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There are still lots of opportunities to improve smali b

molecule force fields even at low levels of physics EX%

e Simple and effective functional forms have been in D,
use for 30+ years

e We can still improve these force fields with better
chemical perception, better optimization
techniques, and better training datasets

Bonded interactions

e This is a large undertaking!

e \arious groups have been working on improving OQ'
o0

these force fields for decades

Nonbonded interactions

www.openforcefield.org .—@

Figure adapted from Riniker S J. Chem. Inf. Model. 2018, 58, 3, 565-578




SOFTWARE - DATA - SCIENCE:
Rapidly facilitating force field science!

OPEN SOFTWARE OPEN DATA OPEN SCIENCE
Automated infrastructure Access to large, high Exploring new force field
enables rapid quality experimental and science:
experimentation with quantum chemical data hypothesis - build software
minimum human facilities easy curation of - train - test - iterate
intervention balanced train /teSt sets |S now almost routine

www.openforcefield.org ‘—@



We’re generating a series of force fields

e OpenFF force field progression since the Initiative’s inception

O+ O— 0O —

SMIRNOFF99Frosst Parsley Sage
Initial SMIRNOFF port Retrained valen_ce Retrained vdW Self consistent
parameters against parameters against biopolymer + small
of the parm99Frosst : . :
) a redesigned QC physical property molecule force field
force field .
data set data + retrained
valence parameters Additional physics, still

being finalized

www.openforcefield.org .—@
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What makes the Open Force Field Initiative different? &

Creating workflows for

Develop infrastructure to rapidly evaluate fragmenting and generating
the effect of parameters on physical QM data for torsions and
properties of interest other valence terms

Using chemical
RS o oo fores Distinguishing scientific
field parameters
elements of the Open Force
Field Initiative

Curate and generate experimental and QM
datasets for force field parameterization and
assessment

www.openforcefield.org .—@

Enabling the use of Bayesian inference
as a framework for making force field
science decisions




SMIRNOFF avoids atom typing and simplifies parameter assignment!

c N N c!
“3\”/\/\‘/“*‘ ; )k %5
o] o}

Atom 1 Atom 2 F
match bonds directly: [#6X4:1]-[#7X3:2]-[#6X3]=[#8X1+0]
Labeled Alpha Beta
bond carbon oxygen

Use of industry-standard SMARTS/SMIRKS chemical perception greatly simplifies tooling for parameter
assignment while solving issues with extensibility and flexibility.




Ditching “atom types” for SMIRKS (“parameter types”)

allows parameter simplification

But this should be

c 1 8606 0.0988 three SMIRKS strings
cs 1.8606 0.0988
ca 1.8606 0.0988
cc 1.8606 0.0988 [#6:1] 1.8606 0.0988
cd 1.8606 0.0988 [#6X1:1] 1.9525 0.1596

For example, GAFF?2 ce 1.8606 0.0988 [#6X3r3,#6X3r4:1] 1.9069 0.1078
of 1.8606 0.0988

has 16 vdW types for cp 1.8606 0.0988

carbon cq 1.8606 0.0988

¢z 1.8606 0.0988 Very relevant when
cu 1.8606 0.0988 . ,
ov 18606 0.0988 attempting to automatically
cg 1.9525 0.1596 fit parameters — are there
ch 1.9525 0.1596 32 parameters here, or 67
CoX 1.9069 0.1078

cy 1.9069 0.1078




Why all these atom types? The larger issue is more

fundamental

Atom typing discards bond order, but we
need bond order for parameter assignments

 With knowledge of which bonds are single,
double, aromatic, have formal charges, etc.,
parameter assignment is straightforward

 Without it, atom types must “carry” bond order
information, which is almost impossible to do in
general

* SMIRKS force fields handle this seamlessly




SMIRNOFF allowed significant compression of

smirnoff99Frosst, our AMBER-lineage starting point

Lines of

Description Force Field parameters /" Chemical Space Coverage

Basic Amber FF: parm99 720 smirnoff  parm
Merck Frosst small mol: parm@Frosst 2893 Database 99Frosst @Frosst

“Total: (36133 S 5
DrugBank 99.7% 60%
ZINC 99.8% 52%

' eMolecules 99.5% -

smirnoff99Frosst @
e Less than 1/10 the size of the original force field B N

e Removes redundancy

e Almost completely covers pharmaceutical chemical space

Chris Bayly  Caitlin Bannan




BENCHMARK ASSESSMENT OF MOLECULAR ENERGIES AND

GEOMETRIES WITH RESPECT TO QM DATA!

