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Abstract There is some consensus among orthodox category theorists that the

concept of adjoint functors is the most important concept contributed to mathe-

matics by category theory. We give a heterodox treatment of adjoints using

heteromorphisms (object-to-object morphisms between objects of different cate-

gories) that parses an adjunction into two separate parts (left and right representa-

tions of heteromorphisms). Then these separate parts can be recombined in a new

way to define a cognate concept, the brain functor, to abstractly model the functions

of perception and action of a brain. The treatment uses relatively simple category

theory and is focused on the interpretation and application of the mathematical

concepts.

Keywords Category theory � Adjoint functors � Heteromorphism � Brain functors

Mathematics Subject Classification 18 � 92

1 Category Theory in the Life and Cognitive Sciences

There is already a considerable but widely varying literature on the application of

category theory to the life and cognitive sciences–such as the work of Rosen
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(1958, 2012) and his followers1 as well as Ehresmann and Vanbremeersch (2007)

and their commentators.2

The approach taken here is based on a specific use of the characteristic concepts

of category theory, namely universal mapping properties. One such approach in the

literature is that of François Magnan and Gonzalo Reyes which emphasizes that

‘‘Category theory provides means to circumscribe and study what is universal in

mathematics and other scientific disciplines.’’ (Magnan and Reyes 1994, p. 57).

Their intended field of application is cognitive science.

We may even suggest that universals of the mind may be expressed by means

of universal properties in the theory of categories and much of the work done

up to now in this area seems to bear out this suggestion....

By discussing the process of counting in some detail, we give evidence that

this universal ability of the human mind may be conveniently conceptualized

in terms of this theory of universals which is category theory. (Magnan and

Reyes 1994, p. 59)

Another current approach that emphasizes universal mapping properties (‘‘uni-

versal constructions’’) is that of Halford and Wilson (1980), Philips and Wilson

(2014), Philips (2014).

In addition to the focus on universals, the approach here is distinctive in the use

of heteromorphisms–which are object-to-object morphisms between objects if

different categories–in contrast to the usual homomorphisms or homs between

objects in the same category. By explicitly adding heteromorphisms to the usual

homs-only presentation of category theory, this approach can directly represent

interactions between the objects of different categories (intuitively, between an

organism and the environment). But it is still early days, and many approaches need

to be tried to find out ‘‘where theory lives.’’

2 The Ubiquity and Importance of Adjoints

Before developing the concept of a brain functor, we need to consider the related

concept of a pair of adjoint functors, an adjunction. The developers of category

theory, Saunders MacLane and Samuel Eilenberg, famously said that categories

were defined in order to define functors, and functors were defined in order to define

natural transformations (Eilenberg and MacLane 1945). A few years later, the

concept of universal constructions or universal mapping properties was isolated

(MacLane 1948; Samuel 1948). Adjoints were defined a decade later by Kan (1958)

and the realization of their ubiquity [‘‘Adjoint functors arise everywhere’’ (MacLane

1971, p. v)] and their foundational importance has steadily increased over time

(Lawvere 1969; Lambek 1981). Now it would perhaps not be too much of an

1 See Zafiris (2012), Louie (1985) and Louie and Poli (2011) and their references.
2 See Kainen (2009) for Kainen’s comments on the Ehresmann-Vanbremeersch approach, Kainen’s own

approach, and a broad bibliography of relevant papers.
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exaggeration to see categories, functors, and natural transformations as the prelude

to defining adjoint functors. As Steven Awodey put it:

The notion of adjoint functor applies everything that we have learned up to

now to unify and subsume all the different universal mapping properties that

we have encountered, from free groups to limits to exponentials. But more

importantly, it also captures an important mathematical phenomenon that is

invisible without the lens of category theory. Indeed, I will make the

admittedly provocative claim that adjointness is a concept of fundamental

logical and mathematical importance that is not captured elsewhere in

mathematics. (Awodey 2006, p. 179)

Other category theorists have given similar testimonials.

To some, including this writer, adjunction is the most important concept in

category theory. (Wood 2004, p. 6)

The isolation and explication of the notion of adjointness is perhaps the most

profound contribution that category theory has made to the history of general

mathematical ideas.’’ (Goldblatt 2006, p. 438)

Nowadays, every user of category theory agrees that [adjunction] is the

concept which justifies the fundamental position of the subject in mathematics.

(Taylor 1999, p. 367)

3 Adjoints and Universals

How do the ubiquitous and important adjoint functors relate to the universal

constructions? MacLane and Birkhoff succinctly state the idea of the universals of

category theory and note that adjunctions can be analyzed in terms of those

universals.

