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Abstract

The shifts of an infinite word W = a0a1 · · · are the words Wi = aiai+1 · · · . As
a measure of the complexity of a word W , we consider the order type of the set
of shifts, ordered lexicographically. We consider morphic words (fixed points of a
morphism under a coding) that are not ultimately periodic. Our main result in this
setting is that if the first letter of W appears at least twice in W , then the shifts
of the aperiodic image of W under a coding are dense in the sense that there is a
shift strictly between any two shifts. In particular, any purely morphic binary word
is either ultimately periodic or its shifts are dense. As a concrete example, we give
an explicit order-preserving bijection between the shifts of the Thue–Morse word
and (0, 1] ∩Q. We then give special consideration to morphisms on 3 letters whose
shifts do not contain an infinite decreasing sequence.

1. Introduction

A recurring theme in the combinatorics on words is classifying words according to

their complexity. For example, the subword complexity of a word W = a0a1a2 · · ·
is the function

C(n) := #{aiai+1 · · · ai+n−1 : i ≥ 0}.

The subword complexity is a bounded function if and only if W is ultimately pe-

riodic, and C(n) = Nn almost surely if W is a random word, where N is the size

of the alphabet. Other measures of complexity in the literature include the abelian

complexity and Kolmogorov complexity. See [2].

In this work, we consider the order-type complexity ot(W ). We say that two

totally ordered sets S and T have the same order type if there exists a bijection

f : S → T such that f is order-preserving, i.e., si < sj implies f(si) < f(sj) for

all si, sj ∈ S. If for all si, sj ∈ S such that si < sj , there exists sk for which

si < sk < sj , then S is dense. If S is infinite and countable, then S is dense if
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and only if S has the same order type as the order type of (0, 1) ∩ Q, (0, 1] ∩ Q,

[0, 1) ∩ Q, or [0, 1] ∩ Q, depending on whether or not S contains a maximum or

minimum element. Given a right-infinite word W , we define Wi = aiai+1 · · · to be

the i-shift of W for integers i ≥ 0 and {Wi} to be the set of all shifts of W . We can

see that ot(W ), defined to be the order type of {Wi}, is finite if W is ultimately

periodic, while ot(W ) is dense almost surely if W is a random word. Closely related

ideas such as infinite permutations and permutation complexity of infinite words

have also been studied. See [6, 8–10,13], for example.

Our main result (Theorem 2) gives the order type of aperiodic morphic words

W over a finite alphabet Σm = {0, . . . ,m− 1}. In particular, ot(W ) is dense if the

first letter of the purely-morphic pre-image W ′ of W occurs at least twice in W ′,

but {Wi} cannot contain both a maximum element and a minimum element. This

implies that any aperiodic binary purely morphic word must have a dense order

type (Corollary 7). As an example, we give an explicit ordering for the shifts of the

Thue–Morse word in Section 3, showing that the first 2k shifts are interleaved by

the next 2k shifts (Theorem 1). There is a maximum shift and no minimum shift,

so ot(t) is the same as the order type of (0, 1] ∩Q.

The special case of words over a finite alphabet was considered in [5], where it

was shown that if the order type is an ordinal, then it is either finite or at least ω2,

and can be larger than any particular countable ordinal. In Section 5, we show that

ot(W ) varies when we consider a 3-letter alphabet, and we give the explicit forms

of aperiodic uniform morphic words whose shifts do not contain either an infinite

decreasing sequence or an infinite increasing sequence in terms of their associated

uniform morphisms in Theorems 3-6, and confirming that the lower bound on the

order type in [5] can be attained for uniform morphic words.

2. Definitions and Terminology

We begin with some preliminary definitions. Let W = a0a1a2 · · · be a right-infinite

word. We say that W is a word over the alphabet A if ai ∈ A for all i ≥ 0. An

element in A is called a letter. In this paper, we will assume that A is finite, and

A is optimal, i.e., if α ∈ A, then there exists i such that ai = α. The i-shift of

W is the word Wi = aiai+1ai+2 · · · , and we use {Wi} to denote the set of all i-

shifts (or simply shifts) of W . A proper shift of W is an i-shift of W with i ≥ 1.

We also assume that A is totally ordered, i.e., if α and β are distinct letters in

A, then either α < β or β < α. We order {Wi} lexicographically and we let

A = Σm = {0, 1, . . . ,m− 1} if |A| = m for the implicit order among its letters.

Using terminology from [1], we define W [i..j] to be the factor ai · · · aj . If i > j,

then W [i..j] = ε, the empty word. The i-th letter of W is W [i] = W [i..i] = ai.

We also define the i-shift of a finite word u = b0 · · · bl to be ui = bi · · · bl if i ≤ l
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and ε if i > l. We denote the set of all finite words over A by A∗, which forms a

free monoid with concatenation as the operation. The set of all non-empty finite

words over A is denoted by A+, while Aω is the set of all right-infinite words over

A. Let W ⊆ A∗. If l is a positive integer, then W l denotes the set of all words

that are concatenations of l elements inW, or an l-concatenation of elements inW,

while Wω denotes the set of all infinite words that are concatenations of elements

in W . Let u, v ∈ A∗. We say that a finite word is of the form (u, v)l if it is an

l-concatenation of u and v, and an infinite word is of the form (u, v)ω if it is an

infinite concatenation of u and v. Let w and p be words. We say that p is a prefix

of w if there exists a word s such that w = ps.

An ultimately periodic word is an infinite word such that there exist i ≥ 0 and

l ≥ 1 for which W [i..i+ l−1] = W [i+bl..i+ l−1+bl] for all b ≥ 0. Equivalently, an

ultimately periodic word is of the form uvω for some u ∈ A∗ and v ∈ A+, where vω

denote the right-infinite word vvv · · · . An aperiodic word is an infinite word that is

not ultimately periodic. In this paper, we are only interested in aperiodic infinite

words since {Wi} is finite if W is ultimately periodic.

A morphism φ on A is a map from A∗ to A∗ such that φ(uv) = φ(u)φ(v)

for all u, v ∈ A∗, and we can extend this definition to infinite words by defining

φ(W ) = φ(a0)φ(a1)φ(a2) · · · for all W ∈ Aω. A morphism φ is prolongable at α if

φ(α) = αu for some u ∈ A+. If φ is prolongable at α and

W = φω(α) = αuφ(u)φ2(u) · · ·φt(u) · · ·

is an infinite word, i.e., W is the limiting word obtained by applying φ repeatedly

to α, then W is a purely morphic word, and W is the fixed point of φ starting with

α. Hence, W = φ(W ), and φ(Wi) is also a shift of W for any i. If W ′ = σ(W )

is the image of a purely morphic word under some coding (i.e., a letter-to-letter

morphism) σ : Σm → Σm′ , then W ′ is a morphic word.

The length of a finite word u = b0 · · · bl, denoted by |u|, is l+ 1, whereas |ε| = 0.

We say that a morphism φ is n-uniform if |φ(α)| = n for all α ∈ A. We will assume

that n ≥ 2. We say that W is n-uniform morphic if W is a fixed point under

an n-uniform morphism φ. One may check that φ(Wi) = Wni in this case. The

Thue–Morse word

t := 01101001100101 · · ·

is the fixed point of the 2-uniform morphism τ on Σ2 which maps 0 to 01 and 1 to

10, starting with 0.

If u and v are finite words of equal length or are infinite words, with u 6= v, then

the letters of first distinction between u and v are defined as u[d] and v[d] such that

d ≥ 0 is the minimum value for which u[d] 6= v[d]. We say that d is the position of

first distinction between u and v. We say that u < v if u[0..d− 1] = v[0..d− 1] and

u[d] < v[d]. Equivalently, u < v if u = xy1z1 and v = xy2z2 for some x, y1, y2 ∈ A∗
and z1, z2 ∈ A∗ ∪Aω such that y1 < y2 and |y1| = |y2| > 0. A uniform morphism φ
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on A preserves the order in A′ ⊆ A if α < β implies φ(α) < φ(β) for all α, β ∈ A′,
and φ preserves the order in Aω if u < v implies φ(u) < φ(v) for all u, v ∈ Aω.

A totally ordered set S is said to have the order type ω if there exists an order-

preserving bijection from S to N. The backwards order type of ω is ω∗. The order

type of l elements is l. If σ1 and σ2 are order types, then the order type σ1 + σ2 is

the order type σ1 followed by σ2 in increasing order. If the order type is σ2 copies

of σ1, we write the order type as σ1 · σ2. We denote the order type σ · σ by σ2.

We say that σ � ot(W ) if there is an order-preserving embedding from {Wi} into

any linear ordering of order type σ. Specifically, ω � ot(W ) if {Wi} contains an

infinite increasing sequence, and ω∗ � ot(W ) if {Wi} contains an infinite decreasing

sequence.

3. The Thue–Morse Word

We explore the order type of the Thue–Morse word t, one of the most studied words,

and prove Theorem 1 in this section. In particular, we will show that ot(t) is dense.

We begin with some general properties that are also relevant in Section 4 and

Section 5. These lemmas are somewhat obvious but useful in aiding us with the

proof.

The following lemma states that, if W is aperiodic, then not only is {Wi} infinite,

but each of its elements is unique.

