m>+ n—k  n+k
‘We know that

<s(n—k)-s(n+k).

s(n—k)-s(n+k)>1

since s(m) > 1 for every natural number m > 1 [5]. Moreover, we could see that

2_((n—kw—(mtk))_ 2 2

k) -tk ) n+k n-k

and therefore,
2 2 p(n—k) pn+k)
1 . .
>n+k+n—k+ n—=k n+k

It is enough to see that
2 2 p(n—k) ¢(n+k)

9 9 9
L T
o tot s s Tk T sk ntk

1

when n + k is prime and n — k is composite for N > 4 - 108, Indeed, when n + k is
prime and n — k is composite, then n + k > 2 - 10" and n —k > 9 for N > 4-10'8.
Under our assumption, all these pairs of positive integers (n — k,n + k) imply that

2-N<o((n—k)-(n+k)—e((n—Fk) (n+k))
holds whenever n = %, k < n —1is a natural number, n + k and n — k are coprime
integers and n + k is prime. Hence, we have
1
N < 5~(a(n—k)~a(n+k)—<p(n—k)-g0(n+k)).
Since n + k is prime, then

o(n+ k) n+k—1

1+ 0889 — 1 4 ,0.889

n
= 1+ 10889
2
2.5
>2- (e -logl -4 —
- (6 oglog(n —1) + loglog(n — 1)>

2.5 2
(e oglog(n — k) —|—1 oa(n k))
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n—k \?
>2 | ———
<@(n - k))

i ()

al(n—k)
>s(n—k)-2- H 4
al(n=F) <q_ J
_ 2-0(n—k)
(=8 Tynry (1-3)
_2-0(n—k)
- p(n—k)

when we know that ﬁ < €7 - loglog(b) + ﬁ holds for every odd number
b > 3 [6]. Moreover, we have

2
n 2.5
> 92.(€7 . 1ogl -1 (R
1+ n0-889 = (e oglog(n —1) + log log(n — 1))

for every natural number n > 2 - 10'® under the supposition that N > 4 . 1018,

Certainly, the function

2
I S B 25
flz) = 1 20-589 2 <e loglog(z — 1) + loglog(z — 1))

is strictly increasing and positive for every real number x > 2 - 10® because of its

derivative is greater than 0 for all x > 2- 10'® and it is positive in the value of 2- 10'8.
Furthermore, it is known that [, (q%’l) = ﬁ > s(b) = # for every natural
number b > 2 [5]. Finally, we would have that

—% con—k)-p(n+k)<—on—k) -1+ n0'889)

and so,
N < % -U(nfk)‘a(nJrk)fU(nfk).(1+n0.889).
We would have

N 0.889 o(n+k)
[ 1< 2T R
o(n—k) tn tl< 2
which is N b1
0.889 n—k—
_ 1+ —— .
sy T T <

In this way, we obtain a contradiction when we assume that N_k) +n0889 1 4

o(n
”*T]H > n. By reductio ad absurdum, the natural number n — k is necessarily prime
when % +n0889 414 "%’H > n. Moreover, we know that o(b) < e7-b-loglogb
holds for every odd number b > 11 [5]. Consequently, the inequality % +70-889
1+ ”_Tk_l > n holds whenever e’Y~(n—k)~11(¥glog(n—k) +n0889 414 "_Tk_l > n also
holds and (n — k) > 11 is an odd number. In 2014, Dudek proved that the Riemann
hypothesis implies that for all z > 2 there is a prime p satisfying [7]

4
z— —vzlogz < p <z
T
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Fig. 2 Plot of function Hg(z) [9]

In this way, there is always a prime n + k for % ~yv/nlogn < k < % -/ - logn.
2:n 0.889 n—k—1

- (n—Floglogin—k) T tT1t7—5— 2mnholds

for all positive integers n > 2 - 10'® and % -v/n-logn <k < % -/n - logn since the

_a, -1 -1
420889 2% \/52 ogz—l_ .

However, we know the inequality

. _ x
function Ha(z) = (z—2-\/x-log x)-loglog(z— & -y/z-log x)

is positive for all z > 2-10'® and a € {4,8} (See Figures 1 and 2). Certainly, we
know that H,(n) < e“r-(n—k)?lggl; Togtni=k) + n0-889 11 4 ”*T’H — n for all positive
: 18 4 8

integers n. > 2-10"° and - - y/n-logn < k < 2 - \/n - logn, where we select the
appropriated value of 4 < a < 8 according to the value of k. O
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