

Intelligent Verification/Validation for XR Based Systems

Research and Innovation Action

Grant agreement no.: 856716

D5.3 – Full integration of the pilots

iv4XR – WP5 – D5.3

Version 1.4

February 2022

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR i

Project Reference EU H2020-ICT-2018-3 - 856716

Due Date 31/09/2021

Actual Date 10/2/2022

Document Author/s Joseph Davidson (GA), Fernando Pastor (UPV), Wishnu
Prasetya (UU), Jean-Yves Donnart (THA-AVS), Marta Couto
(INESC-ID), Tanja Vos (UPV), Jason Lander (GW), Ian Saunter
(GW)

Version 1.4

Dissemination level Public

Status Final

This project has received funding from the European Union’s Horizon 2020

Research and innovation programme under grant agreement No 856716

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR ii

Document Version Control

Version Date Change Made (and if appropriate reason
for change)

Initials of
Commentator(s) or

Author(s)

1.0 14/09/2021 Initial document structure and contents JD

1.1 23/09/2021 FTAs integration with SE, GA work JD, FP, WP

1.2 24/09/2021 GA/THA-AVS finished first draft of work JD, JYD

1.3 30/09/2021
GA/THA finalize report, add more up to date
diagrams.

JD, JYD, TV

1.3 30/09/2021 GW Report, Final conclusion written JL, IS, JD

1.35 17/01/2022
Reopened for changes, Adding GA manual
and examples

JD, FP

1.4 27/01/2022
Finalised GA changes to main text, added
example for users.

JD

1.4 31/01/2022 GWE/THA-AVS additional materials JL, IS, JYD

Document Quality Control

Version
QA

Date Comments (and if appropriate reason for
change)

Initials of QA Person

1.2 27/09/2021 Polishing of common and GA parts. JD

1.2 29/09/2021 Formatting of links, captioning of images MC, JD

1.2 30/09/2021 Change of some diagrams TV, WP, JD, JYD

1.3 30/09/2021 Cleanup for final submission JD

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR iii

1.4 10/02/2022 Final version of resubmission JD

Document Authors and Quality Assurance Checks

Author
Initials

Name of Author Institution

JD Joseph Davidson GA

FP Fernando Pastor UPV

WP Wishnu Prasetya UU

JYD Jean-Yves Donnart THA-AVS

MC Marta Couto INESC-ID

TV Tanja Vos UPV

JL Jason Lander GW

IS Ian Saunter GW

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR iv

TABLE OF CONTENTS

1 Executive Summary 1

Acronyms and Abbreviations 1

2 Introduction 2

3 Full Integration definition 3

3.1 Space Engineers (Good AI) 3

3.2 Nuclear plant intrusion simulation (Thales AVS) 4

3.3 LiveSite (Gameware) 5

4 Space Engineers (Good AI) Integration 7

4.1 The Example Scenario 7

4.2 Functional Test Agents Integration 7

4.3 Further Work 10

4.3.1 Block Photoshoot 11

5. Nuclear plant intrusion simulation (Thales AVS) Integration 12

5.1 Description of the Test Scenario 12

5.2 Full Integration with the Framework 13

5.2.1 Accelerating the simulation 15

5.2.2 Expanding the interface 16

5.3 Further Work 16

6. LiveSite (Gameware) Integration 17

6.1 Overview 17

6.2 Reading verification and analysis 17

6.3 Integration Overview 18

6.4 Multi-Sites 22

6.5 Full Integration for Test type 2 - Train moving over structure 23

6.6 Further work 24

7 Conclusions 26

A1 Space Engineers Plugin User Manual 27

1.1 Introduction 27

1.2. How to run the game with this plugin 28

1.2.1 3rd Party Dependencies 28

1.3 How to build 29

1.4 API 30

1.4.1 Architecture Overview 30

1.4.2 Project details: Ivxr.SePlugin 31

1.5 Space Engineers Engine information 31

1.5.1 Units and position 31

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR v

1.5.2 Character and camera orientation 32

1.5.3 Basic movement API 32

1.5.4 Movement types and speed 32

1.5.5 Continuous movement 33

1.5.6 Blocks 33

1.5.6.1 DefinitionId, id 34

1.5.6.2 Block-specific instance properties 34

1.5.6.3 Definitions 35

1.5.6.4 Small vs large cube blocks 35

1.5.6.5 Targeting a block 35

1.5.6.6 Using blocks 36

1.5.6.7 Compound blocks 36

1.5.7 Welding and grinding 36

Shared constants: 37

Angle grinder constants and formula 37

1.5.8 Advanced/plugin customization - Adding new block-specific fields 38

Base interface 38

Polymorphic blocks 38

1.5.9 Multiple characters 38

Commands unaffected by character switch 39

1.6 Plugin Examples 39

A2 Nuclear plant intrusion simulation User Manual 48

2.1 Introduction 48

2.2 Tests Procedure 48

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 1

1 EXECUTIVE SUMMARY

This report details the progress of the integration of the iv4XR framework with the pilots supplied

by the industrial partners. It explains what full integration entails for each of the pilots, presents

an overview of the technical details of this integration for each pilot, and finally describes how

each pilot will make use of the interfaces going forward and outlines any future support and

development this may entail. For the integrations where it makes sense, there are also user

manuals for the pilots appended to this document.

ACRONYMS AND ABBREVIATIONS

XR Extended Reality

GA GoodAI

SE Space Engineers

CGE Computer Generated Entities

CGF Computer Generated Forces

FTA Functional Test Agent

RL Reinforcement Learning

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 2

2 INTRODUCTION

One of the objectives of the iv4XR project is to permit external organisations to use the

framework so that their extended reality environments can be tested or monitored with less

human interaction than is required by the testing methods of today. For adoption to be effective,

prospective developers need 1.) Some demonstration of the benefits of using iv4XR, and 2.) A

measure of guidance on how to integrate the framework into their development lifecycle. The

pilots are one of the methods that the consortium is using to deliver this knowledge.

There are three integration deliverables in this project, of which this is the third. The work in this

deliverable follows the previous deliverables in bringing the features of the interfaces into line

with the general capabilities of the iv4XR framework.

With this deliverable, the features required for the interfaces to the pilot are complete so that in

theory, all aspects which we would wish to test in the pilots are able to be tested. However, we

anticipate that further work will be needed to support more features. This anticipated future work

will be addressed for each pilot.

Diagram of how the iv4XR framework interfaces with the pilots.

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 3

3 FULL INTEGRATION DEFINITION

In previous deliverables, basic integration and intermediate integration have been broadly

described as “one-way communication” and “two-way communication” respectively. With two-

way communication, the pilots are able to host agents which are able to influence and be

influenced by the pilot environment. Full integration concludes by exposing all of the relevant

controls that the framework will need in order to control the pilots, read data, and verify

correctness.

In the previous deliverable, basic integration was broadly expressed as “one way communication”
between the framework and pilot where the pilot sends some observation to the framework via
the interface. Intermediate integration was similarly defined as “two way communication” between
the framework and pilots.

For full integration, we are concentrating on a “feature complete” version of the interfaces so that
the developer of a test agent has access to all of the functionality and internal information required
in order to test the salient features of the pilot.

3.1 SPACE ENGINEERS (GOOD AI)

As a game under continued development, Space Engineers requires thorough and frequent

testing. Given the complexity of the game world, the testing team performs the majority of the

tests manually. One of these tests is in the creation of game entities known as “blocks”. Blocks

are the basic construction components from which the players can build structures and vehicles.

Blocks vary in functionality from generic armour blocks to more complex storage and medical

unit blocks.

A collection of different blocks; A gyroscope (left), a reactor (centre), and a thruster (right) all attached to a platform of

armour blocks.

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 4

In previous deliverables, we have focused on a specific test case for determining if a block can

be constructed using the current materials in the inventory. For this deliverable, we have

expanded the functionality of the interface so that agent developers are able to access mutable

and static properties of any block in the game. We have also extended the welding/grinding

usecase towards verifying the textures used.

The academic consortium partners have been making use of the interface for their experiments

and have been constructing agents to interact with SE. This has been a way to generate

feedback for the interface and for ideas to improve the workflows of those that create agents.

3.2 NUCLEAR PLANT INTRUSION SIMULATION (THALES AVS)

Today, the verification of a simulation with artificial agents (non-player characters) often relies on

human operators which play the opposite force (e.g., the intruders) with the objective to challenge

the scenario integrated into the simulation. Because this task is cost consuming, we sometimes

use the scenario functionalities of our CGE MAEV to model the different strategies of the opposite

force and analyze, afterwards, the results of the different confrontations. In most cases, this kind

of verification is not exhaustive enough to be efficient.

Our main objective is iv4XR Project is to test an alternative solution for scenario verification where

AI agents can learn how to challenge the CGE scenario simulating the defense of a nuclear plant.

These AI agents will have access to all the necessary information (the perceived situation of each

intruder) and will be allowed to decide which actions will be performed by their corresponding

artificial agents into the simulation.

Use of CGE MAEV to simulate a Nuclear Plant Intrusion

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 5

During the “Basic Integration” phase, we defined an API plugin (AIEngine) that allows our CGE

MAEV to communicate with AI agents, whatever AI technology they rely on, and developed the

communication modules both in the CGE and in the IV4XR Framework in order to ensure the

genericity of the communication.

During the “Intermediate Integration” phase, we have tested the capacity for an external module,

developed by another partner of the consortium (Thales SIX), to control some of the MAEV

agents through the IV4XR Framework. Concretely, this means that this external module is able

to receive the states and detections of the MAEV agents under its control and is also able to

give high level commands, such as “MoveTo”, to these agents.

Our objective, during the “Full Integration” phase, was to fulfill all the requirements needed to

allow an external AI tool, such as Thales SIX Reinforcement Learning (RL) algorithms, to

challenge the defense strategy implemented in MAEV.

To achieve this objective, the CGE should be able to run the simulation much quicker than real

time in order for the RL algorithms to test and evaluate thousands of alternatives as quickly as

possible.

We have also expanded the capacities of the interface in order for the AI tools, not only to

control MAEV agents, but also to control the course of the simulation and to access the

simulation data that are needed to evaluate the alternatives.

In further works, we will continue to support our partners in order to allow them to perform their

experiments using our pilot, and we will work on collective demos to exhibit the results of these

experiments.

3.3 LIVESITE (GAMEWARE)

For the basic integration phase, we developed a server-side tool which can interface with the

IV4XR framework. Its inputs are monitoring projects with sensor definitions, thresholds and their

varying requirements, and it uses the IV4XR framework to test parameters within the definition of

the given sensors.

The server-side tool is written in JAVA and processes command files which include zero or more

data items from the project itself. Since the monitoring projects from which we sample frequently

have large amounts of data (often gigabytes), the LiveSite tool processes only a small amount of

it at any one time.

For the intermediate integration phase, our objective has been to further enhance this tool to allow

both processing and navigation of the project, by allowing the tool to control which sections of the

data it is looking at. In effect, it is an agent navigating through the data.

Also for some engineering projects, for example where there is monitoring of a train going over a

bridge or section of track, there is a physical moving entity as well as the structure itself. For this

phase we have been adding support to enable monitoring of moving entities in the project.

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 6

An overview of a rail bridge and the locations of various sensors that monitor the bridge.

For full integration we have advanced the system to analyse the formulae for inter-dependent

sensors which are frequently found on large structures such as bridges and buildings.