Lemma 1. The set of all shifts of an aperiodic word W is infinite. In particular,

Wi = Wj if and only if i = j.

This leads to a very useful consequence.

Corollary 1. If W = φω(α) is the aperiodic fixed point of an n-uniform morphism

φ on Σm starting with α, then no proper shift of W is a fixed point of φ.

Proof. Otherwise, say Wi = φω(β) for some i ≥ 1 and β ∈ Σm, then Wni = φ(Wi) =

φ(φω(β)) = φω(β) = Wi, which is impossible by Lemma 1.

We give a result from Richomme [11] and restate it using our notations:

Lemma 2 ([11]). Let n ≥ 1. An n-uniform morphism on Σm is an order-preserving

morphism if and only if it preserves the order in Σm.

This gives us a simple way to determine whether or not a given uniform morphism

is order-preserving, and leads to the following convenient property related to powers

of such morphisms. This can be proved by induction, and we omit the proof.

Corollary 2. Let φ be an n-uniform morphism on Σm such that φ preserves the

order in Σm. Suppose that u, v ∈ Σω
m or u, v ∈ Σl

m for some l ≥ 1. If u < v, then

φt(u) < φt(v) for any integer t ≥ 1.
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Next, we give the connection between order-preserving uniform morphisms and

the length of the common prefixes between words under them.

Lemma 3. Let u ∈ Σω
m and φ be an n-uniform morphism on Σm such that φ(β)[0] =

β for some β ∈ Σm. If u[0] = β and u 6= φω(β), then φ(u) and φω(β) share a

common prefix of length at least n times the length of the common prefix of u and

φω(β).

Proof. Suppose that the position of first distinction between u and φω(β) is d for

some d ≥ 1. Then

φ(u)[0..nd− 1] =φ(u[0..d− 1])

=φ(φω(β)[0..d− 1])

=φω(β)[0..nd− 1].

Hence the length of the common prefix between φ(u) and φω(β) is at least nd.

We may relax the condition on φ such that φ preserves the order of some par-

ticular subset of the alphabet. The following corollary shows the existence of an

infinite decreasing/increasing sequence through construction.

Corollary 3. Let W = φω(α) be an aperiodic fixed point of an n-uniform morphism

φ on Σm starting with α, and suppose that there exists a positive integer p such that

φp preserves the order in T = {ρ ∈ Σm : ρ occurs infinitely often in W}. Assume

that φ(β)[0] = β for some β ∈ Σm. If there exists i ≥ 1 such that Wi[0] = β,

Wi ∈ Tω, and Wi > φω(β), then (φtp(Wi))t≥0 is an infinite decreasing sequence

contained in {Wi}, where the length of the common prefix between φtp(Wi) and

φω(β) increases as t increases.

Similarly, if there exists i ≥ 1 such that Wi[0] = β, Wi ∈ Tω, and Wi < φω(β),

then (φtp(Wi))t≥0 is an infinite increasing sequence contained in {Wi}, where the

length of the common prefix between φtp(Wi) and φω(β) increases as t increases.

Proof. Suppose that W [i] = β and Wi ∈ Tω for some i ≥ 1. This implies that

β ∈ T . By Corollary 1, Wi 6= φω(β). Note that φp is an np-uniform morphism and

W remains a fixed point of φp for all integers p ≥ 1. Also, φω(β) must not contain

γ ∈ Σm \ T , otherwise φsp(β) = φω(β)[0..nsp − 1] contains γ for some s ≥ 1, so

W [nspi..nsp(i + 1) − 1] would contain γ, and hence γ would occur infinitely often,

a contradiction.

If Wi > φω(β), then since φp preserves the order in T , we can treat T as Σ|T |
and apply Corollary 2 to obtain (φp)t(Wi) = φtp(Wi) > φω(β) for all t ≥ 0. By

Lemma 3, the length of the common prefix between φtp(wi) and φω(β) increases as

t increases. In particular, if d is the position of first distinction between φω(β) and

φtp(Wi), then φtp(Wi)[d] > φω(β)[d] = φ(t+1)p(Wi)[d]. Hence, we have

Wi > φp(Wi) > φ2p(Wi) > · · · > φtp(Wi) > · · · ,
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so (φtp(Wi))t≥0 is an infinite decreasing sequence with the desired property.

The proof is similar for the case when Wi < φω(β).

Remark 1. We will write the sequence (φt(Wi))t≥0 as (φt(Wi)) when the context

is clear.

The next corollary gives the length of the common prefix between two binary

words under powers of τ , the Thue–Morse morphism.

Corollary 4. Suppose that u, v ∈ Σω
2 , u 6= v, and they agree on a prefix of exactly

length l for some l ≥ 1, then τ t(u) and τ t(v) agree on a prefix of length exactly 2tl

for all t ≥ 0. Consequently, if u < v, then the i-shift of τ t(u) is smaller than the

i-shift of τ t(v) for 0 ≤ i ≤ 2tl − 1.

Proof. By repeated use of Lemma 3, τ t(u)[0..2tl − 1] = τ t(v)[0..2tl − 1]. Since

τ(0)[0] = 0 6= 1 = τ(1)[0], we have τ t(u)[2tl] = τ t(u[l])[0] 6= τ t(v[l])[0] = τ t(v)[2tl],

and hence the length of the common prefix of τ t(u) and τ t(v) is 2tl.

If u < v, then τ t(u) < τ t(v) by Corollary 2 and hence the claim follows.

It is a well-known fact that t (and consequently its shifts) is overlap-free [12],

i.e., there do not exist c ∈ Σ+
2 and x ∈ Σ∗2 such that t contains the string cxcxc.

In [4], Berstel proved that the lexicographically greatest infinite overlap-free word

over Σ2 that starts with 0 is t. We define the complement Thue–Morse word

t̄ = 1001011001 · · · to be the fixed point of τ starting with 1. Allouche, Currie,

and Shallit proved the dual result of Berstel’s in [3], i.e., the lexicographically least

infinite overlap-free word over Σ2 that starts with 1 is t̄. We summarize that in the

following proposition:

Proposition 1 ([3, 4]). t = t0 is the maximum element in {ti} that starts with 0,

and t̄ is the least element in {ti} ∪ {t̄i} that starts with 1.

This gives us the following properties:

Corollary 5. t1 is the largest shift of t starting with 1, and hence the maximum

element in {ti}.
Similarly, t̄1 is the least element in {ti} ∪ {t̄i}.

Proof. We prove the first part by contradiction. Suppose that there exists j > 1

such that t1 < tj . We have t[j..j + 1] = 11. Since t is overlap-free, t[j − 1] = 0.

Then t < tj−1, contradicting Proposition 1.

The second part can be proven analogously.

Corollary 6. If t[i] = 0, then (τ t(ti))t≥0 is an increasing sequence such that the

length of the common prefix between τ t(ti) and t increases as t increases. If t[j] = 1,

then (τ t(tj)) is a decreasing sequence such that the length of the common prefix

between τ t(ti) and t increases as t increases.
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Proof. By Proposition 1, ti < t for all i ≥ 1 such that ti[0] = 0. Similarly, tj > t̄

for all j ≥ 1 such that tj [0] = 1 by Corollary 5. Since τ(0)[0] = 0 and τ(1)[0] = 1,

the result follows from Corollary 3.

We will now explain the approach to the proof of Theorem 1. We begin by

ordering t and t1, which have prefixes 01101001 and 11010011, respectively, from

which we have

t < t1.

This is stage 0 of the process. Next, we include t2 and t3, which have prefixes

10100110 and 01001100, respectively, at stage 1, and we obtain

t3 < t < t2 < t1.

At stage 2, the shifts t4, t5, t6, and t7 either fall between the shifts from stage 1

or become the new minimum shift. Each of these positions are occupied by exactly

one of t4, t5, t6, and t7. One may check that

t5 < t3 < t6 < t < t4 < t2 < t7 < t1.

In general, we will show that each of the shifts t2k+1 , t2k+1+1, · · · , t2k+2−1 either

falls between the shifts from stage k or becomes the new minimum at stage k + 1

for k ≥ 0 in the following lemma.

Lemma 4. Let t be the Thue–Morse word. Then the following are true:

1. When k ≥ 0, t < t2k+1 < t2k .

2. When k ≥ 0, t2k+1+1 < t2k+1.

3. When k ≥ 1, t2k+2k−1+i < t2k+1+2k+i < ti for 0 ≤ i ≤ 2k−1 − 1.

4. When k ≥ 1, t2k+i < t2k+1+2k+2k−1+i < t2k−1+i for 0 ≤ i ≤ 2k−1 − 1.

5. When k ≥ 2, t∗ < t2k+1+i < t2k+i for 2 ≤ i ≤ 2k − 1, where

∗ =

{
i+ 2blog2(i)c−1 if i < 2blog2(i)c + 2blog2(i)c−1

i− 2blog2(i)c−1 if i ≥ 2blog2(i)c + 2blog2(i)c−1 .

Proof. We prove each statement individually as follows.

1. Suppose that k ≥ 0. Since t2k+1 = τk+1(t1) and t1[0] = 1, t0[0] = 0 < 1 =

t2k+1 [0]. In addition, t2k+1 = τ(t2k), and hence t2k+1 < t2k by Corollary 6.