The construction of a new algebraic object will often solve a specific problem

in a universal way, in the sense that every other solution of the given problem

is obtained from this one by a unique homomorphism. The basic idea of an

adjoint functor arises from the analysis of such universals. (MacLane and

Birkhoff 1988, p. v)

We can use some old language from Plato’s theory of universals to describe those

universals of category theory (Ellerman 1988) that solve a problem in a universal or

paradigmatic way so that ‘‘every other solution of the given problem is obtained

from this one’’ in a unique way.

In Plato’s Theory of Ideas or Forms (eidg), a property F has an entity associated

with it, the universal uF , which uniquely represents the property. An object x has the

property F, i.e., F(x), if and only if (iff) the object x participates in the universal uF .

Let l (from leheni1 or methexis) represent the participation relation so
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‘‘x l uF’’ reads as ‘‘x participates in uF’’:

Given a relation l, an entity uF is said to be a universal for the property F (with

respect to l) if it satisfies the following universality condition:

for any x; x l uF if and only if FðxÞ:

A universal representing a property should be in some sense unique. Hence there

should be an equivalence relation (�) so that universals satisfy a uniqueness

condition:

if uF and u0F are universals for the same F; then uF � u0F :

The two criteria for a theory of universals is that it contains a binary relation l and

an equivalence relation � so that with certain properties F there are associated

entities uF satisfying the following conditions:

1. Universality condition: for any x, x l uF iff F(x), and

2. Uniqueness condition: if uF and u0F are universals for the same F [i.e., satisfy

(1)], then uF � u0F .

A universal uF is said to be non-self-predicative if it does not participate in itself,

i.e., :ðuF l uFÞ. A universal uF is self-predicative if it participates in itself, i.e.,

uF l uF .
3 For the sets in an iterative set theory (Boolos 1971), set membership is the

participation relation, set equality is the equivalence relation, and those sets are

never-self-predicative (since the set of instances of a property is always of higher

type or rank than the instances). The universals of category theory form the ‘‘other

bookend’’ as always-self-predicative universals. The set-theoretical paradoxes arose

from trying to have one theory of universals (‘‘Frege’s Paradise’’) where the

universals could be either self-predicative or non-self-predicative,4 instead of

having two opposite ‘‘bookend’’ theories, one for never-self-predicative universals

(set theory) and one for always always-self-predicative universals (category theory).

For the self-predicative universals of category theory (see MacLane and Birkhoff

1988 or MacLane 1971 for introductions), the participation relation is the uniquely-

factors-through relation. It can always be formulated in a suitable category as:

‘‘x l uF’’ means ‘‘there exists a unique arrow x) uF’’:

Then x is said to uniquely factor through uF , and the arrow x) uF is the unique

factor or participation morphism. In the universality condition,

for any x; x l uF if and only if FðxÞ;

3 A self-predicative universal for some property gives an impredicative definition of having that property.

See Louie and Poli (2011, p. 245) where a supremum or least upper bound is referred to as giving an

impredicative definition of being an upper bound of a subset of a partial order. Also Makkai (1999) makes

a similiar remark about the universal mapping property of the natural number system.
4 Then the universal for all the non-self-predicative universals would give rise to Russell’s Paradox since

it could not be self-predicative or non-self-predicative [Russell (2010, p. 80)].
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the existence of the identity arrow 1uF : uF ) uF is the self-participation of the self-

predicative universal that corresponds with FðuFÞ, the self-predication of the

property to uF . In category theory, the equivalence relation used in the uniqueness

condition is the isomorphism (ffi).

4 The Hom-Set Definition of an Adjunction

We will later use a specific heterodox treatment of adjunctions, first developed by

Pareigis (1970) and later rediscovered and developed by Ellerman (2007), which

shows that adjoints arise by gluing together in a certain way two universals (left and

right representations). But for illustration, we start with the standard Hom-set

definition of an adjunction.

The category Sets has all sets as objects and all functions between sets as the

homomorphisms so for sets a and a0, Hom a; a0ð Þ is the set of functions a! a0. In
the product category Sets� Sets, the objects are ordered pairs of sets a; bð Þ and
homomorphism a; bð Þ ! a0; b0ð Þ is just a pair of functions f ; gð Þ where f : a! a0

and g : b! b0.
For an example of an adjunction, consider the product functor � : Sets� Sets!