These typically use algebraic relationships such as

DISPLACEMENT_PIER1 = tan(ANGLE_PIER1)*LVDT_PIER1

The JAVA tool now creates agents which iterate over the formulae, checking all component

sensors are working and verifying the resulting sensor readings by calculating the output itself

as well as looking at the output values stored.

We have also split the system into multiple layers, with the top layer controlling the overall

checking of a site, which involves issuing commands to perform further checks on various

sensors and time-slices. Each of the further checks uses a different agent with a small set of

test criteria to validate. The overall results from the checks are then combined once complete,

allowing the system to make maximum concurrent use of the server bandwidth available.

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 7

4 SPACE ENGINEERS (GOOD AI) INTEGRATION

The majority of the effort that has been expended on the interface in this deliverable has been to

do with facilitating how the character of the agent can interact with the world, and how the agent

can read data from the game environment. Furthermore, we have added additional helpful

functions which are intended to ease the writing of new agents. This has enabled us to extend

the welding/grinding case so that screenshots can be taken of the intermediate textures, and

these screenshotted textures checked to see if they are the correct ones. This “block

photoshoot” is currently being developed in collaboration with another EU project.

4.1 THE EXAMPLE SCENARIO

One of the example scenarios that has been developed for testing the plugin in a manner similar

to the current manual testing is the “Place, Grind, and Weld” scenario. In this scenario the agent

places a block in creative mode, equips the grinder, deconstructs the block until the integrity of

the block is at a certain level, equips the welder, and uses the welder to repair the block to full

integrity.

In this scenario, the agent is primed with goals and tactics which align with the tasks given

above and these tactics continuously monitor the attribute of interest (in this case the integrity of

the block) and evaluate the tests at the appropriate points in the execution.

4.2 FUNCTIONAL TEST AGENTS INTEGRATION

There are two types of functional test agents (FTAs): goal solving and exploratory FTAs. A goal-

solving agent performs tests according to the specified goals. An exploratory agent on the other

hand tries to explore and interact with the target system as much as possible, e.g. to check that

a property remains robust under unexpected interactions. These FTAs are integrated with the SE

System Under Test (SUT) as follows:

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 8

Diagram of how the iv4XR framework interfaces with SE.

Inside the SUT-specific WOM component there is the following interface to obtain properties

about the SE entities:

- The Observer interface allows FTAs to obtain information about the existing entities (types

of blocks, other characters) as well as the properties of the blocks and the agent itself (block

integrity, agent health, position, orientation, etc...) in a customizable observation ratio.

Inside the SUT-specific Environment, there are implemented interfaces for the following

interactions:

- The Character interface allows FTAs to rotate to and orient themselves, move and fly in

the three-dimensional space of the game, as well as interact and use tools on the different

types of observed blocks.

- The Items interface allows FTAs to select any type of tool for its usage, or existing block

type for its placement.

- The Blocks interface allows FTAs to place blocks.

- There is an Admin interface which allows FTAs to modify the game state without going

through the actions nominally available to players. Examples of this are spawning blocks,

and teleporting characters or grids.

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 9

Related to Navigation, the UU is currently integrating an on-line sparse 3D grid algorithm, from

which 2D as well as 3D pathfinding (with jetpack) can be performed. The algorithm does not

require a pre-constructed navigation mesh, but instead constructs a sparse grid on-the-fly as the

agent moves around and avoids obstacles. This will allow FTAs agents to have better movement

navigation around the environment to solve test goals or to execute more intelligent exploratory

movements.

To see the goal-solving FTA in action we show below an example of a test-goal that can be given

to the agent. The goal will guide the agent to auto-navigate to an in-game battery unit, and then

grind it. It checks two correctness assertions about the integrity of this battery unit, and also takes

screenshots for inspection by testers. A video1 shows the run.

GoalStructure G =

SEQ(

 DEPLOYonce(agent, closeTo(agent, "LargeBatteryBlock" ...)),

 targetBlockOK(agent, e →

 (float) e.getProperty("integrity") == (float) e.getProperty("maxIntegrity")),

 photo("LargeBattery.png"),

 grinded(agent,0.5),

 targetBlockOK(agent, e →

 (float) e.getProperty("integrity") ≤ 0.5 * (float) e.getProperty("maxIntegrity")),

 photo("GrindedLargeBatteryGrinded.png"))

A listing of the algorithm used by the agent that grinds and screenshots a battery block.

To see the exploration FTA in action we can see in this video2 how the TESTAR Spy mode uses

the iv4XR SE plugin to fetch the State of the observed blocks, and how the Generate mode allows

TESTAR to move to the target blocks dealing with obstacles to finally execute an interaction like

the grid of the block.

For the “Place, Grind, and Weld” scenario the goals and tactics can be expressed in Kotlin thus:

 val testingTask: GoalStructure = SEQ(
 goals.agentAtPosition(Vec3(532.7066f, -45.193184f, -24.395466f), epsilon = 0.05f),
 goals.agentDistanceFromPosition(
 Vec3(532.7066f, -45.193184f, -23.946253f),
 distance = 16f,
 epsilon = 0.1f,
 tactic = tactics.moveForward(),
),
 goals.blockOfTypeExists(
 blockType,
 tactic = tactics.buildBlock(blockType),
),
 goals.lastBuiltBlockIntegrityIsBelow(
 percentage = 0.1,

1 https://www.youtube.com/watch?v=d9IBT1TfecU
2 https://www.youtube.com/watch?v=HKWsjWV0hmo

https://www.youtube.com/watch?v=d9IBT1TfecU
https://www.youtube.com/watch?v=HKWsjWV0hmo

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 10

 tactic = SEQ(
 tactics.equip(grinderLocation),
 tactics.sleep(500),
 tactics.startUsingTool(),
),
),
 goals.alwaysSolved(
 tactic = SEQ(
 tactics.endUsingTool(),
 tactics.sleep(500),
),
),
 goals.lastBuiltBlockIntegrityIsAbove(
 percentage = 1.0,
 tactic = SEQ(
 tactics.equip(welderLocation),
 tactics.sleep(500),
 tactics.startUsingTool(),
),
),
 goals.alwaysSolved(
 tactic = SEQ(
 tactics.endUsingTool(),
),
),
)

 testAgent.setGoal(testingTask)

Here the agent is primed to construct a particular type of block, grind the block down and weld it

back up to 100% integrity in sequence. Once a goal is achieved, the agent stops with its current

tactic.

4.3 FURTHER WORK

The SE interface is being actively worked on to include other features that are not essential to

the testing of SE, but will be helpful for functional or social agent developers.

Earlier in this deliverable, the partners at UU described the development of a navigation system

for SE based within the framework. One of the first improvements to the interface is planned to

be a navigation graph for grids of blocks which can then be used for planning movement around

test cases.

The work into SETAs is starting to involve SE. The interface as it currently stands reports both

the internal state and status of the agent in relation to the environment. One thing that is not

really reflected in any of the API’s is the user interface as everything is accessed

programmatically. Future work will extend the interface to represent the UI and its events.

The plugin itself is currently undergoing trials with the game testing team to see if it is

convenient for the testers to automate some of their easier repetitive tests. Current work in this

space is in rewriting their human-centric testing scenarios to something that is easier to

automate, and in developing multi-agent control so that the simulation integrity can be verified

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 11

when testing. The current results are promising and the next deliverable (D5.4: Project

validation report) will contain a report arising from these efforts.

4.3.1 BLOCK PHOTOSHOOT

GA participates in another H2020 Project: VeriDREAM3, and collaboration here has exposed

some additional interesting test cases in SE for which iv4XR can be used. In this test case, the

testers verify that the texture progression from the initial stages of construction to the finished

product have been rendered correctly.

To automate this, we have an agent which can spawn a block fully built, then it uses a grinder

on the block to deconstruct it, where at each stage it moves back and takes a picture of the

block. There were several iterations of this behaviour. The first involved cube blocks that were

placed in a room where an api call changes the background blocks to a pink colour so that the

actual texture of interest could be identified easily.

The block of interest highlighted apart from the coloured background.

While this worked for cube blocks, there are larger blocks where it was impractical to back up a

room in order to get the whole texture in frame without finetuning the amount that the character

has to back up by. In this case the testing moved to space, where the agent is moving via its

backpack and the black backdrop of space providing a contrast so that the textures can be

identified easily. A video of this iteration can be seen here4.

The third and current iteration of the photoshoot involved the implementation of the teleportation

api, where the agent developer can specify position and orientation vectors for the character,

and the game will place them there. This was done so that blocks could be imaged from all

sides, rather than just one. A video of this iteration can be seen here5.

The block photoshoot is still in development. We are waiting for the texture comparison method

and have some improvements planned such as having flat ambient light to illuminate all sides of

a block at once for clear imaging of the textures.

3 VeriDREAM project (grant agreement no. 951992) https://www.veridream.eu/
4 https://www.youtube.com/watch?v=wNmi3OOZcaU
5 https://www.youtube.com/watch?v=Vz5Fm40ZMiM

https://www.youtube.com/watch?v=wNmi3OOZcaU
https://www.youtube.com/watch?v=Vz5Fm40ZMiM
https://www.veridream.eu/

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 12

5. NUCLEAR PLANT INTRUSION SIMULATION (THALES AVS) INTEGRATION

In this pilot, the testing agents are AI agents that try to defeat the defense strategy of a power

plant by finding a way to get an intruder to the core of the plant without being detected. Because

the number of guards and cameras are limited, our objective is to use AI tools to test the quality

of different defense strategies in order for the operator to find a compromise between efficiency

and available resources.

5.1 DESCRIPTION OF THE TEST SCENARIO

Within this scenario, intruders may use a map of the plant but have no initial information about

the locations of cameras and about the number and behavior of the guards.

The defense strategy is modeled by Thales’ simulation tool MAEV thanks to its scenario module

where one can position cameras and assign missions to the guards (such as patrol). The behavior

of the guards is modeled in MAEV thanks to traditional AI capacities like mission graphs,

behavioral trees and pathfinding algorithms.

The following figure represents a map of the plant, and we can see a basic scenario that has been

modeled during the “Intermediate Integration” phase:

● Agent 1 (the “Player”) represents an intruder who tries to reach the “Goal”. It is the only

MAEV agent controllable by an external module.

● Agents 3, 4, 5, 6, 9, 10, 11, 12, 13, 15, 16, 17, 18 and 19 are 180° cameras;

● Agents 7, 8, 19, 20, 21 and 22 are guards with specific missions (e.g., agent 21 makes a

circle patrol passing by locations identified by squares 1, 2, 3, 4 and 5 on the map).

A depiction of the environment in which the agents operate.

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 13

Each agent has a detection range, symbolized by a circle on the map, that parametrizes the

detection capacity of the agents. For instance, we see in the figure that the “Player” is detected

by Camera 4 but the camera is detected in return by this agent.

5.2 FULL INTEGRATION WITH THE FRAMEWORK

The pilot offers the possibility for an external module, for instance AI agents, to control some of

the MAEV agents through the IV4XR Framework. The following figure describes the integration

of the Framework with both MAEV and the AI Tools that is currently used by THALES-SIX to

perform the tests.