2. Since t2k+1 [0] = t2k [0] = 1 for k ≥ 0, this follows from the previous case and

Corollary 4.
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3. Suppose that k ≥ 1. Observe that t3 < t and t3 agrees with t on a prefix

of length 2. Since t2k+1+2k = τk(t3) and t = τk(t) for k ≥ 1, we have

t2k+1+2k+i < ti for 0 ≤ i ≤ 2k+1− 1 by Corollary 4, and hence this inequality

remains true for 0 ≤ i ≤ 2k−1 − 1.

Note that τ(t2k+2k−1) = t2k+1+2k . When k = 1, t2k+2k−1 [0] = t3[0] = 0, so

t2k+2k−1 < t2k+1+2k by Corollary 6. Since t6 has a prefix 0110, t3 and t6 share

a common prefix of length 2, so t2k+2k−1+i < t2k+1+2k+i for 0 ≤ i ≤ 2k− 1 by

Corollary 4 and remains as such for 0 ≤ i ≤ 2k−1 − 1.

4. From the proof of the third statement, we have t2k+1+2k+i < ti for 2k−1 ≤
i ≤ 2k − 1, so t2k+1+2k+2k−1+i < t2k−1+i for 0 ≤ i ≤ 2k−1 − 1.

When k = 1, we have t2k = t2, and t2k+1+2k+2k−1 = t7 with prefix 1100, so

t2 < t7 and they agree on a prefix of length 1. For k ≥ 1, since t2k = τk−1(t2)

and t2k+1+2k+2k−1 = τk−1(t7), we have t2k+i < t2k+1+2k+2k−1+i for 0 ≤ i ≤
2k−1 − 1 by Corollary 4.

5. Finally, suppose that k ≥ 2. We start with the inequality on the left side. We

first show that tj > t3 for all j such that the binary expansion of j is of the

form 10t10 (or j = 2p + 2 for some p ≥ 3), and tl > t2 for all l such that the

binary expansion of l is of the form 10t11 (or l = 2p + 3 for some p ≥ 3), for

some positive integer t.

Observe that t1 and t̄ share a common prefix of length 1, and hence t2p and

t̄ share a common prefix of length 2p by Corollary 4. In particular, t8 and t̄

share a common prefix of length 8. Hence, t2p+2 has a prefix 010110 for all

p ≥ 3, so t2p+2 > t3 and they share a common prefix of length 3.

Similarly, t2p+3 has a prefix 10110 for all p ≥ 3, so t2p+3 > t2 and they share

a common prefix of length 3.

Let i be an integer such that 2 ≤ i ≤ 2k − 1. If i < 2blog2(i)c + 2blog2(i)c−1,

then the binary expansion of i is 10u for some u ∈ Σ∗2, and hence the binary

expansion of 2k+1 + i is 10t10u, where t ≥ 1. If u = ε, then i = 2 and

i + 2blog2(i)c−1 = 3, so t2k+1+i > t3 as shown previously. If |u| = g for some

g ≥ 1, then observe that g = k− t−1, so k− t−g = 1. Also, g = blog2(i)c−1.

Since k − g + 1 = t+ 2 ≥ 3, we have

t2k−g+1+2k−t−g > t3

by the conclusion in the second paragraph. Moreover, notice that 2g+1 ≤ i ≤
2g+1 + 2g − 1, and hence 0 ≤ i− 2g+1 ≤ 2g − 1 < 2g · 3− 1, so by Corollary 4,

we have τg(t2k−g+1+2k−t−g ) > τg(t3), and consequently

t2k+1+i = t2k+1+2k−t+(i−2g+1) > t2g3+(i−2g+1) = ti+2blog2(i)c−1 .
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If i ≥ 2blog2(i)c + 2blog2(i)c−1, then the binary expansion of i is 11v, where

v ∈ Σ∗2, and hence the binary expansion of 2k+1 + i is 10t11v. Going through

a similar argument as in the previous case, we have i = 3 and t2k+1+i > t2
when v = ε. When |v| = g for some g ≥ 1, observe that we still have

g = k − t− 1 with t+ 2 ≥ 3. Therefore,

t2k−g+1+2k−t−g+2k−t−g−1 > t2

by the conclusion in the third paragraph. Since 2g+1 + 2g ≤ i ≤ 2g+2 − 1,

we have 0 ≤ i − (2g+1 + 2g) ≤ 2g − 1 < 2g+1 − 1. We may conclude that

τg(t2k−g+1+2k−t−g+2k−t−g−1) > τg(t2), and consequently

t2k+1+i = t2k+1+2k−t+2k−t−1+(i−2g+1−2g) > t2g+1+(i−2g+1−2g) = ti−2blog2(i)c−1

by Corollary 4 once again.

For the inequality on the right, note that t2k+1 = τ(t2k) and t2k [0] = 1 for all

k ≥ 1. The result follows from Corollary 4 and Corollary 6.

Since each of the upper bounds in the five cases above is unique and each of the

lower bounds (with t2k+1+1 having no lower bound since it is the smallest on each

stage) is also unique, we obtain the following result.

Theorem 1. For k ≥ 1, the shifts ti (2k ≤ i ≤ 2k+1 − 1) of the Thue–Morse word

interleave with tj (0 ≤ j ≤ 2k − 1).

4. Dense Shifts of Morphic Words

We have looked at a specific example of an aperiodic binary word in Section 3 whose

order type is dense. In this section, we give a generalization to aperiodic morphic

words W . In particular, we consider the case when W is the image of a purely

morphic word W ′ under some coding such that the first letter of W ′ occurs more

than once in W ′. We will show that ot(W ) must be dense.

We begin with a simple observation regarding the occurrence of α in W .

Proposition 2. Let W be a word over Σm, and suppose that W = φω(α) is an

aperiodic fixed point of a morphism φ that is prolongable on α ∈ Σm. Then α occurs

at least twice in W if and only if α occurs in φ(γ) for some γ ∈ Σm other than at

φ(α)[0]. In particular, α occurs either infinitely often in W or only at W [0].

Proof. Let φ(α) = αu for some u ∈ Σ+
m. For the forward direction, if α occurs only

at φ(α)[0], then α does not occur in u and consequently φt(u) for all positive integer

t. Therefore, α occurs only at W [0].
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For the backward direction, if φ(α)[i] = α with i 6= 0, then W [0] = W [i] = α. If

φ(β)[j] = α for some β 6= α and j ≥ 0, then, since there is some k ≥ 1 such that

W [k] = β, we have W [k′] = α for some k′ > k corresponding to φ(W [k])[j]. In

either case, α occurs at least twice in W .

Finally, whenever W [l] = α for some l ≥ 1, we have W [l′] = α for some l′ > l

corresponding to the position of φ(Wl)[0] in W . Therefore, α must occur infinitely

often if α occurs more than once in W .

We shall now prove the main results.

Theorem 2. Let W be an aperiodic morphic word over Σm. Suppose that W is the

image of a purely morphic word W ′ over Σm′ under some coding σ, and suppose

that W ′[0] occurs at least twice in W ′. Then ot(W ) is dense. In particular, ot(W )

is the same as the order type of Q ∩ (0, 1), Q ∩ (0, 1], or Q ∩ [0, 1).

Proof. Let i and j be two distinct non-negative integers such that Wi < Wj . We

want to show that there exists an integer l such that Wi < Wl < Wj .

Since W is aperiodic, W ′ must also be aperiodic. Let α = W ′[0] for some

α ∈ Σm′ . Since α occurs at least twice in W ′, we can pick k ≥ 1 such that

W ′[k] = α. We know that W ′k 6= W ′ by Lemma 1. Let d be the position of first

distinction between Wi and Wj and let M = max{i, j}. Since φ is prolongable on

α, we may pick q large enough such that L = |φq(α)| > M + d. By Lemma 1, we

also have φq(W ′k) 6= W ′. Let ` be the integer such that W ′` = φq(W ′k). We have

W ′ = φq(α)u and W ′` = φq(α)v

for some distinct u, v ∈ Σm′ . If W < W`, then σ(u) < σ(v). Let l = ` + i. Since

L > M + d, we have L > i, so

Wi = σ(φq(α))[i..L− 1]σ(u) and Wl = σ(φq(α))[i..L− 1]σ(v),

and hence Wi < Wl. Moreover, L > M + d also implies that L − i − 1 ≥ d, so

Wl[0..d] = Wi[0..d] < Wj [0..d]. Therefore, Wi < Wl < Wj . If W` < W , then let

l = `+ j, and we have Wi < Wl < Wj by a similar argument.

Finally, we will show that ot(W ) cannot be the same as the order type of Q∩[0, 1],

i.e., {Wi} cannot have both a maximum element and a minimum element. Suppose

to the contrary that there exist non-negative integers a, b such that Wa ≤Wi ≤Wb

for any i. Using a similar strategy as above, we pick k ≥ 1 such that W ′[k] = α.

Let Q be large enough such that |φQ(α)| > max{a, b}: we have φQ(α)a and φQ(α)b
being non-empty. Once again, φQ(W ′k) 6= W ′ by Lemma 1. Let t be the integer

such that W ′t = φQ(W ′k). If W < Wt, then Wb < Wt+b, so Wb cannot be the largest

element in {Wi}. If Wt < W , then Wt+a < Wa, so Wa cannot be the least element

in {Wi}, and hence the result follows.