Sets which takes a pair of sets a; bð Þ to their Cartesian product a� b (set of ordered

pairs of elements from a and b) and takes a homomorphism f ; gð Þ : a; bð Þ ! a0; b0ð Þ
to f � g : a� b! a0 � b0 where for x 2 a and y 2 b, f � g : x; yð Þ �! f xð Þ; g yð Þð Þ.

The maps f : a! a0 in Sets go from one set to one set and the maps f ; gð Þ :
a; bð Þ ! a0; b0ð Þ in Sets� Sets go from a pair of sets to a pair of sets. There is also

the idea of a cone f ; g½ � : c! a; bð Þ of maps that is a pair of maps f : c! a and

g : c! b going from one set c (the point of the cone) in Sets to a pair of sets a; bð Þ
(the base of the cone) in Sets� Sets. Before the notion of a adjunction was defined

by Kan (1958), the product of sets a� b was defined by its universal mapping

property. The projection maps pa : a� b! a and pb : a� b! b define a canonical

cone pa; pb½ � : a� b! ða; bÞ that is universal in the following sense. Given any

other cone f ; g½ � : c! ða; bÞ from any set c to a; bð Þ, there is a unique

homomorphism f ; gh i : c! a� b in Sets such that the two triangles in the

following diagram commute.

In terms of the self-predicative universals considered in the last section, the

property in question is the property of being a cone f ; g½ � : c! ða; bÞ to a; bð Þ from
any set c. The canonical cone of projections pa; pb½ � : a� b! ða; bÞ is the self-

predicative universal for that property. The participation relation f ; g½ � l pa; pb½ � is
defined as ‘‘uniquely factoring through’’ (as in Fig. 1). The universal mapping

property of the product can then be restated as the universality condition: For any

cone f ; g½ � from any set to a pair of sets,

f ; g½ � l pa; pb½ � if and only if f ; g½ � is a cone to a; bð Þ:
UMP of a� b stated as a universality condition:

The Hom-set definition of the adjunction for the product functor uses the auxiliary

device of a diagonal functor to avoid mentioning the cones and to restrict attention
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only to the Hom-sets of the two categories. The diagonal functor D : Sets!
Sets� Sets in the opposite direction of the product functor just doubles everything

so D cð Þ ¼ c; cð Þ and D fð Þ ¼ f ; fð Þ. Then the product functor is said to be the right

adjoint of the diagonal functor, the diagonal functor is said to be the left adjoint of

the product functor, and the two functors together form an adjunction if there is a

natural isomorphism between the Hom-sets as follows:

HomSets�Sets D cð Þ; a; bð Þð Þ ffi HomSets c; a� bð Þ:
Hom-set definition of the adjunction between the product and diagonal functors:

The diagonal functor D : Sets! Sets� Sets also has a (rather trivial) UMP that can

be stated in terms of cones c! ða; bÞ except now we fix c and let a; bð Þ vary. There
is the canoncial cone 1c; 1c½ � : c! c; cð Þ and it is universal in the following sense.

For any cone f ; g½ � : c! a; bð Þ from the given c to any pair of sets a; bð Þ, there is a
unique homomorphism in Sets� Sets, namely f ; gð Þ : c; cð Þ ! a; bð Þ that factors
through the canonical cone c! c; cð Þ (Fig. 2).

This product-diagonal adjunction illustrates the general Hom-set definition.

Given functors F : X! A and G : A! X going each way between categories X

and A, they form an adjunction if there is a natural isomorphism (for objects X 2 X

and A 2 A):

HomA F Xð Þ;Að Þ ffi HomX X;G Að Þð Þ
Hom � set definition of an adjunction:

To further analyze adjoints, we need the notion of a ‘‘heteromorphism.’’

5 Heteromorphisms and Adjunctions

We have seen that there are two UMPs (often one is trivial like DðcÞ in the above

example) involved in an adjunction and that the object-to-object maps were always

Fig. 1 Universal mapping
property for the direct product of
sets

Fig. 2 Universal mapping
property for diagonal functor
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within one category, e.g., in the ‘‘Hom-sets’’ of one category or the other. Using

object-to-object maps between objects of different categories (properly called

‘‘heteromorphisms’’ or ‘‘chimera morphisms’’), the notion of an adjunction can be

factored into two representations [or ‘‘half-adjunctions’’ in Ellerman (2006, p.

158)], each of which expresses a universal mapping property.

We have already seen one standard example of a heteromorphism or het, namely

a cone f ; g½ � : c! a; bð Þ that goes from an object in Sets to an object in Sets� Sets.