Diagram of how the iv4XR framework interfaces with MAEV and Thales-SIX AI tools

This communication with the Framework IV4XR is performed by TCP sockets and use the

following JSON format:

● For sending commands from the Framework to MAEV agents:

{"cmd":"AGENTCOMMAND","arg":{"cmd":"MOVETO","agentId":1,"targetId":1,"arg":{"x":1.0,"y":0.0,"z":0.0}}
}

{"cmd":"AGENTCOMMAND","arg":{"cmd":"DONOTHING","agentId":1,"targetId":1,"arg":{"t":1.0}}}

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 14

● For receiving MAEV agent's state vectors by the Framework:

{"agentID":1,"tick":13139012,"agentPosition":{"x":0;,"y":0;,"z":0;},"velocity":{"x":10;,"y":10;,"z":0;},

 "didNothing":"true",

 "entities":[

{"isActive":"true",”center":{"x":5;,"y":0;,"z":5;},"extents":{"x":0,"y":0.,"z":0.},"type":2,"tag":"","id":
2,"position":{"x":5;,"y":0;,"z":5;},"property":""},

{"isActive":"true","center":{"x":3;,"y":0;,"z":2;},"extents":{"x":0.,"y":0.,"z":0.},"type":2,"tag":"","id":
3,"position":{"x":3;,"y":0;,"z":2;},"property":""},

{"isActive":"true",”center":{"x":4;,"y":0;,"z":2;},"extents":{"x":0.,"y":0.,"z":0.},"type":2,"tag":"","id":
4,"position":{"x":4;,"y":0;,"z":2;},"property":""}],

"navMeshIndices":[]}

During the “ Intermediate Integration '' phase, a first version of the pilot, integrating MAEV with

the above scenario to the IV4XR Framework, was embedded on a PC and sent to Thales SIX for

basic experimentations.

The results are in line with our expectations:

● The intruder (Agent 1) moves on the map according to commands sent by the Thales SIX

module connected to the Framework;

● The state vector of Agent 1 received by the Thales SIX module evolves according to its

current position, speed and detections in MAEV simulation;

● The cameras still detect the intruder controlled by the Thales SIX module when it enters

their detection perimeter.

A video of this agent performing tests can be found here6.

In this experiment, the agent receives its current perceptions and state from MAEV Simulation

through the IV4XR Framework and launches MOVETO commands to random destinations to

drive the "Player" entity. Note that the agent's destination changes every 10 seconds to make it

more demonstrative.

The code of the Thales-AVS plugin7 is available on the project’s GitHub page. The code of Thales

SIX tools is divided in two modules, available on the project’s Github page:

● The iv4xr-rl-env8 module allows for the definition of a RL environment interface over the

iv4XR System Under Test. It also contains a connector to some Python RL Agent training

code that provides actions and receives states and rewards.

● The iv4xr-rl-trainer9 module allows the training of Deep RL agents written in the Python

language on RL environments run by the iv4xr-rl-env module within the iv4XR framework.

6 https://youtu.be/QPpnRloAr7o
7 https://github.com/iv4xr-project/iv4XR-IntrusionSimulation
8 https://github.com/iv4xr-project/iv4xr-rl-env
9 https://github.com/iv4xr-project/iv4xr-rl-trainer

https://youtu.be/QPpnRloAr7o
https://github.com/iv4xr-project/iv4XR-IntrusionSimulation
https://github.com/iv4xr-project/iv4xr-rl-env
https://github.com/iv4xr-project/iv4xr-rl-trainer

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 15

For the intermediate integration, a placeholder that outputs random actions replaces the

actual training code.

For the “Final Integration” phase, we have continued to improve the pilot on two aspects:

● By accelerating the simulation in order to allow the use of Reinforcement Learning;

● By expanding the capacities of the interface in order to allow the AI tools to access more

simulation data or parameters

5.2.1 ACCELERATING THE SIMULATION

The exploitation of Machine Learning algorithms, such as the Reinforcement Learning (RL) tools

used by Thales-SIX, necessitates a very large number of experiments in simulation to converge

toward an optimal solution to the studied problem. Here, we want an agent, representing an

intruder, to find a way to defeat the current defense strategy implemented in the MAEV scenario.

Moreover, after the presentation of several incrementally improved strategies, if the RL tools do

not find a way to defeat the defense strategy, we want to be sure that it is because this strategy

can not be beaten with only one intruder.

In order to perform all these tests, including this last coverage test, the CGE shall run thousands

of iterations of the scenario in order for the RL algorithms to be able to test and evaluate the

maximum of alternatives possible.

One solution to this problem is to accelerate the simulation. MAEV simulation has been modified

during the “Final integration phase” to run quicker than real time in order to support the

Reinforcement Learning requirements.

In the last version delivered to Thales-SIX, there is an “New” Acceleration mode that can be

activated thanks, in particular, to the disconnection of the distributive simulation standardized

interface HLA and to the differentiation between the simulation time and the clock times in all the

models managed by the CGE.

This acceleration of the simulation could have been increased by modifying the level of details of

the models in MAEV. Because we want to keep a good level of representativity, we did not want

to modify the level of detail of the models. Instead, we have decided to use a simpler simulator

(SE-STAR) to perform the early stages of the learning.

https://github.com/iv4xr-project/iv4xr-rl-trainer

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 16

An overview of how MAEV and SE-Star interface with the iv4XR framework.

The simulator will also be connected to IV4XR Framework using very similar interfaces to the

ones used by MAEV. And after this primary learning stage, MAEV will replace SE-STAR to

conclude the learning.

5.2.2 EXPANDING THE INTERFACE

In order to facilitate the learning process, The AI tools must control not only some of the MAEV

agents, but also the simulation itself. The control parameters of the simulation are now accessible

through the Framework:

● Load exercise,

● Play & pause,

● Stop & reset,

● Change simulation speed.

The AI tools must also access to more parameters than the detection of the controlled agent:

● The initials positions, field of view and range of all the agents (intruder + guards) and of

the cameras;

● The current position and velocity of the guards during the run;

● The current detections made by the guards and the camera in order to calculate the

rewards in function of the position of the intruder and the configuration of the environment.

● The current simulation time when simulation speed differs from the real time.

Finally, the final integration ensures the coherence between the representation of the environment

in MAEV and the corresponding representation managed by the AI tools (coordinate referential,

shape and position of the infrastructures, etc.).

5.3 FURTHER WORK

We will continue to support our partners during the tests by expanding the interface if necessary

and enhancing the level of the Defense Strategy until the RL tools are not able to discover a policy

to defeat it.

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 17

For the coverage of the tests, we intend to parallelize both simulators to verify that the Defense

strategy simulated in MAEV is really the best we can propose for the real infrastructure.

6. LIVESITE (GAMEWARE) INTEGRATION

6.1 OVERVIEW

Livesite is a real-time instrumentation and monitoring system for the building industry.

Sensors are installed on building and construction sites to monitor ground movements, building

movements, temperature variations, rainfall, water levels, vibrations, dust and other

environmental factors to ensure safety of both the site being worked on, and the neighbouring

area and structures.

The various sensors connect to network hubs and the internet directly and upload readings to

the Livesite servers. Readings can be uploaded hundreds of times per second in some

instances, and a very large volume of data is produced.

The Livesite servers analyse and process the data, providing real-time graphs, numerical tables,

and 3D visualisations of the sensor readings, allowing engineers to monitor the site activity and

behaviours.

Ensuring the integrity and accuracy of the readings is critical to provide a safe building

environment and prevent works or ground issues from causing problems with the structures

involved.

6.2 READING VERIFICATION AND ANALYSIS

For IVRX4 we have setup an additional server (the API Server) which can access readings from

certain Livesite projects and provides a web-API to access and parse the readings and their

associated meta-information.

The API server controls and provides an API to the JAVA tool, which runs tests and queries on

Livesite project data and provides results which list errors detected in the project configuration,

sensor configurations, or the sensor readings themselves.

The meta-information accompanying a project includes a wide variety of parameters that can be

used to assist in verification of the validity of the readings. For instance, the meta for a sensor

will include what type of sensor it is, and where it is installed. It can then be deduced that a

temperature sensor on the outside of a building for example, should never give a temperature

reading significantly higher than the ambient temperature of the area on that particular day.

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 18

6.3 INTEGRATION OVERVIEW

Using the API server, a script for a Livesite project is provided. This script contains items to test

and validate in the given project.

The API Server can provide the readings from sensors with transformations and filtering

applied, allowing the IV4XR framework to detect inconsistencies or problems when tested with

the JAVA tool command scripts.

The API server can also be used to retrieve tables of readings with meta-information from

Livesite projects which can then be analysed by the IV4 framework.

The meta and readings can be downloaded in JSON, XML and raw formats.

For basic integration, the IV4XR framework detected some obvious errors automatically, for

example values out of range or missing readings.

Monitoring projects typically run for months or years. The sensor monitoring server executes

maintenance tasks over defined periods during the lifecycle of the project, including backups,

updating reports, generating alarms etc.

The top layer has been designed to be an additional task which can run alongside the other

maintenance tasks, providing a near real-time verification system.

The top layer generates tasks which create agents. Each agent has a set of specific goals, such

as verifying a particular sensor's output, or the equation of a sensor, or the settings for a group

of connected sensors.

This gives an advantage in that we can control the relative complexity of tasks, and not worry

about overloading the system with database requests if such tests were run during periods of

intense activity (which can occur in test type2)

Each task is executed when the server iterates over the projects in its management cycle, which

is typically between every minute or every few minutes depending on the project requirements.

The task is given a script and access to the relevant project settings/data, so the script can

execute entirely independently of any other scripts, allowing easier parallel processing.

The script generates the agents which execute the tests for the specified goal, and then

generates output.

Fig. High level script example to test a project

PROJECT CANNING_TOWN
[SENSORS]
TEST CONFIGS
TEST EQUATIONS

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 19

[READINGS]
TEST THRESHOLDS
TEST SANITY
TEST JITTER
TEST DEVICES
TEST EQUATIONS
[DIAGNOSTICS]
TEST ERRORS

Testing equations for the sensors, as part of the full integration, requires parsing and sorting the
sensors iteratively and combining test results in a stack. This is due to the fast that sensor
equations depend on other sensors, and there maybe various inter-dependences.
The system resolves these until either all are determined valid or omissions remain.

Sensor equations that are invalid may include references to sensors which do not exist,
references to themselves, or invalid trigonometric terms.

Simple sensor equation example:
 LVDT_PIER_5=LVDT1+LDVT2

This sensor equation shows that the overall displacement of Pier 5 is the sum of the sensors
LVDT1 and LDVT2. If either of the missing from the project the equation is invalid.

More complex sensor equation example:
 LVDT_PIER_5=SIN(ROT1)*LDVT2

This sensor equation shows that the overall displacement of Pier 5 uses the sine of the value of
ROT1 sensor multiplied by LDVT2

Example of error output

PROJECT CANNING_TOWN
 ERROR LVDT1 EQUATION MISSING SENSOR LVDT3
 ERROR LDVT1 CALIBRATION MISSING
 CHECK LDVT1 THRESHOLDS

The output contains errors found, as well as requests for further tests. This allows concurrent
testing to be done in a hierarchical manner, and also gives the advantage that the system can
identify a possible failure even before all subsequent tests are completed.

The device error shown below indicates a problem is occuring on a particular device, more

detail will be available after further tests have been run in subsequent tasks, but the engineers

know that readings from the device may be invalid and should be ignored until this is verified.

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 20

The hierarchical task and goal approach also allows testing to be adjusted in terms of accuracy,

as well as grouping of errors.

Multiple flat-lines over a period of hours or weeks, as shown below, indicate some kind of

general problem with communication with the sensor, and it's clearer to see an overview like

this, than a long list of individual errors.

