Thesis Open Access

Investigation on the applicability of immunodetection techniques to biomolecule samples concentrated via pyro-electrohydrodynamic jet

Danila del Giudice


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.7528362</identifier>
  <creators>
    <creator>
      <creatorName>Danila del Giudice</creatorName>
      <affiliation>Università degli Studi della Campania</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Investigation on the applicability of immunodetection techniques to biomolecule samples concentrated via pyro-electrohydrodynamic jet</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2023</publicationYear>
  <subjects>
    <subject>Alzheimer's disease</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2023-01-12</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Thesis</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/7528362</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.7528361</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/sensapp_h2020_project</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;The project aim was to develop an innovative biosensor with a high sensitivity, to detect low&lt;br&gt;
abundant protein biomarkers in small volumes of blood (&amp;lt;1mL), pushing the sensitivity well below&lt;br&gt;
1 pg/mL, thus overcoming the current standard limits. Current clinical diagnostic criteria for AD&lt;br&gt;
require a patient to have clear symptoms of dementia which are excluded from other brain disorders,&lt;br&gt;
such as memory loss and confusion, inability to learn new things, difficulty with language and so on.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/829104/">829104</awardNumber>
      <awardTitle>Super-sensitive detection of Alzheimer’s disease biomarkers in plasma by an innovative droplet split-and-stack approach</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
31
17
views
downloads
All versions This version
Views 3131
Downloads 1717
Data volume 316.2 MB316.2 MB
Unique views 2727
Unique downloads 1414

Share

Cite as