1. Geometry optimization: Molecular geometries are optimized 2. Energy comparison: The ddE for some conformer iis
with various FFs starting from the same QM geometry. calculated relative to the conformer with the lowest QM
energy (0) for different force fields:

GAFF Smirnoff99Frosst
GAFF2 \ Parsley 5 : s «
(ull 353 ‘ MMFF94 MMFF94S zow i 120
E -

0
ddE (kcal/mol)

3. Geometry comparison: Geometry is evaluated through root- 4. ddE vs TFD plots: Compare high density regions of
mean-square deviation (RMSD) and torsion fingerprint energy vs. geometry data. A perfect match between FF and
deviation (TFD)2. QM would result with all points at (0, 0).

Parsley counts
30
Torsion 624 | 661 | 1928 | 3566 | 778 614 TFD uses GaUSSian'Weighted 20 4 E 5000 ) )
weight | 069 | 100 | 069 | 023 [ 00a | o0s . . _ S e 4000 There is not a direct
J x a_differences of torsion angles H relationship between the
between two conformations and g o .
b i dent of 5 2000 accuracy in geometry and the
maly el mor.e mf ep<tan fn © ol 1000 accuracy in relative energies.
molecu .ar Size T0r structure . . , ‘ .
comparison purposes. o0 0z 04 06 08

TFD C J

1. 2. 3. 4. Victoria Lim



We’ve been doing automated benchmarking in collaboration

with our industry partners

e OpenFF 2.0.0 showed excellent performance when benchmarked against the Public

OpenFF Industry Benchmark Season 1 versus 1.x

200001 —— GAFF 2.11 + AM1BCC 20000 - T GAFF2.11 + AM1BCC
T ez — opentr130
| —— OpenFF 1.3.0 — 3.
15000 2 15000 —
g [ — OpenfF 2.0.0-rc.1 S OpenFF 2.0.0-rc.1
o [}
= 10000 A g_ 10000 4
o o 1
@ & |
ﬂ: I
5000 5000 A :
I
I
0 T T T T T T T 0 T T T ll T T T
0.0 0.5 1.0 15 2.0 2.5 3.0 -15 -10 -5 0 5 10 15
RMSD (A) ddE (kcal/mol)
25000 —— GAFF 2.11 + AM1BCC
-~ OpenFF 1.2.0
> 20000 —— OpenFF 1.3.0
@] H —— OpenFF 2.0.0-rc.1
C
@ 15000 1 |
I . .
O
& 10000 { | Energies at B3LYP-D3B(BJ) / DZVP basis set
I
5000 { |
|
0 .

T T T T u
0.0 0.1 0.2 0.3 0.4 0.5

TFD
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Our work showed that we should train OpenFF 2.0.0 “Sage”

LJ parameters against liquid mixtures

® Mixture properties (binary densities, enthalpies of mixing) have advantage over traditional training

sets (density, AHvap)

® Improved data availability
® Better for capturing diverse interactions
® |imited changes in molecular polarization

® Performed a pilot study over a subset of molecules
Binary Enthalpy Of Mixing (kJ/mol)

OpenFF 1.0.0 (Parsley) Pure Only Mixture Only
Y 25-
2 L} ol L}
© 2.0 o 1 il 1 '
2 ':\f..m Y [
g ¥ Al ‘ ) ‘ ik
GC) 1.04 " - ! J "
£ o5 5 - i 1 r& v i F
S 10 & 5
X - Alcohol/Ester _—
w —03 Alcohol/Ketone ‘ : "_""‘ A
0 1 2 0 1 2 0 1 2 Owen Madin  Simon Boothroyd
Simulated Value Simulated Value Simulated Value

www.openforcefield.org .—@



Validated improved Lennard-Jones parameters versus

solvation free energies.

Aqueous (n=78) Non-aqueous (n=347)
Mean Shift = -0.18 kcal/mol (-0.29, -0.07) Mean Shift = -0.07 kcal/mol (-0.1, -0.04)
. —==- OpenFF 1.3.0 —== OpenFF 1.3.0
Mean Shift Mean Shift

=== QpenFF 2.0.0 === QpenFF 2.0.0

Probability Density

e ml e e e o

2 -1 0 1 -2 -1 1
Shift in AGsoy absolute error (kcal/mol) Shift in AGso, absolute error (kcal/mol)

www.openforcefield.org




OpenFF 2.0.0 ( ) slightly improved results over OpenFF 1.0.0

( ) for protein ligand binding free energies

RMSE based on AAG in kcal/mol
Error bars are 95% ClI

OpenFF 2.0.0 (Sage) is generally
II ‘ ‘ ‘ ‘ ‘ slightly, but non-significantly better

2.5

N

1.