Testing against years of historical data, with adjusting granularity in time, allows simple

overviews of a sensor's state to be determined also, without having to go through all the

readings for a particular sensor (of which there could be millions).

Monitoring projects typically save snapshots of readings at various time intervals, such as every

minute, as well as every second, or fraction thereof, to minimise database reads when looking

back over the data. One may want to see the data for a week overall, in which case looking at

readings every 1/100 second is not necessary.

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 21

The hierarchical task testing strategy also allows visualisation of the key issues at any point. At

a glance, it is obvious where the problems are on the project as shown below, as the sensor has

been marked amber due to excessive vibrations.

The hierarchical testing enables the exact start/endpoint of problems to be identified without

requiring full linear search of all the readings in a project, as a tree-based approach is used, with

each iteration down reading data with finer granularity.

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 22

6.4 MULTI-SITES

Many engineering monitoring projects are so complex the site is broken down into sub-sites,

each of which have their own hosting server which connects to the sensors for that area.

We used the same hierarchical approach for these types of complex sites, to trigger initial

agents for each sub-site, each of which can then further analyse the sensors at that sub-site.

Simple summaries of errors are then made available, highlighting problems at each sub-site.

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 23

6.5 FULL INTEGRATION FOR TEST TYPE 2 - TRAIN MOVING OVER STRUCTURE

The hierarchical approach for test case type 1 is equally valid for trains moving over structures.

For this type of project, the frequency of readings of sensor data is typically increased when the

train is detected moving over the bridge, so vibrations and behaviour can be monitored more

closely until the train exits the bridge.

For this case our test script is triggered with normal mode, or detail mode, depending on

whether the train is on the bridge. In detail mode, the vibrations are checked as a priority,

whereby in normal mode, the scripts trigger agents similar to the fixed structure, to verify the

overall state of the system and look for errors in sensors and sensor relationships.

Detecting excessive displacements along sections of a bridge is shown below.

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 24

6.6 FURTHER WORK

So far, all testing has been performed on mirrors of actual monitoring servers, to ensure no

disruption to actual monitoring systems happened whilst testing.

The JAVA tool can detect simple sensor errors such as flatlines, jitter, missing values,

calibration errors, as well as more complex errors such as formula-based readings being invalid

due to one or more errors in any sensor which is used by the formulae.

The agents created can request further tests in more (time-based) detail, as well as record such

errors detected so far.

The JAVA tool cannot at present detect errors which could possibly happen in the future due to

trends in the data at present. (for instance if a vibration was getting consistently stronger over a

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 25

period of time, it could possibly exceed a threshold X days from now, so an advanced warning

could be given, rather than waiting for the problem to happen)

We are looking at adding trend-analysis into the tool so that we can spot these kinds of errors.

This would help with any kind of monitoring where small changes are occurring over time which

are not obvious from graphical readouts, or due to the duration of the changes.

Although tasks are given to the JAVA tool in a hierarchical manner, sometimes a sub-task is a

more intensive/time-consuming task than the parent task which requested it (such as checking

readings for a sensor every second, instead of every minute).

For this reason we are looking at enhancing how tasks can be broken down, terminated after

partial completion, and then restarted, and cancelled. If a sensor is deemed to be invalid for

some reason (such as no power going to the hub to which the sensor is connected), checking

the sensor in more detail is a waste of bandwidth.

Ensuring tasks take a smaller portion of time means they will be less likely to overload the

database with queries, and makes it possible to launch more of the tasks also.

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 26

7 CONCLUSIONS

This deliverable has presented the progress of WP5 and discussed the full integration of the

pilots with the framework. Full integration has been defined as a state at which all relevant

features of the pilot system are exposed to the automated testing agents. Each of the pilots

have achieved this and some preliminary results of experimentation using the interface has

been presented here.

Crucially however, is that while the interfaces expose all essential information, some of the

information is not structured optimally for would-be writers of test agents. Therefore the dialogue

between the developers and the users continues as quality of life features are added.

The interfaces and development progress discussed here are available on the github page10 for

the project.

10 https://github.com/iv4xr-project

https://github.com/iv4xr-project

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 27

A1 SPACE ENGINEERS PLUGIN USER MANUAL

This manual will get you started with using Space Engineers11 with the iv4XR framework. A

continuously updated copy of this information, and all the code/binaries/assets that are referred

herein are located at the repository on github12. For more information on the iv4XR project,

please refer to iv4xr-project.eu13.

1.1 INTRODUCTION

Space Engineers is a sandbox game by Keen Software House. This project is a plugin for the

game which enables its integration with the iv4XR testing framework. The plugin runs a TCP/IP

server with JSON-RPC API. It allows access to the surrounding of the player's character in a

structured form, and to control the characters which are under control of the client. While this

plugin is intended to facilitate the intelligent testing of SE using agents, the plugin provides a

general purpose api that is suitable for many purposes.

The project also includes a fully-featured client in Kotlin14.

11 https://www.spaceengineersgame.com/
12 https://github.com/iv4xr-project/iv4xr-se-plugin
13 https://iv4xr-project.eu/
14 https://github.com/iv4xr-project/iv4xr-se-plugin/tree/main/JvmClient

https://www.spaceengineersgame.com/
https://github.com/iv4xr-project/iv4xr-se-plugin
https://iv4xr-project.eu/
https://github.com/iv4xr-project/iv4xr-se-plugin/tree/main/JvmClient
https://github.com/iv4xr-project/iv4xr-se-plugin/tree/main/JvmClient

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 28

1.2. HOW TO RUN THE GAME WITH THIS PLUGIN

It's not necessary to build anything to try out this plugin. This section describes how to do it.

1. Obtain the binary release of Space Engineers (buy it on Steam or get a key). Install the

game.

2. Obtain a binary release of the plugin. Look for the releases15 section in the repository

and for assets of the chosen release. Download the three DLL libraries.

1. If you want the latest changes or you'd like to edit the code, you can also build it

from the sources (even if you don't have the Space Engineers source code), see

the section How to build below.

3. IMPORTANT: Make sure Windows is OK to run the libraries. Windows 10 blocks user

downloaded libraries by default. To unblock them, right-click each of them and open

file properties. Look for the “Security “section on the bottom part of the General tab. You

might see a message: "This file came from another computer and might be blocked...". If

so, check the Unblock checkbox. If you skip this step, the game will probably crash with

a message: System.NotSupportedException: An attempt was made to load an assembly

from a network location...

4. Obtain other libraries as described in the section 3rd Party Dependencies below.

5. Put the plugin libraries (and their dependencies) into the folder with the game binaries. A

common location is C:\Program Files

(x86)\Steam\steamapps\common\SpaceEngineers\Bin64. Tip: You can put the libraries

into a subfolder (such as ivxr-debug). Or, it can be a symbolic link to the build folder of

the plugin project. In that case, you must prefix the name of each library with ivxr-debug\

in the following step.

6. Right-click on the game title in the Steam library list and open its properties window.

Click on the Set launch options... button. Add the option “-plugin” followed by the

location of the main plugin library. Library dependencies will be loaded automatically –

just make sure they are in the same folder or some other searched location. The

resulting options line should look something like this: “-plugin Ivxr.SePlugin.dll”.

7. Run the game. (If the game crashes, make sure you've seen step 3.)

8. Start a scenario.

9. If the plugin works correctly, a TCP/IP server is listening for JSON-RPC calls on a fixed

port number. (The current development version uses the port number 3333.) Another

sign of life is a log file present in user's app data folder such as:

C:\Users\<username>\AppData\Roaming\SpaceEngineers\ivxr-plugin.log

1.2.1 3RD PARTY DEPENDENCIES

Apart from the game libraries, the plugin requires two additional libraries to run:

● AustinHarris.JsonRpc.dll, which in turn requires:

15 https://github.com/iv4xr-project/iv4xr-se-plugin/releases

https://github.com/iv4xr-project/iv4xr-se-plugin/releases
https://github.com/iv4xr-project/iv4xr-se-plugin/releases

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 29

● Newtonsoft.Json.dll

There are many ways to obtain the libraries. The library DLLs are also a part of the releases

page of the repository, but another method is to build them yourself:

● Check-out the JSON-RPC.NET master branch on GitHub16.

○ Side note: The binary releases are not updated (compared to NuGet packages),

but the last release v1.1.7417 works as well. You can try it if the master branch

does not.

● Build the solution including the test project (tested with Visual Studio 2019).

● You will find the AustinHarris.JsonRpc.dll library in this path: Json-

Rpc\bin\Debug\netstandard2.0

● And the Newtonsoft.Json.dll library in this path:

AustinHarris.JsonRpcTestN\bin\Debug\netcoreapp3.0

Note: If you build the project from the sources as described in the section How to Build, the

libraries are downloaded via NuGet packages in the same way.

1.3 HOW TO BUILD

First of all, you don't have to build it from sources. The steps above allow you to download the

official binary releases which are updated every so often. If you wish to obtain the absolute

latest features, then follow these instructions.

The plug-in requires Space Engineers libraries to compile. There are two ways to provide the

libraries: as binaries (DLLs) or as sources. Both options are described below.

The resulting plug-in (a couple of .NET libraries) works with the official Steam version of Space

Engineers without any modification of the game.

We are developing the plugin using source dependencies; therefore, it is necessary to perform a

few steps to switch to binary dependencies: 1.) provide the library binaries and 2.) switch the

references to those binaries. We assume you have installed the official release of the game

from Steam.

1. Obtain the Space Engineers libraries. Locate the script copydeps.bat in the

BinaryDependencies directory.

1. If you have your Steam installation of Space Engineers in the default path, then

just run the script and the binaries will be copied to the directory. The default path

is C:\Program Files (x86)\Steam\steamapps\common\SpaceEngineers\Bin64.

2. If you have SE in some other path, provide this path as the first argument to the

script. (Or copy the libraries listed in the script manually.)

16 https://github.com/Astn/JSON-RPC.NET
17 https://github.com/Astn/JSON-RPC.NET/releases/tag/v1.1.74

https://github.com/Astn/JSON-RPC.NET
https://github.com/Astn/JSON-RPC.NET
https://github.com/Astn/JSON-RPC.NET/releases/tag/v1.1.74
https://github.com/Astn/JSON-RPC.NET/releases/tag/v1.1.74

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 30

2. Switch references from project dependencies to binary ones. You can do it

manually, or you can apply (cherry-pick) a commit pointed to by the branch binary-deps-

switch. (Currently it's commit fa7c536f57, but it can change as we rebase it on newer

history.)

3. Open the solution and build it. Find the VS solution file Iv4xrPluginBinaryDeps.sln in

the Solutions folder. It's just a solution containing only the plugin projects, not the SE

projects – the switch to the binaries has to be done in each of the projects, as described

in the previous step. Open the solution and build it. You can then run the game with the

plugin as described above.\\\\\

1.4 API

The network protocol is based on JSON-RPC 2.018. JSON-RPC messages are separated by

newlines, TCP is used as the transport layer. The protocol (individual API) is now more stable

than in the beginning of the development, but it's still possible it will change as we learn new

things.

For an up to date list of provided API calls see the interfaces ISpaceEngineers19 and

ISpaceEngineersAdmin20 in the project Ivxr.SpaceEngineers.

You can also check out the JvmClient for a client side implementation of the interface in Kotlin

and examples how to use it. See also the Usage Example section below.