The hets are contrasted with the homs or homomorphisms between objects in the

same category. To keep them separate in our notation, we will henceforth use single

arrows �! for hets and double arrows) for homs.5 Then the UMP for the product

functor can be represented as follows (Fig. 3).

It should be particularly noted that this het-formulation of the UMP for the

product does not involve the diagonal functor. If we associate with each c 2 Sets

and each a; bð Þ 2 Sets� Sets, the set Het c; a; bð Þð Þ of cones or hets f ; g½ � : c!
a; bð Þ then this defines a Het-bifunctor in the same manner as the usual Hom-

bifunctor HomSets a; a
0ð Þ or HomSets�Sets a; bð Þ; a0; b0ð Þð Þ [see the appendix for more

details]. Then the UMP for the product functor gives a natural isomorphism based

on the pairing: f ; g½ �7! f ; gh i, so that the Sets-valued functor Het c; a; bð Þð Þ is said to

be represented on the right by the Sets-valued HomSets c; a� bð Þ:

Het c; a; bð Þð Þ ffi HomSets c; a� bð Þ
Right representation of the hets c! a; bð Þ by the homs c) a� b:

The trivial UMP for the diagonal functor can also be stated in terms of the cone-hets

without reference to the product functor (Fig. 4).

This UMP for the diagonal functor gives a natural isomorphism based on the

pairing f ; gð Þ �! f ; g½ �, so the Sets-valued functor Het c; a; bð Þð Þ is said to be

represented on the left by the Sets-valued HomSets�Sets c; cð Þ; a; bð Þð Þ:

HomSets�Sets c; cð Þ; a; bð Þð Þ ffi Het c; a; bð Þð Þ
Left representation of the hets c! a; bð Þ by the homs c; cð Þ ) a; bð Þ:

Fig. 3 UMP for the product
functor

5 The hets between objects of different categories are represented as single arrows (!) while the

homomorphisms or homs between objects in the same category are represented by double arrows ()).

The functors between whole categories are also represented by single arrows (!). One must be careful

not to confuse a functor F : X! A from a categoryX to a categoryA with its action on an object X 2 X

which would be symbolized X �! FðXÞ. Moreover since a functor often has a canonical definition, there

may well be a canonical het X ! FðXÞ or X  F Xð Þ but such hets are no part of the definition of the

functor itself.
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Then the right and left representations of the hets Het c; a; bð Þð Þ can be combined to

obtain as a consequence the Hom-set definition of the adjunction between the

product and diagonal functors:

HomSets�Sets c; cð Þ; a; bð Þð Þ ffi Het c; a; bð Þð Þ ffi HomSets c; a� bð Þ
Heteromorphic presentation of the product-diagonal adjunction:

In the general case of adjoint functors F : X�A : G, the hets Het X;Að Þ from
objects X 2 X to objects A 2 A have left and right representations:

HomA F Xð Þ;Að Þ ffi Het X;Að Þ ffi HomX X;G Að Þð Þ
Heteromorphic presentation of a general adjunction:

This is the heterodox treatment of an adjunction first published by Pareigis

(1970, pp. 60–61) and later rediscovered and developed by Ellerman (2006, p. 130,

2007). It is ‘‘heterodox’’ since the morphisms between the objects of different

categories are not ‘‘officially’’ recognized in the standard presentations of category

theory (e.g., MacLane 1971 or Awodey 2006) even though such hets are a common

part of mathematical practice (see the appendix for further discussion). Hence the

standard Hom-set definition of an adjunction just deletes the Het-middle-term

Het X;Að Þ to obtain just the het-free or homs-only presentation of an adjunction.

The important advance of the heteromorphic treatment of an adjunction is that

the adjunction can be parsed or factored into two parts, the left and right

representations, each of which only involves one of the Hom-functors (Fig. 5).

Moreover, the diagrams for the two representations can be glued together at the

diagonal het&f into one diagram to give the simple adjunctive square diagram for

an adjunction (Fig. 6).

Every adjunction can be represented (up to isomorphism) in this manner

(Ellerman 2006, p. 147) so the molecule of an adjunction can be split into two

Fig. 4 UMP for the diagonal
functor

Fig. 5 Left and right representations each involving on one of the adjoints F and G
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atoms, each of which is a (left or right) representation of a Het-functor. This means

that the importance and ubiquity of adjunctions (emphasized above) also passes to

the atoms, left or right representations, that make up those molecules. Moreover, it

should be noted that each left or right representation defines a self-predicative

universal as indicated in the previous example of the het-cones c! a; bð Þ.
The main point of this paper is that those atoms, the left and right representations

can be recombined in a new way to define a ‘‘recombinant construction’’ cognate to

an adjunction, and that is the concept of a ‘‘brain functor.’’