Corollary 7. For any aperiodic binary purely morphic word W , ot(W ) is dense.
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Proof. Let W be the aperiodic fixed point of a morphism φ starting with α ∈ Σ2 =

{α, β} = {0, 1}. It suffices to show that α must occur at least twice, and the result

follows from Theorem 2 by letting σ be the identity coding. For a contradiction,

suppose not. Then we have φ(α) = αβk for some k ≥ 1 and φ(β) does not contain

α by Proposition 2. If φ(β) = ε, then W would be finite, which is a contradiction.

If φ(β) = βl for some l ≥ 1, then W would be the ultimately periodic word αβω,

resulting in another contradiction.

Let us consider some follow-up questions to these results. If the pre-image of W

under σ has its starting letter occurring only once in it, is ot(W ) still dense? If W is

an aperiodic binary morphic word, is ot(W ) still dense? The answer to both is no.

Consider the fixed point W of the uniform morphism defined by 0 7→ 012, 1 7→ 111,

and 2 7→ 222, starting with 0, and the coding σ defined by 0, 1 7→ 0 and 2 7→ 1.

The order type of the resulting aperiodic binary morphic word σ(W ) is not dense.

However, there are morphic words W whose order type is dense, but the starting

letter of its pre-image W occurs only once in W . For example, consider the fixed

point W of the uniform morphism defined by 0 7→ 02, 1 7→ 12, and 2 7→ 20, starting

with 1, and the coding defined by 0, 1 7→ 0 and 2 7→ 1. The resulting morphic word

is the Thue–Morse word, whose order type is dense by Theorem 1. A more detailed

explanation of the first example is presented in Section 5.3.

Remark 2. We may apply Theorem 2 to the Fibonacci word

f := 01001010010010 · · ·

defined as the fixed point of the morphism µ on Σ2 which maps 0 to 01 and 1 to

0, starting with 0. Since f is purely morphic and 0 occurs at least twice in f , we

may conclude that ot(f) is dense. In particular, ot(f) is the same as the order type

of Q ∩ (0, 1), as {fi} does not contain a maximum or minimum element: given any

shift fi, there exists large enough n such that the Zeckendorf representations of j

and k are (10)n and (10)n1, respectively, and fj < fi < fk.

5. Non-dense Shifts of Some Uniform Morphic Ternary Words

In the previous section, we saw that ot(W ) is dense if W is an aperiodic binary

purely morphic word. This is not necessarily the case when we increase the size of

the alphabet, as there is no guarantee that the starting letter would occur more than

once in W . For example, if φ is a 2-uniform morphism on Σ3 defined by 0 7→ 01,

1 7→ 12, 2 7→ 22, then one may check that

W = φω(0) = 0112122212222222 · · ·
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is an aperiodic word, but {Wi} does not contain an infinite decreasing sequence

since the length of the strings of 2 steadily increases as we go further to the right

in W (see Theorem 3), and hence ot(W ) cannot be dense. In this section, we will

look at different examples of aperiodic uniform morphic ternary words whose order

types are not dense.

Let Σ3 = {α, β, γ}. In this section, we assume that W is an aperiodic n-uniform

morphic word on Σ3 starting with α. We will also assume that β < γ in Section 5.1

and Section 5.2. Once again, Σ3 is the optimal alphabet, as mentioned in Section 2.

By Theorem 2, we know that {Wi} is dense if α occurs at least twice in W , and

hence we will focus on cases where α occurs only once in W , in which case, β and γ

must occur infinitely often since W is aperiodic. In Section 5.1 and Section 5.2, we

will look at words whose shifts do not contain an infinite decreasing sequence or an

infinite increasing sequence. In Section 5.3, we will discuss the order types of those

particular types of words, as well as look at examples of other morphic words.

5.1. φ(β) and φ(γ) Have Different Starting Letters

Suppose that {φ(β)[0], φ(γ)[0]} = {β, γ}. Since α occurs only once in W , we have

φ(β), φ(γ) ∈ {β, γ}+ by Proposition 2. Observe that φ2(α)[0] = φ(α)[0] = α. We

can deduce that φ2(ρ)[0] = ρ for all ρ ∈ Σ3 from the following lemma by restricting

φ to {β, γ}.

Lemma 5. Let φ be an n-uniform morphism on Σ2 with φ(0) 6= φ(1). Then φ2

preserves the order in Σ2.

Proof. If φ(0) < φ(1), then φ2 preserves the order in Σ2 by Corollary 2. If φ(1) <

φ(0), then let 0 ≤ d ≤ n − 1 be the position of first distinction between φ(0) and

φ(1), so we have

φ(0)[0..d− 1] = φ(1)[0..d− 1] and φ(1)[d] = 0 < 1 = φ(0)[d].

Therefore,

φ2(0)[0..nd−1] = φ(φ(0)[0..d−1])φ(1) and φ2(1)[0..nd−1] = φ(φ(1)[0..d−1])φ(0).

This implies that φ2(0) < φ2(1), and so φ2 preserves the order in Σ2.

Since φω(α) = (φ2)ω(α), the set of shifts of φω(α) is equal to the set of shifts

of (φ2)ω(α), so consider without loss of generality a uniform morphism ψ with

ψ(α)[0] = α, ψ(β)[0] = β, and ψ(γ)[0] = γ.

We will determine properties of ψ such that {Wi} does not contain an infinite

decreasing sequence. Analogous results apply to the case where {Wi} does not

contain an infinite increasing sequence. By Corollary 3, we need to make sure that

ψω(β) and ψω(γ) are greater than all shifts of their corresponding starting letters.

We also consider the following lemma on properties of φ.
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Lemma 6. Let W = φω(α) be an aperiodic word over Σ3, and a fixed point of some

n-uniform morphism φ on Σ3. Assume that β < γ, and that α occurs only at W [0].

Suppose that φ(γ)[0] = γ, and that the fixed point φω(γ) is larger than all shifts

of W starting with γ, and φ(γ) 6= γn. Then

(i) φ(β)[n− 1] = β.

(ii) If W [0..1] = αγ, then φ(α)[n− 1] = β.

(iii) If γγ is a factor of W , then φ(γ)[n− 1] = β.

Similarly, suppose that φ(β)[0] = β, and that the fixed point φω(β) is smaller

than all shifts of W starting with β, and φ(β) 6= βn. Then

(i) φ(γ)[n− 1] = γ;

(ii) if W [0..1] = αβ, then φ(α)[n− 1] = γ;

(iii) if ββ is a factor of W , then φ(β)[n− 1] = γ.

Proof. We will prove the first case. The proof of the second case is analogous.

Since α occurs only at W [0], we have φ(α)1, φ(β), φ(γ) ∈ {β, γ}+ by Proposi-

tion 2. If φ(γ) 6= γn, then β occurs in φ(γ). In particular, there exists 1 ≤ k ≤ n−1

such that φ(γ)[j] = γ for all j < k and φ(γ)[k] = β. Since W is aperiodic, βγ must

be a factor of W .

To show (i), suppose to the contrary that φ(β)[n − 1] = γ. We can then pick i

such that W [i..i+ 1] = βγ and obtain

W [n(i+ 1)− 1..n(i+ 1) + k − 1] =φ(W [i..i+ 1])[n− 1..n+ k − 1]

=φ(W [i])[n− 1]φ(W [i+ 1])[0..k − 1]

=φ(β)[n− 1]φ(γ)[0..k − 1]

=γk+1,

while φω(γ)[0..k] = γkβ, and we would have φω(γ) < Wn(i+1)−1 withWn(i+1)−1[0] =

γ, a contradiction.

For (ii) and (iii), if αγ or γγ is a factor of W , then the result follows from the

same argument above and replacing β with α or γ, respectively.

We now turn our focus to ψ. We can establish a connection between the fixed

points ψω(β) and ψω(γ).

Lemma 7. Let W = ψω(α) be an aperiodic word over Σ3, and a fixed point of

some n-uniform morphism ψ on Σ3. Suppose that α occurs only at W [0], and that

ψ(ρ)[0] = ρ for all ρ ∈ Σ3. Assume that β < γ. If ψω(β) and ψω(γ) are larger than

all shifts starting with β and γ, respectively, then ψω(β)1 = ψω(γ).
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Proof. If ψ(γ) = γn, then there must be an α or β followed by a string of γ of length

at least n in W . If it is α, then ψ(α) = αγn−1 since W is the only shift starting

with α, but that is impossible because W would be the ultimately periodic word

αγω. Therefore, it must be a β. Since ψω(β) is larger than all shifts starting with

β, we have ψ(β) = βγn−1, and hence the result follows.

If ψ(γ) 6= γn, then ψ(β)[n− 1] = β by Lemma 6. By means of contradiction, we

first suppose that ψω(γ) < ψω(β)1. This implies that ψ(β)[1] = γ. Let d ≥ 1 be

the position of first distinction between ψω(γ) and ψω(β)1. We have ψω(γ)[0..d −
1] = ψω(β)[1..d] and ψω(γ)[d] < ψω(β)[d + 1]. Pick any Wi such that W [i] =

β and let q = dlogn(d + 2)e. Then Wnqi+1 = ψq(Wi)1 and the length of the

common prefix between Wnqi and ψω(β) is at least d+ 2 by Lemma 3. Therefore,

Wnqi+1[0..d− 1] = ψω(γ)[0..d− 1] and Wnqi+1[d] = ψω(β)[d+ 1] > ψω(γ)[d], so we

have Wnqi+1 > ψω(γ), which is a contradiction.