1.4.1 ARCHITECTURE OVERVIEW

Overview of the solution projects:

● Ivxr.SePlugin – The main plugin project. Contains most of the important logic. It is

one of the plugin libraries, the main one.

○ See the project details below.

● Ivxr.SePlugin.Tests – Unit tests for the main project.

● Ivxr.PlugIndependentLib – Contains service code that is entirely independent of

the Space Engineers codebase for services such as the logging interface, and classes

for configuration and the JSON-RPC library

● Helpers – A utilities project which contains mock servers which run a TCP/IP server

based on the infrastructure from the two main libraries and using some simple mock

implementations of the classes which would normally depend on a running game.

18 https://www.jsonrpc.org/specification
19 https://github.com/iv4xr-project/iv4xr-se-
plugin/blob/main/Source/Ivxr.SpaceEngineers/ISpaceEngineers.cs
20https://github.com/iv4xr-project/iv4xr-se-
plugin/blob/main/Source/Ivxr.SpaceEngineers/ISpaceEngineersAdmin.cs

https://www.jsonrpc.org/specification
https://www.jsonrpc.org/specification
https://github.com/iv4xr-project/iv4xr-se-plugin/blob/main/Source/Ivxr.SpaceEngineers/ISpaceEngineers.cs
https://github.com/iv4xr-project/iv4xr-se-plugin/blob/main/Source/Ivxr.SpaceEngineers/ISpaceEngineersAdmin.cs
https://github.com/iv4xr-project/iv4xr-se-plugin/tree/main/JvmClient
https://github.com/iv4xr-project/iv4xr-se-plugin/tree/main/JvmClient

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 31

1.4.2 PROJECT DETAILS: IVXR.SEPLUGIN

List of notable classes – top level:

● IvxrPlugin – Entry point of the plugin, implements the game's IPlugin interface.

● IvxrSessionComponent – Inherits from game's MySessionComponentBase which

allows the component to hook the plugin into game events such as

UpdateBeforeSimulation called each timestep of the game.

● IvxrPluginContext – Root of the dependency tree of the plugin, constructs all the

important objects.

Notable sub-namespaces (and the solution sub-folders):

● Control – Interfacing with the game: Obtaining observations and controlling the

character. Notable classes:

○ Dispatcher – The command hub.

○ CharacterController – Self-explanatory.

○ Observer – Extracts observations from the game.

○ SessionController – Session control such as loading a saved game.

● JSON – A wrapper around the JSON providers .

● Navigation - Classes to support the automated navigation of the agent around grids.

1.5 SPACE ENGINEERS ENGINE INFORMATION

This section describes how the SE engine and usints work within the game, in this section we

will go over sizes, positions, movement, blocks, and multiple characters. A continuously updated

version of this document can be found on the github repository page here21. The API listing that

will be referred to in this section can be found here22.

1.5.1 UNITS AND POSITION

● One big block size is 2.5 game meters. Some vectors are sent in meters, some are sent

in "cubes".

● Block size (Block.size) is in large cubes so for example a 1x1x1 large block is 2.5 x

2.5 x 2.5 meters.

● Use the enum CubeSize and/or the constants LARGE_BLOCK_CUBE_SIDE_SIZE,

SMALL_BLOCK_CUBE_SIDE_SIZE for conversions.

● 5 small blocks to one big block. (So a small block cube is 0.5x0.5x0.5 meters.)

● The engineer character can fit into space of 2x3x2 in small blocks (1x1.5x1 meters),

however the size in the code is 1x1.8x1.

21 https://github.com/iv4xr-project/iv4xr-se-plugin/tree/main/JvmClient
22 https://iv4xr-project.github.io/iv4xr-se-plugin/index.html

https://github.com/iv4xr-project/iv4xr-se-plugin/tree/main/JvmClient
https://iv4xr-project.github.io/iv4xr-se-plugin/index.html
https://iv4xr-project.github.io/iv4xr-se-plugin/space-engineers-api/spaceEngineers.model/-cube-size/index.html
https://iv4xr-project.github.io/iv4xr-se-plugin/space-engineers-api/spaceEngineers.model/-cube-size/index.html
https://iv4xr-project.github.io/iv4xr-se-plugin/space-engineers-api/spaceEngineers.model/-l-a-r-g-e_-b-l-o-c-k_-c-u-b-e_-s-i-d-e_-s-i-z-e.html
https://iv4xr-project.github.io/iv4xr-se-plugin/space-engineers-api/spaceEngineers.model/-l-a-r-g-e_-b-l-o-c-k_-c-u-b-e_-s-i-d-e_-s-i-z-e.html
https://iv4xr-project.github.io/iv4xr-se-plugin/space-engineers-api/spaceEngineers.model/-s-m-a-l-l_-b-l-o-c-k_-c-u-b-e_-s-i-d-e_-s-i-z-e.html
https://iv4xr-project.github.io/iv4xr-se-plugin/space-engineers-api/spaceEngineers.model/-s-m-a-l-l_-b-l-o-c-k_-c-u-b-e_-s-i-d-e_-s-i-z-e.html
https://iv4xr-project.github.io/iv4xr-se-plugin/space-engineers-api/spaceEngineers.model/-s-m-a-l-l_-b-l-o-c-k_-c-u-b-e_-s-i-d-e_-s-i-z-e.html

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 32

● The position of character is at its bottom, the camera is not. The offset vector between

the bottom of the character and the camera is: (x=0, y=1.6369286, z=0). Use the

Character.DISTANCE_CENTER_CAMERA constant (or you can use the difference

between position and camera position).

● Block position is always between minPosition and maxPosition, but it doesn't

always have to be in the center of the block (or sometimes it's identical to

minPosition). To locate the center of the block, use the midway point between

minPosition and maxPosition (or the extension function centerPosition).

1.5.2 CHARACTER AND CAMERA ORIENTATION

● Character forward vector is identical to the camera forward vector - when moving to a

side, both forward vectors are changed.

● Character up vector differs from the camera up vector when walking. Imagine a

character moving his head to look up rather than whole body.

● When the jetpack is on, up vectors are identical. Imagine a character rotating whole

body to look up.

● This works for 3d person camera mode, unknown for other modes.

● There is a possibility to move the camera around the character. What is happening with

internal variables is not explored.

1.5.3 BASIC MOVEMENT API

● The Method moveAndRotate accepts a movement vector. The vector represents a

direction.

● It's value defines the type of movement based on the speed. If it's less than 0.4, it is slow

movement. If less than or equal to 1.6, it is walking. If over 1.6, it is sprinting. This is

relevant when actually walking (ex. not using the jetpack).

● Use the convenience extension methods normalizeAsWalk, normalizeAsRun,

normalizeAsSprint to adjust the vector size to your needs.

● Check CharacterMovementType for more information and to check constants.

● There is also movement while in crouch.

1.5.4 MOVEMENT TYPES AND SPEED

There are other movement types for Space Engineers, so this is not a full list of possibilities.

Following table describes differences between movements and their speeds.

https://iv4xr-project.github.io/iv4xr-se-plugin/space-engineers-api/spaceEngineers.controller/-character/-companion/-d-i-s-t-a-n-c-e_-c-e-n-t-e-r_-c-a-m-e-r-a.html
https://iv4xr-project.github.io/iv4xr-se-plugin/space-engineers-api/spaceEngineers.controller/-character/-companion/-d-i-s-t-a-n-c-e_-c-e-n-t-e-r_-c-a-m-e-r-a.html
https://iv4xr-project.github.io/iv4xr-se-plugin/space-engineers-api/spaceEngineers.controller/-character/-companion/-d-i-s-t-a-n-c-e_-c-e-n-t-e-r_-c-a-m-e-r-a.html
https://iv4xr-project.github.io/iv4xr-se-plugin/space-engineers-api/spaceEngineers.model.extensions/center-position.html
https://iv4xr-project.github.io/iv4xr-se-plugin/space-engineers-api/spaceEngineers.model.extensions/center-position.html
https://iv4xr-project.github.io/iv4xr-se-plugin/space-engineers-api/spaceEngineers.controller/-character/move-and-rotate.html
https://iv4xr-project.github.io/iv4xr-se-plugin/space-engineers-api/spaceEngineers.controller/-character/move-and-rotate.html
https://iv4xr-project.github.io/iv4xr-se-plugin/space-engineers-api/spaceEngineers.model/-character-movement-type/index.html
https://iv4xr-project.github.io/iv4xr-se-plugin/space-engineers-api/spaceEngineers.model/-character-movement-type/index.html

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 33

Movement type Max speed

(m/s)

Movement vector

threshold

Crouch walk 2 ?

Walk 3 0.4 <

Run 6 1.6 <=

Sprint 10 1.6 >

Jetpack 110 ?

1.5.5 CONTINUOUS MOVEMENT

Calling moveAndRotate will behave in a similar fashion as a single keyboard stroke. To keep

moving, the command has to be sent repeatedly, behaving as a key constantly being pressed.

This is quite inconvenient for the code and not very deterministic since commands are sent

rapidly over TCP without any kind of time synchronization.

For that reason, moveAndRotate has a ticks parameter with the default value of 1, which

determines the number of ticks for the command to be active (equivalent to the key being

pressed). One second has 60 ticks. To stop the movement preemptively before the specified

number of ticks elapses, call moveAndRotate with 0 ticks (or supersede the movement by

sending a new command).

This movement is quite deterministic when repeating exactly the same scenario with exact

positions and movement values. Sometimes the values are slightly off however, especially when

the scenario is loaded for the first time.

1.5.6 BLOCKS

Blocks are a core concept in the game. Some data and behaviour is documented to avoid

confusion. Some of these concepts are based on observations and are not verified by code so if

you find inconsistencies in anything, please raise an issue23.

23 https://github.com/iv4xr-project/iv4xr-se-plugin/issues

https://iv4xr-project.github.io/iv4xr-se-plugin/space-engineers-api/spaceEngineers.controller/-character/move-and-rotate.html
https://iv4xr-project.github.io/iv4xr-se-plugin/space-engineers-api/spaceEngineers.controller/-character/move-and-rotate.html
https://github.com/iv4xr-project/iv4xr-se-plugin/issues

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 34

1.5.6.1 DEFINITIONID, ID

The Block type itself is a unique combination of id and type (now represented by the

DefinitionId class). Blocks are the same type, if they have the same DefinitionId.

Created block instances have their own ID (this is a different id from the block DefinitionId).

This ID is a supposedly unique random integer. The current implementation exposes an internal

block ID, and the exact guarantees of uniqueness are not currently known – we expect it to be

unique at least within the grid, hopefully within the whole scenario – please report any collisions.

1.5.6.2 BLOCK-SPECIFIC INSTANCE PROPERTIES

Basic properties that are common for all block types are defined in the interface Block. In this

sense, we are talking about mutable properties, which can have different values for every

instance of a block (such as position or integrity).

Some blocks have extra properties related to their functionality. For example, all door blocks

have a boolean opened property. Doors in combination with use functionality can allow the

client to open a door and check the door state.

Generators have a property which represents output, etc. Functional and Terminal blocks are

very common.

When calling via the JSON API, you always get an instance of Block, but if blocks have extra

properties, it will be a subclass with these extra properties. The returned list is polymorphic and

each block has an instance depending on its type. You can use standard Java/Kotlin keywords

like instanceof or is to check for subclasses and cast. Check PolymorphicBlocksTest

for a Kotlin example.