RMSE
w

—

0.

w

o

cmet egs cdk8 hif2a pfkfb3 shp2 tnks2
m pmx/OpenFF-1.0 Target
W pmx/OpenFF-1.2 Vytas Gapsys

B pmx/OpenFF-2.0RC1
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Next generation of OpenFF force fields

Rosemary (OpenFF 3.x) series:

e In early 2023

e First support of biopolymers (proteins)
e A number of other science goals:

e Refit electrostatics

e (Off-atom charge sites

www.openforcefield.org



COMING UP: for fully consistent small

molecule / biomolecule force fields

e If we have great small molecule force fields, it should be
possible to construct great biomolecule force fields.

e May require additional evaluation of torsional potentials that '
are perhaps overly general

e MORE importantly: How do we know if we have a good
protein force field?

e Establishing community benchmarks and experimental
datasets:

e NMR spin relaxation, chemical shifts, NOEs

e X-ray data from protein crystal simulations

www.openforcefield.org .—@




COMING UP: - AM1BCC charge model

currently being re-trained against QC and experimental data

Double-bonded oxygen /\) " ESP/EF
in a lactone or lactam
X 0 9
+ oo, T v N
. J o
< \ 33 '?°: RESP2 5=0.6 =
47 openff Mixture enthalpies Lily Wang Simon Boothroyd
i evaluator + densities
AM1BCC Ported to Integrate Into Fitting . . Testin
SMIRNOFF g Infrastructure g Training > 9
A majority of the ForceBalance and the Test fits being Benchmarking test
original AM1-BCC OpenFF Evaluator performed against a fits agalnst
parameters have extended to support co- combination of QC experlmental
been ported to optimising against QC ESP / EF data and solvation / transfer
SMIRNOFF and exp. data mixture exp. data free energy data

www.openforcefield.org




COMING UP:

enables new science

i
Fory
openff
toolkit

Hypothesis

» Software

Virtual site support
added to the
OpenFF toolkit.
Support for training
to QC ESP + EF
data in progress

The inclusion of off-
site charges should
improve the accuracy
of electrostatic
interactions

www.openforcefield.org

ESP/EF

O
O

Ce + '

HoN"~ >NH, HoN~" >NH,

O

RESP2 6=0.6

Trevor Gokey

»  Training

»  Testing

» Interoperability
Trained parameters
benchmarked against
experimental and
physical property data

Virtual sites will
be trained against
ESP /EF QC and
liquid simulations

Ensuring v-sites
are implemented
in a way that
major simulation
packages support




Describing chemical environments using

« Chemical environment is more complex
than can be described by strings

- Use convolutional graph neural nets to
describe the environment as vectors

« Then train to energies (or other
observables)

« STILL the same functional form, but
continuous parameters.

- Testing now to fit to AM1-BCC charges
- ESPALOMA proof-of-concept
« Chem. Sci., 2022, 13, 12016-12033

www.openforcefield.org

Stage 1: graph net continuous atom embedding

L
S "\@bstraction
— s
|

chemical graph

atom embeddings

topology graph

/’i’7l pooling

.,.\: NNo( (“FFFT ; O NNo(“TTT!; o) NN( 775 Onn)
= + = + : = + aaa

Stage 2: symmetry-preserving pooling

e

P -

NNo( (TTTT) 5 On) NNe(i“TT7!; Onn) NN( 7715 o)
torsion embeddings  angle embeddings bond embeddings
Stage 3: neural parametrization ‘ ), teed-tor
/—\’ {Kn, n=1,2,...} {Ke, 80} Ko} {e, s} {a}
xyz \ torsion parameters  angle parameters bond parameters atom parameters
h N v
'
Orr

geometry > energy — forces, trajectories, physical properties, ...

a0



Now Rapidly Approaching:

e Qrganic polymers that are fully small molecule compatible

e Surrogate modeling for fitting condensed phase properties

o Co-fitted water model

e Making the functional more complex in a data-driven manner

e Bayesian decision-making on complexity of models

www.openforcefield.org .—@



SUMMARY

Sage looks even better Automated benchmarking has We see community
than we expected! been a major focus and will point uptake, with and
the way forward. without our help

—— OpenFF 1.3.0
—— OpenFF TD OPT V1
—— OpenFF MS V1 TD OPT V1

New science and infrastructure
features coming up!

www.openforcefield.org .—@

01 02 03 0.4 05
TFD

New technology yields better starting
points and better force fields.




OpenFF tools are freely available for you to use

* All code, datasets, force fields available online at:

https://github.com/openforcefield o:,‘J-;o:
- Keep up to date with our progress and find tutorials: .'-'! %.{’
. open

https://openforcefield.org/ forcefield

* You can start fitting your own force fields with our tools today!
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