Next, suppose that ψω(β)1 < ψω(γ). Once again, we let d ≥ 0 be the position of

first distinction between ψω(γ) and ψω(β)1, and we have ψω(β)[d+ 1] < ψω(γ)[d].

Since βγ is a factor of W , we can pick j such that Wj [0..1] = βγ. Let r = dlogn(d+

1)e, then the length of the common prefix between ψr(Wj+1) and ψω(γ) is at

least d + 1 by Lemma 3. Since ψ(β)[n − 1] = β, we have W [nrj + nr − 1] =

ψr(W [j])[nr−1] = β. Since Wnrj+nr [0..d] = ψr(Wj+1)[0..d] = ψω(γ)[0..d], we have

Wnrj+nr−1 > ψω(β), which is another contradiction.

If we keep the order between β and γ, but adjust the proof of Lemma 7 by

switching the positions of β and γ and considering ψω(β) and ψω(γ) to be smaller

than all shifts starting with β and γ, respectively, then we have a similar property

below.

Lemma 8. Let W = φω(α) be an aperiodic word over Σ3 and a fixed point of

some n-uniform morphism φ on Σ3. Suppose that α occurs only at W [0], and that

ψ(ρ)[0] = ρ for all ρ ∈ Σ3. Assume that β < γ. If ψω(β) and ψω(γ) are smaller

than all shifts starting with β and γ, respectively, then ψω(β) = ψω(γ)1.

The next four lemmas give some forms of uniform morphism φ and properties of

W such that the set of shifts of W = φω(α) does not contain an infinite decreasing

sequence or an infinite increasing sequence.

Lemma 9. Let W = φω(α) be an aperiodic word over Σ3 and a fixed point of some

n-uniform morphism φ on Σ3. Assume that β < γ. Suppose that α occurs only at

W [0]. If φ(β) contains exactly one β and φ(γ) = γn, then φ(α) must contain β,

and {Wi} has no infinite decreasing sequence.

Proof. Observe that β must occur in φ(α) since W is aperiodic. We will pick an

arbitrary shift Wi with i ≥ 1 and show that it is impossible to build an infinite

decreasing sequence from the shifts of W with Wi as the first term. Note that the
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inclusion of W would not change the result. Since W is aperiodic and α occurs only

at W [0], we have Wi ∈ {β, γ}ω. Consider γfβγlβ, a prefix of Wi, where f, l ≥ 0.

We will prove our assertion by induction on f .

When f = 0, we have W [i] = β. If Wj < Wi for some integer j, then Wj has

a prefix of the form βγljβ with lj ≤ l. Let q = max{1, dlogn(l + 1)e}. We have

nq − 1 ≤ l. We see that φq(γ) = γn
q

. Since φ(β) contains exactly one β, we have

φ(β) = γ`1βγ`2 with 0 ≤ `1, `2 ≤ n− 1 and `1 + `2 = n− 1. Therefore,

φq(β) = γ`1
∑q−1

k=0 nk

βγ`2
∑q−1

k=0 nk

,

where `1
∑q−1

k=0 n
k + `2

∑q−1
k=0 n

k = nq − 1. Observe that for all j ≥ nq, Wj is a shift

of some concatenation of φq(β) and φq(γ), so if W [j] = β, then lj ≥ nq − 1. This

implies that Wj < Wi only if j < nq. Therefore, there can only be finitely many

shifts of W smaller than Wi, so no infinite decreasing sequence can begin with Wi.

Now, let F ≥ 0. Suppose that for all f ≤ F , any decreasing sequence with Wi

as the first term is finite. Consider f = F + 1. Let j be an integer such that

Wj < Wi. Then either Wj has a prefix of the form γfβγljβ with lj ≤ l, or Wj

has a prefix of the form γfjβ with fj < f . In the first case, we know from the

case when f = 0 that there are only finitely many shifts with prefix β followed by

a string of γ of length at most l. Therefore, there can only be finitely many shifts

with prefix γfβγljβ. To build an infinite decreasing sequence with Wi as the first

term, we must eventually pick a shift from the second case. Let Wj′ be such a shift

for some integer j′. Suppose that Wj′ has a prefix of the form γf
′
β for some integer

f ′ with 0 ≤ f ′ < f . By the inductive hypothesis, any decreasing sequence with Wj′

as the first term must be finite. Since a finite sequence remains finite when added a

finite number of terms, any decreasing sequence with Wi as the first term must also

be finite. Therefore, the set of shifts of W does not contain an infinite decreasing

sequence.

Making similar adjustment as we did in Lemma 8, we have the following similar

property.

Lemma 10. Let W = φω(α) be an aperiodic word over Σ3 and a fixed point of some

n-uniform morphism φ on Σ3. Assume that β < γ. Suppose that α occurs only at

W [0]. If φ(γ) contains exactly one γ and φ(β) = βn, then φ(α) must contain γ,

and {Wi} has no infinite increasing sequence.

Lemma 11. Let W = φω(α) be an aperiodic word over Σ3 and a fixed point of some

n-uniform morphism φ on Σ3 with n ≥ 3 being odd. Assume that β < γ. Suppose

that α occurs only at W [0], and that φ(β) = β(γβ)
n−1
2 and φ(γ) = γ(βγ)

n−1
2 . If

γγ is not a factor of W , then ββ must be a factor of W and {Wi} has no infinite

decreasing sequence.
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Proof. Since γγ is not a factor of W and W is aperiodic, ββ must be a factor of W

and occurs infinitely often in W . Specifically, if W [j..j + 1] = ββ for some integer

j, then W [n(j + 1) − 1..n(j + 1)] = ββ since φ(ββ)[n − 1..n] = ββ. Moreover,

Wn ∈ {φ(β), φ(γ)}ω and φ(γ)φ(γ) is not a factor of Wn since γγ is not a factor of

W . Therefore, either Wn is a concatenation of ββ and strings of the form γ(βγ)k

for some positive integer k, or W [n] = β and Wn+1 is a concatenation of ββ and

strings of the form γ(βγ)k for some positive integer k. Note that βββ is not a factor

of Wn based on the form of φ(β) and φ(γ).

We restrict our focus to {Wi}i≥n, since {Wi}i≥0 contains an infinite decreasing

sequence if and only if {Wi}i≥n contains one. Similar to the strategy in the proof

of Lemma 9, we will pick an arbitrary shift Wi with i ≥ n and show that it is

impossible to build an infinite decreasing sequence from the shifts of W with Wi as

the first term.

We first consider a shift Wi with prefix β. Then Wi has a prefix of the form

(βγ)fββγ(βγ)lββ, where f ≥ 0 and l ≥ n−3
2 . We will induct on f . When f = 0,

Wi has a prefix ββ. Suppose that j ≥ n. If Wj < Wi, then Wj must have prefix ββ

and the length of the string between the first and second occurrences of ββ in Wj

must be at most 2l+ 1. Let q = dlogn(2l+ 4)e. Observe that φq(β) and φq(γ) both

have a factor of the form γ(βγ)k of length at least nq − 2, which is greater than

2l+ 1. Hence, for all j ≥ nq, if Wj has a prefix ββ, then Wi < Wj . Therefore, there

are only finitely many shifts Wj smaller than Wi, so no infinite decreasing sequence

can begin with Wi.

Next, let F ≥ 0. Suppose that for all f ≤ F , any decreasing sequence with Wi

as the first term must be finite. Consider f = F + 1. Let j be an integer such

that Wj < Wi. Then either Wj has a prefix of the form (βγ)fββγ(βγ)ljββ with

lj ≤ l, or it has a prefix of the form (βγ)fjββ with fj < f . In the first case, since

there are finitely many shifts with prefix ββγ(βγ)ljββ, where lj ≤ l, there can only

be finitely many shifts with prefix (βγ)fββγ(βγ)ljββ. This implies that we must

eventually pick a shift from the second case to build an infinite decreasing sequence

with Wi as the first term. Let Wj′ be such a shift for some integer j′. By the

inductive hypothesis, any decreasing sequence with Wj′ as the first term must be

finite. Hence, any decreasing sequence with Wi as the first term must also be finite.

Next, we consider a shift Wi with prefix γ. Then Wi has a prefix of the form

γ(βγ)fββγ(βγ)lββ, where f ≥ 0 and l ≥ n−3
2 . The proof of this case is very

similar to the proof of the previous case, and will be omitted. Note that when

f = 0, Wj < Wi implies that either Wj has a prefix of the form γββγ(βγ)ljββ with

lj ≤ l, or it has a prefix β, which we have already shown cannot be the first term

of an infinite decreasing sequence in the previous case.