The class hierarchy is not flat. You can explore the whole block hierarchy using the

Definitions.BlockHierarchy API, which returns relations between blocks. Subclassing is

done only for classes which have extra properties. Otherwise, only Block is returned (or very

often FunctionalBlock or TerminalBlock). Information about class hierarchy and what

classes will be used for different blocks is also cached in src/jvmMain/resources directory

as JSON files.

If there is a property or a block type functionality missing in the API, and you'd like it to be

added, please file an issue to let us know.

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 35

1.5.6.3 DEFINITIONS

Each block type has its own definition properties, which contains basic immutable properties

shared among all blocks of the same type. To list all available definitions, call

Definitions.BlockDefinitions. Individual properties are documented in the code of

BlockDefinition class.

1.5.6.4 SMALL VS LARGE CUBE BLOCKS

Most of the blocks are cube blocks, which have cube size 1x1x1. Cube blocks can be small or

big. Small blocks have 0.5 meters. Big blocks have 2.5 meters, so 5 times bigger, 125 small

blocks fit into one big block.

Large blocks usually have the Large prefix, their small counterparts have the Small prefix.

1.5.6.5 TARGETING A BLOCK

When trying to grind a block down or weld it up, there are a few things to keep in mind:

● CharacterObservation has the property targetBlock. This property is not null

only if there is currently a block in front of the character in close range and the cursor is

pointing directly at it.

● Different grinders and welders have different ranges so distance from the block matters

for different tools.

● Sometimes targeting is not as simple as walking up to the block. The cursor has to

directly target the model and if the model has for example hollow places (like with an

open door), if you point at the hollow space, you are not targeting the block. This is

especially tricky when trying to target blocks automatically via a script.

● In rare cases targeting the block model doesn't work either (which can happen with the

models for wheels), and it requires some moving around. This appears to be a glitch in

the game.

One way to fix this targeting issue is to try to move the cursor around a bit until targetBlock

is the desired block. Another approach is to try to use mount points. Each block has mount

points, which are areas that can be used to connect to other blocks. Getting to the position of

the mount point has a higher chance of that part being solid and flat and to successfully target

the block. Iterating over all mount points increases the chance even further. This still doesn't

guarantee success in all cases, but works for most. There are extension methods to calculate

mount point positions and orientations of blocks such as

mountPointToRealWorldPosition.

https://iv4xr-project.github.io/iv4xr-se-plugin/space-engineers-api/spaceEngineers.controller/-definitions/block-definitions.html
https://iv4xr-project.github.io/iv4xr-se-plugin/space-engineers-api/spaceEngineers.controller/-definitions/block-definitions.html
https://iv4xr-project.github.io/iv4xr-se-plugin/space-engineers-api/spaceEngineers.controller/-definitions/block-definitions.html
https://iv4xr-project.github.io/iv4xr-se-plugin/space-engineers-api/spaceEngineers.model/-character-observation/target-block.html
https://iv4xr-project.github.io/iv4xr-se-plugin/space-engineers-api/spaceEngineers.model/-character-observation/target-block.html
https://iv4xr-project.github.io/iv4xr-se-plugin/space-engineers-api/spaceEngineers.model.extensions/mount-point-to-real-world-position.html
https://iv4xr-project.github.io/iv4xr-se-plugin/space-engineers-api/spaceEngineers.model.extensions/mount-point-to-real-world-position.html
https://iv4xr-project.github.io/iv4xr-se-plugin/space-engineers-api/spaceEngineers.model.extensions/mount-point-to-real-world-position.html

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 36

1.5.6.6 USING BLOCKS

A block can have multiple useObjects – active parts that can do something when used. For

instance, it can be a chair, on which you can sit. But door blocks have both the door

themselves, and a terminal. Button blocks can have up to 4 buttons and each button is different.

Information about block's use objects is in the useObjects property.

It is possible to "use" blocks by emulating the "F" key in the game. To do that, use the

Character.Use API call.

This requires that the cursor is pointing exactly at the active part of the block to work. If there's

an active use object, it will be in CharacterObservation.TargetUseObject.

There is currently no reliable way to point at specific use objects, but there is also an admin

command that allows activating the useObjects of blocks without the need to precisely target

them. Admin.Character.Use

1.5.6.7 COMPOUND BLOCKS

Building some blocks actually doesn't build a single block, but a pair of blocks that are tightly

bound together. They behave as normal 2 separate blocks.

If block A spawns blocks A and B together, trying to build block B by itself either:

● Doesn't work at all.

● Spawns only block B.

At least how it was tested so far.

That is normal game behaviour. When placing a block programmatically using the admin

command placeAt, only a single block is created and it is therefore possible to place these

secondary blocks alone, even though it is not possible normally.

1.5.7 WELDING AND GRINDING

Using different welders and grinders produces different results. They have different speeds and

reaches. Below is a formula that tries to help with determining grinding/welding speed.

https://iv4xr-project.github.io/iv4xr-se-plugin/space-engineers-api/spaceEngineers.model/-block/use-objects.html
https://iv4xr-project.github.io/iv4xr-se-plugin/space-engineers-api/spaceEngineers.model/-block/use-objects.html
https://iv4xr-project.github.io/iv4xr-se-plugin/space-engineers-api/spaceEngineers.controller/-character/use.html
https://iv4xr-project.github.io/iv4xr-se-plugin/space-engineers-api/spaceEngineers.controller/-character/use.html
https://iv4xr-project.github.io/iv4xr-se-plugin/space-engineers-api/spaceEngineers.controller/-character/use.html
https://iv4xr-project.github.io/iv4xr-se-plugin/space-engineers-api/spaceEngineers.model/-character-observation/target-use-object.html
https://iv4xr-project.github.io/iv4xr-se-plugin/space-engineers-api/spaceEngineers.model/-character-observation/target-use-object.html
https://iv4xr-project.github.io/iv4xr-se-plugin/space-engineers-api/spaceEngineers.controller/-character-admin/use.html
https://iv4xr-project.github.io/iv4xr-se-plugin/space-engineers-api/spaceEngineers.controller/-character-admin/use.html

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 37

SHARED CONSTANTS:

ToolCooldownMs = 250

Welder SpeedMultiplier DistanceMultiplier

Welder 1 1

Welder2 1.5 1.2

Welder3 2 1.4

Welder4 5 1.6

WELDER_AMOUNT_PER_SECOND = 1 - This is a constant

WelderSpeedMultiplier = 2 - This is the default value. It is configurable in the scenario

between 0.5 and 5

Final formula:

WeldingSpeed = WelderSpeedMultiplier * SpeedMultiplier *

WELDER_AMOUNT_PER_SECOND * ToolCooldownMs / 1000.0

ANGLE GRINDER CONSTANTS AND FORMULA

Grinder SpeedMultiplier DistanceMultiplier

AngleGrinder 1 1

AngleGrinder2 1.5 1.2

AngleGrinder3 2 1.4

AngleGrinder4 5 1.6

GRINDER_AMOUNT_PER_SECOND = 2 - This is a constant

GrinderSpeedMultiplier = 2 - This is the default value. It is configurable in the scenario

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 38

Final formula:

GrindingSpeed = GrinderSpeedMultiplier * SpeedMultiplier *

GRINDER_AMOUNT_PER_SECOND * ToolCooldownMs / 1000.0

1.5.8 ADVANCED/PLUGIN CUSTOMIZATION - ADDING NEW BLOCK-SPECIFIC FIELDS

Since the code is polymorphic and everything is static on the code level, we generate the code

based on configuration and source files. All the code is generated by

BlockMappingGeneratorRunner, and it generates both the code for C# side and Kotlin side.

It generates classes for Block, BlockDefinitions and their mappings and serializers.

Generating blocks and block definitions are very similar, defining fields and interfaces is the

same for both.

Mappings for the Block interface is written manually on the C# side and not generated,

because we often manually retrieve data and convert to different structures. Mappings for

BlockDefinitions are done automatically, because we expect it to be simple field pass.

A few tips:

● Commit or stash your changes so that you can easily revert changes in case generated

code does not compile.

● If the code doesn't compile after running the generator, find out why, fix, revert the code,

then run the generator again.

BASE INTERFACE

To add new field to the Block interface:

● Add the field to the commonBlockFields variable in BlockMappingGenerator.

● Run the generator.

● Add the field to the Block interface itself.

POLYMORPHIC BLOCKS

To add or modify a polymorphic block type:

● Add/modify a record in spaceEngineers.controller.blockMappings

● Run the generator.

1.5.9 MULTIPLE CHARACTERS

Most of the plugin commands by default control the main local character, which is also bound to

the camera and input controls. It is possible to add more characters into the game by using

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 39

Admin.Character.Create. To switch between characters, use

Admin.Character.Switch, passing the character ID. The main character ID is always se0.

A few points:

● This feature is a bit experimental, there may be glitches and unexpected behaviour,

please file an issue if you run into anything.

● The toolbar is shared between characters.

● Only the main character can place blocks normally (but any character can place blocks

through admin commands).

COMMANDS UNAFFECTED BY CHARACTER SWITCH

● Session.LoadScenario

● Observer.TakeScreenshot

● Blocks.Place (always places for the main character - use

Admin.Blocks.PlaceInGrid / PlaceAt to place blocks for other characters)

1.6 PLUGIN EXAMPLES

The plugin can be used either directly or via the iv4XR framework with minor changes. The JVM

client written in Kotlin directly uses the APl of the plugin to effect changes in the game. The

plugin itself is also integrated into the iv4XR framework to be used by external agents and

systems such as TESTAR. This section has a couple of annotated examples in Kotlin using the

different methods. These examples can be found in the repository2425.

Using the iv4XR framework:

package spaceEngineers.iv4xr

import environments.SeAgentState
import environments.SeEnvironment
import eu.iv4xr.framework.mainConcepts.TestAgent
import eu.iv4xr.framework.mainConcepts.TestDataCollector
import eu.iv4xr.framework.spatial.Vec3
import nl.uu.cs.aplib.AplibEDSL.SEQ
import nl.uu.cs.aplib.mainConcepts.GoalStructure
import org.junit.jupiter.api.Disabled
import org.junit.jupiter.api.Test
import spaceEngineers.controller.*
import spaceEngineers.controller.SpaceEngineers.Companion.DEFAULT_AGENT_ID
import spaceEngineers.iv4xr.goal.GoalBuilder
import spaceEngineers.iv4xr.goal.TacticLib
import spaceEngineers.model.ToolbarLocation
import kotlin.test.assertTrue

24 https://github.com/iv4xr-project/iv4xr-se-plugin/blob/main/JvmClient/src/jvmTest/kotlin/spaceEngineers/game/BasicUsageTest.kt
25 https://github.com/iv4xr-project/iv4xr-se-plugin/blob/main/JvmClient/src/jvmTest/kotlin/spaceEngineers/iv4xr/BasicIv4xrTest.kt

https://github.com/iv4xr-project/iv4xr-se-plugin/blob/main/JvmClient/src/jvmTest/kotlin/spaceEngineers/game/BasicUsageTest.kt
https://github.com/iv4xr-project/iv4xr-se-plugin/blob/main/JvmClient/src/jvmTest/kotlin/spaceEngineers/iv4xr/BasicIv4xrTest.kt