Once again, by adjusting the previous proof and using Lemma 10, we have a

similar property below.
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Lemma 12. Let W = φω(α) be an aperiodic word over Σ3, and a fixed point of some

n-uniform morphism φ on Σ3 with n ≥ 3 being odd. Assume that β < γ. Suppose

that α occurs only at W [0], and that φ(β) = β(γβ)
n−1
2 and φ(γ) = γ(βγ)

n−1
2 . If

ββ is not a factor of W , then γγ must be a factor of W and {Wi} has no infinite

increasing sequence.

Next, we consider a classical result in combinatorics on words, which we state

below. See Proposition 1.3.4 in [7].

Proposition 3 ([7]). Two words x, y ∈ A+ are conjugate if and only if there exists

a z ∈ A∗ such that

xz = zy.

More precisely, the equation holds if and only if there exist u, v ∈ A∗ such that

x = uv, y = vu, z ∈ u(vu)∗.

We will now identify the forms of ψ which result in {Wi} not containing an

infinite decreasing sequence.

Theorem 3. Suppose that an n-uniform morphism ψ satisfies ψ(ρ)[0] = ρ for all

ρ ∈ Σ3, and that α occurs only once in the aperiodic word W = ψω(α) over Σ3.

Assume that β < γ. Then, {Wi} has no infinite decreasing sequence if and only if

ψω(β) and ψω(γ) are larger than all shifts starting with β and γ, respectively. In

particular, ψ satisfies one of the following:

1. β occurs in ψ(α), ψ(β) = βγn−1, and ψ(γ) = γn,

2. ββ is a factor of ψ(α), but γγ is not; ψ(β) = β(γβ)
n−1
2 , ψ(γ) = γ(βγ)

n−1
2 ,

with n ≥ 3 being odd, and ψ(α)[1] = β or ψ(α)[n− 1] = β.

Proof. Since α occurs only once in W , we have ψ(α)[1..n− 1], ψ(β), ψ(γ) ∈ {β, γ}+
by Proposition 2.

The forward direction follows immediately from Corollary 3. For the other di-

rection, we consider the following cases:

1. If ψ(γ) = γn, then ψ(β) = βγn−1 by Lemma 7. As noted in the proof of

Lemma 9, β must occur in ψ(α). By Lemma 9, we obtain the first form of ψ,

with {Wi} not containing an infinite decreasing sequence.

2. If ψ(γ) 6= γn, then β occurs in ψ(γ). By Lemma 6, ψ(β)[n − 1] = β. Hence,

it follows from Lemma 7 that ψ(β)[1] = ψ(γ)[0] = γ and ψ(β)[n − 1] =

ψ(γ)[n− 2] = β. This implies that n ≥ 3.

By Lemma 7, ψω(β)1 = ψω(γ) which implies that ψ(β)1ψ(γ)[0] = ψ(γ), so

ψ(γ)[n− 1] = ψ(γ)[0] = γ. We note that ψ2(β)[0..2n− 1] = ψ(β)ψ(γ). Since

ψ2(γ)[2n− 2] = ψ2(β)[2n− 1] = ψ(γ)[n− 1] = γ 6= ψ(γ)[n− 2],
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we can conclude that ψ2(γ)[n..2n− 1] 6= ψ(γ), and hence ψ(γ)[1] must be β,

which implies that ψ2(γ)[2n−1] = β. Hence, ψω(β)[2n] = ψω(γ)[2n−1] = β.

Let ψ(β) = βγuβ for some u ∈ {β, γ}∗. We have ψ(γ) = γuβγ. Observe that

ψ(β)γβ = βψ(γ)β = ψω(β)[n− 1..2n] = ψ2(γ)[n− 2..2n− 1] = βγψ(β).

By Proposition 3, we have ψ(β) ∈ β(γβ)∗. Since n ≥ 3, ψ(β) ∈ β(γβ)+,

and so ψ(γ) ∈ γ(βγ)+. Therefore, n must be odd, and ψ(β) = β(γβ)
n−1
2 ,

ψ(γ) = γ(βγ)
n−1
2 .

Note that ψ(α) cannot be α(γβ)
n−1
2 or α(βγ)

n−1
2 ; otherwise, the resulting

word W would be α(γβ)ω or α(βγ)ω, respectively, which are ultimately peri-

odic. Since ψ(γ)[n− 1] = γ, by Lemma 6, γγ cannot be a factor of W . Since

ψ(α) 6∈ α(βγ)∗ ∪ α(γβ)∗, this implies that ββ is not a factor of W . Note

that γγ would be a factor of W if ψ(α)[1] = γ and ψ(α)[n − 1] = γ. Hence

φ(α)[1] = β or ψ(α)[n−1] = β. Finally, by Lemma 11, the fact that γγ is not

a factor of W implies that {Wi} has no infinite decreasing sequence.

This concludes the proof.

Using Lemma 8, 10, and 12, and an analogous argument as given in the proof of

Theorem 3, we have the following result.

Theorem 4. Suppose that an n-uniform morphism ψ satisfies ψ(ρ)[0] = ρ for all

ρ ∈ Σ3, and that α occurs only once in the aperiodic word W = ψω(α) over Σ3.

Assume that β < γ. Then, {Wi} has no infinite increasing sequence if and only if

ψω(β) and ψω(γ) are smaller than all shifts starting with β and γ, respectively. In

particular, ψ satisfies one of the following forms:

1. γ occurs in ψ(α), ψ(β) = βn and ψ(γ) = γβn−1,

2. γγ is a factor of ψ(α), but ββ is not; ψ(β) = β(γβ)
n−1
2 , ψ(γ) = γ(βγ)

n−1
2 ,

with n ≥ 3 being odd, and either ψ(α)[1] = γ or ψ(α)[n− 1] = γ.

Remark 3. Although Theorem 3 gives the forms of ψ, or φ2, those are the only

forms of φ as well. In other words, {Wi}must contain an infinite decreasing sequence

if φ(β)[0] = γ and φ(γ)[0] = β. To see that, we first consider the first form of ψ.

Assume that
√
n ∈ Z. If φ2(β) = βγn−1, then we would have

φ(γ) = φ(φ(β)[0]) = ψ(β)[0..
√
n− 1] = βγ

√
n−1

with
√
n ≥ 2. Also,

φ(β) = φ(φ(γ)[0]) = ψ(γ)[0..
√
n− 1] = γ

√
n.

However, that would imply that φ2(β) = φ(γ
√
n) = (βγ

√
n−1)

√
n, which is a contra-

diction.
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Consider the second form of ψ. One can easily check that φ(β) = γ(βγ)
√

n−1
2 and

φ(γ) = β(γβ)
√

n−1
2 to obtain the expressions for ψ(β) and ψ(γ). φ(α) cannot contain

ββ, otherwise ψ(α) would contain γγ. φ(α) cannot contain γγ either, otherwise

ψ(α)[0..
√
n − 1] would also contain γγ. Therefore, we have φ(α) = α(βγ)

√
n−1
2 or

α(γβ)
√

n−1
2 . The first case would give ψ(α)[

√
n−1..

√
n] = γγ, while the second case

would give both ψ(α)[1] = γ and ψ(α)[n− 1] = γ. In both cases, the conditions on

ψ(α) given in Theorem 3 are violated.

5.2. φ(β) and φ(γ) Have Same Starting Letter

We now consider the case when φ(β)[0] = φ(γ)[0] ∈ {β, γ}. We first point out that

φ(β) 6= φ(γ), otherwise, W would be of the form φ(α)(φ(β), φ(γ))ω = φ(α)φ(β)ω,

which is ultimately periodic.

Observe that one of φω(β) and φω(γ) is not a fixed point of φ. We will identify

the forms of φ that do not result in an infinite decreasing sequence in the set of

shifts of W = φω(α). We will first look at a property in the case when φ(β) < φ(γ)

and φω(γ)[0] = γ, which requires a bit more work.

If φω(γ) is not larger than all shifts starting with γ, then {Wi} contains an infinite

decreasing sequence by Corollary 3. Otherwise, we consider the following property.

Lemma 13. Let φ be an n-uniform morphism on Σ3 and W = φω(α) be an ape-

riodic word over Σ3. Suppose that α occurs only once in W , β < γ, and that

φ(β) < φ(γ) with φ(β)[0] = φ(γ)[0] = γ. Also assume that the fixed point φω(γ) is

larger than all shifts of W starting with γ. If β occurs more than once in φ(β) with

its first occurrence at position f ≥ 1, and ββ is not a factor of φ(β) or φ(γ), then

(φ(β)φ(γ))f [0..n] < βφ(γ).

Proof. We first note that Wn is a concatenation of φ(β) and φ(γ) since α only occurs

at W [0], and that φ(β), φ(γ) ∈ {β, γ}n by Proposition 2. Suppose that φ(γ) = γn.

Since β occurs in φ(β)f+1, it follows that (φ(β)φ(γ))f [0..n] < βγn = βφ(γ).

We prove by contradiction for the case when φ(γ) 6= γn. First, suppose that

(φ(β)φ(γ))f [0..n] > βφ(γ). We can pick i such that W [i..i+ 1] = βγ, and we would

have Wni+f+1 = φ(Wi)f+1 > φω(γ). Since β < γ, we must have Wni+f+1[0] = γ,

which is a contradiction.

Next, suppose that (φ(β)φ(γ))f [0..n] = βφ(γ). Since φ(β)[0] = φ(γ)[0] = γ and

ββ is not a factor of φ(β) or φ(γ), ββ cannot be a factor of Wn. Hence, βγ and γγ

must be factors of W , lest W be ultimately periodic. Let u, v ∈ {β, γ}+ such that

φ(β)[f+1..n−1] = φ(γ)[0..n−f−2] = v and φ(γ)[0..f ] = φ(γ)[n−f−1..n−1] = u.

We have

φ(β) = γfβv and φ(γ) = vu.

By Lemma 6, φ(β)[n − 1] = φ(γ)[n − 1] = β, so v[n − f − 2] = u[f ] = β. Since

φ(β) < φ(γ), we have |v| ≥ |γfβ| = f + 1 and v[0..f ] ≥ γfβ. Also, u = φ(γ)[0..f ] =
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v[0..f ], so v[0..f ] = γfβ. We may write v = γfβv′ for some v′ ∈ {β, γ}∗. Then,

φ(β) = γfβγfβv′ and φ(γ) = γfβv′γfβ.

We will show that both φ(β) and φ(γ) have infinite lengths, which would lead to

a contradiction. To see that, suppose to the contrary that there exists a largest

integer L ≥ 1 such that φ(β) = (γfβ)L+1w and φ(γ) = (γfβ)Lwγfβ for some

w ∈ {β, γ}∗. We must have w 6= ε, otherwise, we would have φ(β) = φ(γ). Observe

that w ends with a β since φ(β)[n − 1] = β. Consider the prefix γpβ of w. If

p < f , then φ(β) > φ(γ), a contradiction. If p > f , then γf+1 is a factor of W . In

particular, we can find an integer k such that W [k] = γ, and we would have

W [nk + f + 1..nk + (L+ 1)(f + 1)− 1] = φ(γ)[nk + f + 1..nk + (L+ 1)(f + 1)− 1]

= (γfβ)L−1γf+1,

so Wnk+f+1 > φω(γ). Therefore, we must have p = f . This implies that w =

γfβw′ for some w′ ∈ {β, γ}∗, and we would have φ(β) = (γfβ)L+2w′ and φ(γ) =

(γfβ)L+1w′γfβ, and hence L is not the largest such integer, and the claim follows.

We also give a condition that would guarantee the existence of an infinite de-

creasing sequence. Let u be a word over Σm and φ be an n-uniform morphism on

Σm. Define the notation φs(u) to be the s-shift of φ(u), or φs(u) = (φ(u))s. We

have the following lemma.

Lemma 14. Suppose that φ is an n-uniform morphism on Σm that preserves the

order in Σm, and that there exist some ρ ∈ Σm and 0 ≤ s ≤ n − 1 such that

φ(ρ)[s] = ρ. If W is an infinite word over Σm such that W [0] = ρ and φs(W ) < W ,

then ((φs)
t(W ))t≥0 is an infinite decreasing sequence.

Proof. We will prove that (φs)
t+1(W ) < (φs)

t(W ) and (φs)
t+1(W )[0] = (φs)

t(W )[0] =

ρ for all t ≥ 0 by induction, and the result follows. When t = 0, since φ(ρ)[s] = ρ and

s ≤ n− 1, we have φs(W )[0] = φ(ρ)[s] = ρ. The inequality is true by assumption.

Now suppose that (φs)
k+1(W ) < (φs)

k(W ) and (φs)
k+1(W )[0] = (φs)

k(W )[0] =

ρ for some k ≥ 0. Let d be the position of first distinction between W and φs(W ).

Then there exist u ∈ Σ∗m and ρ1, ρ2 ∈ Σm with ρ1 < ρ2, such that (φs)
k(W )[0..d] =

ρuρ2 and (φs)
k+1(W )[0..d] = ρuρ1. Hence, we have

φ((φs)
k(W )[0..d]) = φ(ρ)φ(u)φ(ρ2) and φ((φs)

k+1(W )[0..d]) = φ(ρ)φ(u)φ(ρ1).

Therefore, (φs)
k+1(W ) has a prefix φ(ρ)sφ(u)φ(ρ2) and (φs)

k+2(W ) has a prefix

φ(ρ)sφ(u)φ(ρ1). This implies that (φs)
k+2(W ) < (φs)

k+1(W ) since φ preserves

the order between ρ1 and ρ2. Finally, we have (φs)
k+2(W )[0] = (φs)

k+1(W )[0] =

φ(ρ)[s] = ρ.
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We will now show that the form of φ that does not result in an infinite decreasing

sequence in {Wi} is similar to the first form given in Theorem 3.

Theorem 5. Let W = φ(α) be an aperiodic word over Σ3, and a fixed point of an

n-uniform morphism φ on Σ3 such that φ(β)[0] = φ(γ)[0]. Suppose that α occurs

only once in W , and β < γ. Then {Wi} does not contain an infinite decreasing

sequence if and only if φ(β) contains exactly one β and φ(γ) = γn.

Proof. As we have mentioned in the beginning of this section, W is ultimately

periodic if φ(β) = φ(γ), and so we need only to consider cases where φ(β) 6= φ(γ).

Also note that φ(β), φ(γ) ∈ {β, γ}n by Proposition 2, and that Wi ∈ {β, γ}ω for all

i ≥ 1.

We start with the case where φ(β) > φ(γ). We restrict φ to the 2-letter alphabet

{β, γ}. By Lemma 5, we have φ2(β) < φ2(γ). Since φ(β)[0] = φ(γ)[0], we must

also have φ2(β)[0] = φ2(γ)[0]. If φ(β)[0] = β, then φ2(β)[0] = φ2(γ)[0] = β. We

may pick i such that W [i] = γ, and we have Wn2i = φ2(Wi) > φω(β). Hence, {Wi}
contains an infinite decreasing sequence by Corollary 3. If φ(β)[0] = γ, then we may

pick i such that W [i] = β, and we have Wni = φ(Wi) > φω(γ) since φ(β) > φ(γ).

Hence, {Wi} contains an infinite decreasing sequence by Corollary 3.

Next, consider the case where φ(β) < φ(γ). Suppose that φ(β)[0] = β. Similar

to the previous case, we can pick i such that W [i] = γ, and we have Wni = φ(Wi) >

φω(β), so {Wi} contains an infinite decreasing sequence by Corollary 3. Now,

suppose that φ(β)[0] = γ. Observe that β must occur in φ(β), otherwise φ(β) = γn

and φ(β) 6< φ(γ). If ββ is a factor of φ(β), say φ(β)[l..l+ 1] = ββ for some integer l

where 1 ≤ l ≤ n− 2, then we pick an integer i such that Wi[0..1] = βγ, which must

exist since W is aperiodic. We have φl(Wi) < Wi. Since φ restricted to {β, γ} is

order-preserving, ((φl)
t(Wi)) is an infinite decreasing sequence by Lemma 14.

If ββ is not a factor of φ(β), then we may also assume that ββ does not occur in

φ(γ), otherwise ββ would occur in φ2(β). Consider the subcase where β occurs at

least twice in φ(β), and that φ(γ) = γn. We can pick i such that W [i..i+ 1] = βγ.

Let the positions of the first and last β in φ(β) be f and l, respectively, we hence

obtain Wni+l[0..n] = βγn. By Lemma 13, φf (Wni+l) < Wni+l. By Lemma 14,

((φf )t(Wni+l)) is an infinite decreasing sequence. Now, consider the next subcase

where φ(γ) 6= γn. We may assume that φω(γ) is larger than all shifts that starts

with γ in light of Corollary 3 once again. Observe that ββ does not occur in Wn

since ββ occurs in neither φ(β) nor φ(γ), and φ(β)[0] = φ(γ)[0] = γ. As a result,

γγ must occur in W since W is aperiodic. We have φ(β)[n− 1] = φ(γ)[n− 1] = β,

or else {Wi} contains an infinite decreasing sequence by Lemma 6. Pick j > 1 such

that W [j] = γ, then W [j − 1] 6= α and Wnj−1[0..n] = βφ(γ). Since

φ(Wnj−1)[0..2n− 1] = (φ(β)φ2(γ))[0..2n− 1] = φ(β)φ(γ),

we have φf (Wnj−1) < Wnj−1 by Lemma 13. By Lemma 14 once again, we obtain
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an infinite decreasing sequence ((φf )t(Wnj−1)).

Suppose that φ(β) contains exactly one β. If φ(γ) contains a β, then φ2(β)

contains at least two β, so {Wi} contains an infinite decreasing sequence as we have

seen above. Suppose that φ(γ) = γn. By Lemma 9, {Wi} does not contain an

infinite decreasing sequence.

Once again, we may apply Lemma 10 and properties analogous to Lemma 13

and Lemma 14 to obtain the following result.

Theorem 6. Let W = φ(α) be an aperiodic word over Σ3, and a fixed point of an

n-uniform morphism φ on Σ3 such that φ(β)[0] = φ(γ)[0]. Suppose that α occurs

only once in W . Then {Wi} does not contain an infinite increasing sequence if and

only if φ(γ) contains exactly one γ and φ(β) = βn.

5.3. Some Examples of Order Type of Shifts

We end this section with a discussion of some order types of {Wi} if W [0] occurs

only once in a uniform morphic word W , as well as the effect of some coding have

on a uniform morphic word. We begin with the cases discussed in Theorem 3 and

Theorem 5.