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 40

class BasicIv4xrTest {

 @Disabled("Disabled for building whole project, enable manually by uncommenting.")
 @Test
 fun placeGrindDownTorchUp() {
 // Setup constants to use later.
 val agentId = DEFAULT_AGENT_ID //agent id
 val blockType = "LargeHeavyBlockArmorBlock" // Block type that we will operate with (it's a cube block).
 val context = SpaceEngineersTestContext() // This context saves recent information about operations (for
example last built blocks and all the observations).
 val blockLocation = ToolbarLocation(1, 0) // We will put the block here in the toolbar.
 val l welder = "Welder2Item" // We will use this welder.
 val welderLocation = ToolbarLocation(2, 0) // We will put the welder here in the toolbar.
 val grinder = "AngleGrinder2Item" // We will use this grinder.
 val grinderLocation = ToolbarLocation(3, 0) // We will put the grinder here in the toolbar.
 // We map the position of the block in the toolbar.
 context.blockTypeToToolbarLocation[blockType] = blockLocation
 // We create an instance of the SpaceEngineers interface. ContextControllerWrapper is a "smarter"
implementation that saves recent information into the context created above.
 // Otherwise, JsonRpcSpaceEngineersBuilder.localhost(agentId) can be used directly (also SpaceEngineers
interface implementation).
 val controllerWrapper =
 ContextControllerWrapper(
 spaceEngineers = JsonRpcSpaceEngineersBuilder.localhost(agentId),
 context = context
)

 // We create the iv4xr environment and pass the ID of the world (scenario to load).
 val theEnv = SeEnvironment(
 controller = controllerWrapper,
 worldId = "simple-place-grind-torch-with-tools",
)

 // Creating IV4XR related classes.
 val dataCollector = TestDataCollector()

 val myAgentState = SeAgentState(agentId = agentId)

 // Assemble agent.
 val testAgent = TestAgent(agentId, "some role name, else nothing")
 .attachState(myAgentState)
 .attachEnvironment(theEnv)
 .setTestDataCollector(dataCollector)

 val goals = GoalBuilder()
 val tactics = TacticLib()
 // Create goals and tactics.
 val testingTask: GoalStructure = SEQ(
 goals.agentAtPosition(Vec3(532.7066f, -45.193184f, -24.395466f), epsilon = 0.05f),
 goals.agentDistanceFromPosition(
 Vec3(532.7066f, -45.193184f, -23.946253f),
 distance = 16f,
 epsilon = 0.1f,
 tactic = tactics.moveForward(),
),
 goals.blockOfTypeExists(
 blockType,
 tactic = tactics.buildBlock(blockType),
),

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 41

 goals.lastBuiltBlockIntegrityIsBelow(
 percentage = 0.1,
 tactic = SEQ(
 tactics.equip(grinderLocation),
 tactics.sleep(500),
 tactics.startUsingTool(),
),
),
 goals.alwaysSolved(
 tactic = SEQ(
 tactics.endUsingTool(),
 tactics.sleep(500),
),
),
 goals.lastBuiltBlockIntegrityIsAbove(
 percentage = 1.0,
 tactic = SEQ(
 tactics.equip(welderLocation),
 tactics.sleep(500),
 tactics.startUsingTool(),
),
),
 goals.alwaysSolved(
 tactic = SEQ(
 tactics.endUsingTool(),
),
),
)

 testAgent.setGoal(testingTask)

 // We load the scenario.
 theEnv.loadWorld()
 // Setup block in the toolbar.
 controllerWrapper.items.setToolbarItem(blockType, blockLocation)
 // Setup welder in the toolbar.
 controllerWrapper.items.setToolbarItem(welder, welderLocation)
 // Setup grinder in the toolbar.
 controllerWrapper.items.setToolbarItem(grinder, grinderLocation)
 Thread.sleep(500)

 // We observe for new blocks once, so that current blocks are not going to be considered "new".
 theEnv.observeForNewBlocks()

 // Run the agent and update in the loop.
 var i = 0
 while (testingTask.status.inProgress() && i <= 1500) {
 testAgent.update()
 println("*** $i, ${myAgentState.wom.agentId} @${myAgentState.wom.position}")
 i++
 }

 // Print results.
 testingTask.printGoalStructureStatus()
 testingTask.subgoals.forEach { assertTrue(it.status.success()) }
 }
}

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 42

Using the iv4XR framework as a plugin by external agents:

The TESTAR tool is a FTAs focus on exploring the virtual environment, it generates test

sequences of (state,action)-pairs by connecting to the SE system in its initial state and

continuously selecting an action to bring the SUT in another state and check oracles. Deliverable

3.3 - 2nd prototype of Functional Test Agents (FTAs) contains more details about TESTAR.

TESTAR integrates the iv4XR framework as a Java plugin26 to be able to connect and launch SE

levels27, obtain the information of the observable entities and their properties to create the

TESTAR State28, and execute TESTAR actions29 to interact with the SE environment.

package eu.testar.iv4xr.se;

import spaceEngineers.controller.ContextControllerWrapper;
import spaceEngineers.controller.JsonRpcSpaceEngineers;
import spaceEngineers.controller.JsonRpcSpaceEngineersBuilder;
import spaceEngineers.controller.SpaceEngineersTestContext;
import uuspaceagent.UUSeAgentState;

…

public class SpaceEngineersProcess extends SUTBase {

…

private SpaceEngineersProcess(String path, boolean processListenerEnabled) {
 Assert.notNull(path);

 // regex to split checking last space
 String[] parts = path.split(" (?!.*)");

 // If SUTConnectorValue is not correct throw an informative error
 if(parts.length < 1 || parts.length > 2) {
 settingsConnectorError();
 }

 // Prepare SUTConnectorValue parts to launch SpaceEngineers and launch the desired level
 String launchPart = parts[0].trim();
 String levelPath = "";
 if(parts.length == 2) {
 levelPath = parts[1].replace("\"", "");
 }

 // Launch and connect with SpaceEngineers
 launchSpaceEngineers(launchPart, processListenerEnabled);

26 https://github.com/iv4xr-project/TESTAR_iv4xr/tree/v3.2/testar/lib
27 https://github.com/iv4xr-project/TESTAR_iv4xr/blob/v3.2/iv4XR/src/eu/testar/iv4xr/se/SpaceEngineersProcess.java
28 https://github.com/iv4xr-
project/TESTAR_iv4xr/blob/v3.2/iv4XR/src/eu/testar/iv4xr/se/SeStateFetcher.java

29 https://github.com/iv4xr-
project/TESTAR_iv4xr/blob/v3.2/iv4XR/src/eu/testar/iv4xr/actions/se/commands/seActionCommandPlace
Block.java

https://github.com/iv4xr-project/TESTAR_iv4xr/tree/v3.2/testar/lib
https://github.com/iv4xr-project/TESTAR_iv4xr/blob/v3.2/iv4XR/src/eu/testar/iv4xr/se/SpaceEngineersProcess.java
https://github.com/iv4xr-project/TESTAR_iv4xr/blob/v3.2/iv4XR/src/eu/testar/iv4xr/se/SeStateFetcher.java
https://github.com/iv4xr-project/TESTAR_iv4xr/blob/v3.2/iv4XR/src/eu/testar/iv4xr/se/SeStateFetcher.java
https://github.com/iv4xr-project/TESTAR_iv4xr/blob/v3.2/iv4XR/src/eu/testar/iv4xr/actions/se/commands/seActionCommandPlaceBlock.java
https://github.com/iv4xr-project/TESTAR_iv4xr/blob/v3.2/iv4XR/src/eu/testar/iv4xr/actions/se/commands/seActionCommandPlaceBlock.java
https://github.com/iv4xr-project/TESTAR_iv4xr/blob/v3.2/iv4XR/src/eu/testar/iv4xr/actions/se/commands/seActionCommandPlaceBlock.java

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 43

 Util.pause(5);

 if(!win.isRunning()) {
 throw new SystemStartException(String.format("ERROR trying to connect with SE iv4xr SUT : %s", launchPart));
 }

 /**
 * Start IV4XR SUT at WOM level
 */
 try {
 // Prepare SpaceEngineers Controller
 JsonRpcSpaceEngineers seRpcController = JsonRpcSpaceEngineersBuilder.Companion.localhost(characterControllerId);
 Util.pause(2);
 System.out.println("Welcome to the SE iv4XR test: " + launchPart);

 // Load Space Engineers Level
 if(!levelPath.isEmpty()) {
 seRpcController.getSession().loadScenario(new File(levelPath).getAbsolutePath());
 Util.pause(10);
 System.out.println("Loaded level: " + levelPath);
 }

 // Create UU state grid
 UUSeAgentState stateGrid = new UUSeAgentState(characterControllerId);
 // Prepare UU agent
 SpaceEngineersTestContext context = new SpaceEngineersTestContext();
 ContextControllerWrapper controllerWrapper = new ContextControllerWrapper(seRpcController, context);
 // WorldId is empty because we are going to connect to a running level, not load a new one
 SeEnvironment sEnv = new SeEnvironment("", controllerWrapper, context);
 // Finally create the TestAgent
 TestAgent testAgent = new SeAgentTESTAR(characterControllerId, "explorer").attachState(stateGrid).attachEnvironment(sEnv);

 this.set(IV4XRtags.windowsProcess, win);
 this.set(Tags.PID, win.pid());
 this.set(IV4XRtags.iv4xrSpaceEngRpcController, seRpcController);
 this.set(IV4XRtags.iv4xrSpaceEngCharacter, seRpcController.getCharacter());
 this.set(IV4XRtags.iv4xrSpaceEngItems, seRpcController.getItems());
 this.set(IV4XRtags.iv4xrTestAgent, testAgent);

 } catch(Exception e) {
 System.err.println(String.format("EnvironmentConfig ERROR: Trying to connect with %s", launchPart));
 System.err.println(e.getMessage());
 win.stop();
 throw new SystemStartException(e);
 }
 iv4XR = this;
}

package eu.testar.iv4xr.se;

import spaceEngineers.controller.JsonRpcSpaceEngineers;
import spaceEngineers.controller.Observer;
import spaceEngineers.model.CubeGrid;
import spaceEngineers.model.Observation;
import spaceEngineers.model.Block;
import spaceEngineers.model.CharacterObservation;
…

public class SeStateFetcher extends IV4XRStateFetcher {

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 44

…

/**
 * Create an Array tree of elements that later becomes the Widget-tree.
 * Use the Space Engineers Rpc Controller to extract the Agent and Blocks information from the WOM.
 * Every instant of time the Agent will observe himself and the Blocks if these are in close range.
 */
@Override
protected IV4XRRootElement fetchIV4XRElements(IV4XRRootElement rootElement) {
 // Get the controller attached to the SE system (SpaceEngineersProcess)
 JsonRpcSpaceEngineers seRpcController = system.get(IV4XRtags.iv4xrSpaceEngRpcController);

 // Check that TESTAR it can observe the SE system
 Observer seObserver = seRpcController.getObserver();
 if(seObserver == null) {
 throw new StateBuildException("SE Agent Oberver is null! Exception trying to fetch the State of iv4XR SpaceEngineers");
 }

 // Get the Character and Blocks observation that we use to create the element tree
 CharacterObservation seObsCharacter = seRpcController.getObserver().observe();
 Observation seObsBlocks = seRpcController.getObserver().observeBlocks();

 // If the agent observes himself and in this instant of time also has observation of blocks
 if(seObsCharacter != null && seObsBlocks != null && seObsBlocks.getGrids() != null && seObsBlocks.getGrids().size() > 0) {
 // Add manually the Agent as an Element (Observed Blocks + 1)
 rootElement.children = new ArrayList<IV4XRElement>((int) seObserver.observeBlocks().getGrids().size() + 1);
 rootElement.zindex = 0;
 fillRect(rootElement);

 // Create the Agent as element of the tree, because always exists as a Widget
 SEagent(rootElement, seObsCharacter);

 // If the Agent observes blocks create the elements blocks tree
 if(seObsBlocks.getGrids().size() > 0) {
 for(CubeGrid seCubeGrid : seObsBlocks.getGrids()) {
 SEGridDescend(rootElement, seCubeGrid);
 }
 }
 }
 // If agent observes himself but in this instant has NO observation of blocks
 else if (seObsCharacter != null) {
 // Add manually the Agent as an Element (Observed Entities + 1)
 rootElement.children = new ArrayList<IV4XRElement>(1);

 rootElement.zindex = 0;
 fillRect(rootElement);
 SEagent(rootElement, seObsCharacter);
 } else {
 System.err.println("ERROR: No Agent and no BLOCKS in the current Observation");
 }
return rootElement;
}

/**
 * Based on the Space Engineers CharacterObservation, extract the agent properties to
 * create an element inside the fetched tree.
 *
 * @param parent
 * @param seObsCharacter
 * @return agent Element

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 45

 */
private IV4XRElement SEagent(IV4XRElement parent, CharacterObservation seObsCharacter) {
 IV4XRElement childElement = new IV4XRElement(parent);
 parent.children.add(childElement);
 childElement.zindex = parent.zindex +1;

 childElement.agentPosition = new Vec3(seObsCharacter.getPosition().getX(), seObsCharacter.getPosition().getY(),
seObsCharacter.getPosition().getZ());
 childElement.seAgentPosition = seObsCharacter.getPosition();
 childElement.seAgentOrientationForward = seObsCharacter.getOrientationForward();
 childElement.seAgentOrientationUp = seObsCharacter.getOrientationUp();
 childElement.seAgentHealth = seObsCharacter.getHealth();

 childElement.entityVelocity = new Vec3(seObsCharacter.getVelocity().getX(), seObsCharacter.getVelocity().getY(),
seObsCharacter.getVelocity().getZ());
 childElement.entityId = system.get(IV4XRtags.iv4xrSpaceEngRpcController).getAgentId();
 childElement.entityType = "AGENT";

 fillRect(childElement);
 return childElement;
}

/**
 * Based on the Space Engineers blocks Observation, extract the CubeGrid properties to
 * create a grid element inside the fetched tree.
 * Then extract the Block that are children of these CubeGrid.
 *
 * @param parent
 * @param seCubeGrid
 * @return CubeGrid element with Block children
 */
private IV4XRElement SEGridDescend(IV4XRElement parent, CubeGrid seCubeGrid) {
 IV4XRElement childElement = new IV4XRElement(parent);
 parent.children.add(childElement);
 childElement.zindex = parent.zindex +1;

 childElement.entityPosition = new Vec3(seCubeGrid.getPosition().getX(), seCubeGrid.getPosition().getY(),
seCubeGrid.getPosition().getZ());
 childElement.entityId = seCubeGrid.getId();
 childElement.entityType = seCubeGrid.getId().replaceAll("[0-9]","").replaceAll("\\s+","");

 fillRect(childElement);

 for(Block seBlock : seCubeGrid.getBlocks()) {
 SEBlockDescend(childElement, seBlock);
 }

 return childElement;
}

/**
 * Extract the Block properties to create a block element inside the fetched tree.
 *
 * @param parent
 * @param seBlock
 * @return Block element
 */
private IV4XRElement SEBlockDescend(IV4XRElement parent, Block seBlock) {
 IV4XRElement childElement = new IV4XRElement(parent);
 parent.children.add(childElement);
 childElement.zindex = parent.zindex +1;

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 46

 childElement.entityPosition = new Vec3(seBlock.getPosition().getX(), seBlock.getPosition().getY(), seBlock.getPosition().getZ());
 childElement.entityId = seBlock.getId();
 childElement.entityType = seBlock.getDefinitionId().getType();

 childElement.seBuildIntegrity = seBlock.getBuildIntegrity();
 childElement.seIntegrity = seBlock.getIntegrity();
 childElement.seMaxIntegrity = seBlock.getMaxIntegrity();
 childElement.seMaxPosition = seBlock.getMaxPosition();
 childElement.seMinPosition = seBlock.getMinPosition();
 childElement.seOrientationForward = seBlock.getOrientationForward();
 childElement.seOrientationUp = seBlock.getOrientationUp();
 childElement.seSize = seBlock.getSize();

 fillRect(childElement);
 return childElement;
}
}

package eu.testar.iv4xr.actions.se.commands;

import spaceEngineers.model.ToolbarLocation;
…

public class seActionCommandPlaceBlock extends seActionCommand {

…

public seActionCommandPlaceBlock(Widget w, String agentId, String blockType){
 this.agentId = agentId;
 this.blockType = blockType;
 this.set(Tags.OriginWidget, w);
 this.set(Tags.Role, iv4xrActionRoles.iv4xrActionCommandInteract);
 this.set(Tags.Desc, toShortString());
}

@Override
public void run(SUT system, State state, double duration) throws ActionFailedException {
 spaceEngineers.controller.Items seItems = system.get(IV4XRtags.iv4xrSpaceEngItems);
 spaceEngineers.controller.JsonRpcSpaceEngineers seRpcController = system.get(IV4XRtags.iv4xrSpaceEngRpcController);

 seItems.setToolbarItem(blockType, ToolbarLocation.Companion.fromIndex(1, 2));
 seItems.equip(ToolbarLocation.Companion.fromIndex(1, 2));
 seRpcController.getBlocks().place();
}

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 47

Using the API directly

package spaceEngineers.game

import org.junit.jupiter.api.Disabled
import spaceEngineers.controller.JsonRpcSpaceEngineersBuilder
import spaceEngineers.controller.SpaceEngineers.Companion.DEFAULT_AGENT_ID
import spaceEngineers.controller.loadFromTestResources
import spaceEngineers.model.DefinitionId
import spaceEngineers.model.Vec3F
import spaceEngineers.model.extensions.allBlocks
import testhelp.SIMPLE_PLACE_GRIND_TORCH
import kotlin.test.Test
import kotlin.test.assertEquals
import kotlin.test.assertTrue

class BasicUsageTest {

 /**
 * This scenario:
 * - Teleports the character to a location.
 * - Creates a block there using the admin placeAt function and checks the results.
 * - Removes the block again using admin remove and checks that the block is gone.
 */
 @Disabled("Disabled for building whole project, enable manually by uncommenting.")
 @Test
 fun placeBlock() {
 // We create a SpaceEngineers interface that connects to the local Space Engineers game.
 val context = JsonRpcSpaceEngineersBuilder.localhost(DEFAULT_AGENT_ID)
 with(context) {
 // We load the testing scenario.
 session.loadFromTestResources(SIMPLE_PLACE_GRIND_TORCH)
 // Create the ID of the block that we are gonna build.
 val blockDefinitionId = DefinitionId.cubeBlock("LargeBlockSmallGenerator")
 val z = 1000
 // We teleport the character to a specific location and orientation.
 admin.character.teleport(Vec3F(0, 0, z + 15), Vec3F.FORWARD, Vec3F.UP)
 // We observe for new blocks to ensure all the existing blocks won't be "new" anymore.
 observer.observeNewBlocks()
 // We place a block.
 val blockId =
 admin.blocks.placeAt(blockDefinitionId, Vec3F(0, 0, z + 0), Vec3F.FORWARD, Vec3F.UP)
 // We observe for new blocks.
 val block = observer.observeNewBlocks().allBlocks.first()
 // We expect block to be there and to have all the expected properties:
 assertEquals(block.id, blockId)
 assertEquals(block.definitionId.type, block.definitionId.type)
 assertTrue(observer.observeBlocks().allBlocks.any { it.definitionId.type == blockDefinitionId.type })
 assertEquals(12065.0f, block.integrity)
 assertEquals(block.maxIntegrity, block.integrity)
 // We remove the block.
 admin.blocks.remove(block.id)
 // We expect the block to be removed now.
 assertTrue(observer.observeBlocks().allBlocks.none { it.definitionId.type == blockDefinitionId.type })
 }
 }
}

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 48

A2 NUCLEAR PLANT INTRUSION SIMULATION USER MANUAL

2.1 INTRODUCTION

For confidential reasons, just the code of the plugin of the pilot could be uploaded on GitHub

and the user manual, that will be described below, concerns only the preliminary tests of the

connections to the pilot through this plugin without going into detail concerning the functioning of

the CGF MAEV.

The IT resources used to carry out the tests are as follows:

● EFBox : VM « TTSOSNV3DDEV09P » under Windows 7

● PIW-Server 4.5.10, PIW-RPC 13.2.0 (with patch)

2.2 TESTS PROCEDURE

1. Via the PIW tool, with a "PTF-CEI-Standalone" platform containing a resource with the

type "STANDALONE", install and select the assembly :

→ "assy-TF-IV4XR" (It contains the project assembly "assy-TF-IV4XR")

2. Run the script "D:\PLTFPIW\ProgramFiles\SystemConfigEnv_TF_Standalone.bat" to

prepare the test environment (FRSH, "SimonServers" plastron, etc.).

Then launch the script " D:\PLTFPIW\ProgramFiles\Start_CONF_Standalone.bat ".

3. The CONF application launches and presents the following system resources:

4. Create a preparation session named "PREP".

Choose the "IOSM" resource Two types of resources are reserved: "PREP IOSC" and

"Presentation".

The session is launched. The following applications are launched:

The "PREP" profile GUI is loaded.

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 49

The result is as shown in the picture below:

The HLA federates are as follows:

5. Load the scenario: "iv4XR_3.scen".

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 50

6. Do "Run" then "Freeze".

The result is as shown in the image below:

7. The menus are as shown in the images below:

8. Via the CONF HMI, select the "EXEC" session and click the "Delete" button. All

applications will stop.

9. Create an execution session named "EXEC".

Select the "IOSC" resource. A resource type is reserved: "Learning".

The session starts. The following applications are launched:

No HLA or GUI federation is started: only the core CGF is used.

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 51

10. Select in the "Port" list the choice "11005: CGF" then click on the "Open Socket" button.

Select "COMMON" in the list on the left, then on the "GetVersion" command and click

on "Send".

Continue to select "COMMON" in the list on the left, then on the "GetIcdVersion"

command and click on "Send".

Note: the HCI_Tester is not delivered with the TF-IV4XR, it must be retrieved from the

reference TF-ENVEX.

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 52

11. Load the scenario "iv4XR_3.scen" via HCI_Tester :

12. Press "Play":

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 53

13. Use the "GetSynchronizationPoint" command:

14. Connect to AIEngine via the DDBSocket using port 8080 and send a move command:

Command used:

{"cmd":"AGENTCOMMAND","arg":{"cmd":"MOVETO","agentId":2,"arg":{"x":137801.0,"y":

441553.0,"z":0.0,"p":1.0}}}

D5.3 – Full Integration of the Pilots

WP5-D5.3 iv4XR 54

15. Wait a few seconds and return the same move order.

The entity has moved and is now detected (""isDetected": "true"").

It also detects entities ("entities" is not empty).

16. Via the CONF GUI, select the "EXEC" session and click on the "Delete" button.

All applications stop.