1. Suppose that W = ψω(α) is a fixed point of the first form of morphisms given

in Theorem 3 or the similar form in Theorem 5. Let i ≥ 1. An i-shift of W

has a prefix of the form γfiβγliβ, where fi, li ≥ 0. The ordering of these shifts

depends on both fi and li, both of which can be arbitrarily large. Observe

that Wk < Wj if fk < fj , or fk = fj and lk < lj . We first fix a value for

fi and consider the ordering of such shifts. The order type of those shifts

would be ω since there are finitely many shifts with li = a for each infinitely

many possible values for a, as demonstrated in the proof of Lemma 9. As fi
can take on all non-negative integer values, the order type of {Wi}i≥1 is ω2.

Therefore, the order type of {Wi} is ω2 if α = 0 or 1, and ω2 + 1 if α = 2.

2. The order type of W = ψω(α) that is a fixed point of the second form of

morphisms in Theorem 3 is slightly different. In particular, for i ≥ n, an i-

shift of W has a prefix of the form (βγ)fiββγ(βγ)liββ or γ(βγ)fiββγ(βγ)liββ,

where fi ≥ 0 and li ≥ 0. We first consider shifts starting with β. When we

fix fi, there are only finitely many shifts with li = a for each possible value

of a, as seen in the proof of Lemma 11. Since fi takes on all non-negative

integer values, the order type of shifts starting with β is ω2. Similarly, for

shifts starting with γ, we also have order type ω2. For 1 ≤ i ≤ n − 1, Wi

starts with either β or γ. Since ψω(β) and ψω(γ) are larger than all shifts

of their respective starting letters and ψ preserves the order in {β, γ}, we

have Wi < ψ(Wi) by Corollary 3, and hence there is no maximum element
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in {Wi}i≥1. Therefore, the order type of {Wi} is ω2 · 2 if α = 0 or 1, and

ω2 · 2 + 1 if α = 2.

3. Using analogous arguments from the first two examples, we can show that if

W = ψ(α) is a fixed point of the first form of morphisms in Theorem 4 or the

type in Theorem 6, the order type of {Wi} is (ω∗)2 if α = 1 or 2, and 1+(ω∗)2

if α = 0. If W = ψ(α) is a fixed point of the second form of morphisms in

Theorem 4, the order type of {Wi} is (ω∗)2 · 2 if α = 1 or 2, and 1 + (ω∗)2 · 2
if α = 0.

In the first three examples, {Wi} does not have an infinite decreasing sequence or

an infinite increasing sequence. We now look at a few examples of words whose shifts

contain both an infinite decreasing sequence and an infinite increasing sequence.

The order types of their shifts vary, as one might expect.

1. Consider the fixed point r of the uniform morphism defined by 0 7→ 012,

1 7→ 111, 2 7→ 222, starting with 0:

r = 0121112221111111112222222221 · · · .

Obviously, r is the minimum element in {ri}. If r[i] = 1, then ri has a prefix

of the form 1a2b1. In particular, for each a ≥ 1 and b ≥ 3dlog3(a)e such

that b is a power of 3, there is a unique shift with that corresponding prefix.

Therefore, the order type of the set of shifts starting with 1 is ω ·ω∗. Similarly,

if r[i] = 2, then ri has a prefix of the form 2c1d2. In particular, for each c ≥ 1

and d ≥ 3dlog3(a)e+1 such that d is a power of 3, there is a unique shift with

that corresponding prefix. Hence, the order type of {ri}i≥1 is ω∗ · ω, and

therefore, ot(r) = 1 + ω · ω∗ + ω∗ · ω, which is not dense.

2. Consider the fixed point u of the uniform morphism defined by 0 7→ 02,

1 7→ 12, 2 7→ 20, starting with 1:

u = 122020022002 · · · .

If we define a coding σ0 : Σ3 7→ Σ2 by 0, 1 7→ 0 and 2 7→ 1, then one

would quickly realize that σ0(u) is the Thue–Morse word. We may view W

as the Thue–Morse Word over {0, 2}, but with u[0] = 1 instead of 0. By

Proposition 1, we know that t is the maximum element of {ti} starting with

0, and hence u remains to be larger than all other shifts starting with 0, but

smaller than all shifts starting with 2. As a result, ot(u) is the same as the

order type of (0, 1] ∩Q, which is dense.

3. Consider the fixed point of the uniform morphism defined by 0 7→ 01, 1 7→ 10,

2 7→ 21, starting with 2:

v = 211010011001 · · · .
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This is the Thue–Morse word t with the first 0 replaced by 2. Observe that v

is larger than all of its shifts. By Corollary 5, we know that v1 is the largest

shift in {vi}i≥1. Hence, the order type of {vi}i≥1 is the same as the order

type of (0, 1]∩Q, and so ot(v) is the same as the order type of ((0, 1] ∩Q)∪{2}
and is (barely) not dense.

Finally, we give some examples of the effect of coding on the order type of an

aperiodic word.

1. For any aperiodic word W over some alphabet A, if a coding Σ : A → Σm

sends all letters in A that appear infinitely often in W to the same letter in

Σm, then σ(W ) is ultimately periodic, and hence ot(σ(W )) is finite.

2. Consider an aperiodic morphic word W that is the image of a purely morphic

word W ′ under a coding σ, with the first letter of W ′ appearing twice in W ′.

By Theorem 2, ot(W ) is dense. If σ1 is another coding such that σ1(W ) is

aperiodic, then ot(σ1(W )) must also be dense since σ1(W ) is the image of W ′

under the coding σ1 ◦ σ. However, the order type may change. For example,

let σ : Σ2 → Σ2 be defined by 0 7→ 1 and 1 7→ 0. Then, t̄ = σ(t). However,

ot(t) is the same as the order type of Q∩ (0, 1], while ot(t̄) is the same as the

order type of Q ∩ [0, 1).

3. Suppose that W is an aperiodic morphic word over Σm whose first letter only

occurs once in W . Suppose that σ : Σm → Σn is a coding such that σ(W ) is

aperiodic. Denseness of ot(W ) does not imply denseness of ot(σ(W ), or vice

versa. Consider u and v from previous examples. Let σ1 : Σ3 → Σ3 be defined

by 0 7→ 0, 1 7→ 2, and 2 7→ 1. We can see that u = σ1(v) and v = σ1(u), and

only ot(u) is dense.

4. We mentioned at the end of Section 4 that aperiodic binary morphic word

need not have a dense order type. Consider r in a previous example and the

coding σ : Σ3 → Σ2 defined by 0, 1 7→ 0 and 2 7→ 1. We have

σ(W ) = 0010001110000000001111111110 · · · .

The shifts that start with 1 or 2 are now shifts starting with 0 and 1, respec-

tively, and so the order type given by the proper shifts of σ(W ) is ω ·ω∗+ω∗ ·ω.

Since σ(W ) now starts with 0, it becomes the smallest shift of ω2(W ) starting

with 00. Moreover, since 1 + ω = ω, we still have ot(σ(W )) = ω · ω∗ + ω∗ · ω,

which is not dense.
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6. Open Problems

We have barely scratched the surface on the topic of order type of words. Here are

a few problems that may interest the reader:

• We have looked at some examples related to codings in Section 5.3. What

else can we say about the effects of different coding have on the order type

of words? For example, are there certain properties of order type that are

preserved under certain coding?

• A question was posed below Theorem 3 in [5] concerning voids in order types.

We pose a similar question on morphic words: what countable order types

can/cannot be achieved?

• What is the order type of shifts of other type of words, like the Kolakoski

word?

Acknowledgements. I would like to thank my advisor Kevin O’Bryant for his

invaluable guidance and feedback on this paper, and his part in maintaining my

sanity during these difficult times. I would also like to thank the referee for his/her

meticulous report, which helped improving this paper greatly. Special thanks to

Yin Pak Cheng for proofreading this paper.

References

[1] J.-P. Allouche and J. Shallit, Automatic Sequences. Theory, Applications, Generalizations,
Cambridge University Press, Cambridge, 2003.

[2] J.-P. Allouche, A short walk across combinatorics on words, available at http://www-igm.univ-
mlv.fr/∼berstel/Colloque-Pitagore/word-survey-march2020.pdf.

[3] J.-P. Allouche, J. Currie, and J. Shallit, Extremal infinite overlap-free binary words, Electron.
J. Combin. 5 (1998), #R27.

[4] J. Berstel, A rewriting of Fife’s Theorem about overlap-free words, Lecture Notes in Comput.
Sci. 812 (1994), 19-29.

[5] D. D. Blair, J. D. Hamkins, and K. O’Bryant, Representing ordinal numbers with arithmetically
interesting sets of real numbers, Integers 20A (2020), #A3.

[6] D. G. Fon-Der-Flaass and A. E. Frid, On periodicity and low complexity of infinite permuta-
tions, European J. Combin. 28 (2007), 2106-2114.

[7] M. Lothaire, Combinatorics on Words (Cambridge Mathematical Library), Cambridge Uni-
versity Press, Cambridge, 1997.

[8] M. Makarov, On permutations generated by infinite binary words, Sib. Èlektron. Mat. Izv. 3
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