6 Brain Functors

In many adjunctions, the important fact is expressed by either the left or right

representation (e.g., the UMP for the product functor or for the free-group functor

considered in the ‘‘Appendix’’), with no need for the ‘‘auxiliary device’’ (such as a

diagonal or forgetful functor) of the other representation used to express the

adjunction in a het-free manner.

Another payoff from analyzing the important but molecular concept of an

adjunction into two atomic representations is that we can then reassemble those

atomic parts in a new way to define the cognate concept speculatively named a

‘‘brain functor.’’

The basic intuition is to think of one category X in a representation as the

‘‘environment’’ and the other category A as an ‘‘organism.’’ Instead of represen-

tations within each category of the hets going one way between the categories (as in

an adjunction), suppose the hets going both ways were represented within one of the

categories (the ‘‘organism’’).

Intuitively, a het from the environment to the organism is say, a visual or auditory

stimulus. Then a left representation would play the role of the brain in providing the

re-cognition or perception (expressed by the intentionality-of-perception slogan:

‘‘seeing is seeing-as’’) of the stimulus as a perception of, say, a tree where the

internal re-cognition is represented by the homomorphism) inside the ‘‘organism’’

category (Fig. 7).

Perhaps not surprisingly, this mathematically models the old philosophical theme

in the Platonic tradition that external stimuli do not give knowledge; the stimuli only

trigger the internal perception, recognition, or recollection (as in Plato’s Meno) that

Fig. 6 Adjunctive square
diagram for the het-treatment of
an adjunction
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is knowledge. In De Magistro (The Teacher), the neo-Platonic Christian philosopher

Augustine of Hippo developed an argument (in the form of a dialogue with his son

Adeodatus) that as teachers teach, it is only the student’s internal appropriation of

what is taught that gives understanding.

Then those who are called pupils consider within themselves whether what has

been explained has been said truly; looking of course to that interior truth,

according to the measure of which each is able. Thus they learn,.... But men

are mistaken, so that they call those teachers who are not, merely because for

the most part there is no delay between the time of speaking and the time of

cognition. And since after the speaker has reminded them, the pupils quickly

learn within, they think that they have been taught outwardly by him who

prompts them. (Augustine, De Magistro, Chapter XIV)

The basic point is the active role of the mind in generating understanding

(represented by the internal hom). This is clear even at the simple level of

understanding spoken words. We hear the auditory sense data of words in a

completely strange language as well as the words in our native language. But the

strange words bounce off our minds, like @#$%̂, with no resultant understanding

while the words in a familiar language prompt an internal process of generating a

meaning so that we understand the words. Thus it could be said that ‘‘understanding

a language’’ means there is a left representation for the heard statements in that

language, but there is no such internal re-cognition mechanism for the heard

auditory inputs in a strange language.

Dually, there are also hets going the other way from the ‘‘organism’’ to the

‘‘environment’’ and there is a similar distinction between mere behavior (e.g., a

reflex) and an action that expresses an intention. Mathematically that is described by

dualizing or turning the arrows around which gives an acting brain presented as a

right representation (Fig. 8).

In the heteromorphic treatment of adjunctions, an adjunction arises when the hets

from one category X to another category A; HetðX;AÞ for X 2 X and A 2 A, have

a right representation, HetðX;AÞ ffi HomXðX;GðAÞÞ, and a left representation,

Fig. 7 Perceiving brain presented as a left representation
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HomAðFðXÞ;AÞ ffi HetðX;AÞ. But instead of taking the same set of hets as being

represented by two different functors on the right and left, suppose we consider a

single functor B(X) that represents the hets HetðX;AÞ on the left:

HetðX;AÞ ffi HomAðBðXÞ;AÞ;

and represents the hets HetðA;XÞ [going in the opposite direction] on the right:

HomAðA;BðXÞÞ ffi HetðA;XÞ:

If the hets each way between two categories are represented by the same functor

B(X) as left and right representations, then that functor is said to be a brain functor.

Thus instead of a pair of functors being adjoint, we have a single functor B(X) with

values within one of the categories (the ‘‘organism’’) as representing the two-way

interactions, ‘‘perception’’ and ‘‘action,’’ between that category and another one (the

‘‘environment’’). The use of the adjective ‘‘brain’’ is quite deliberate (as opposed to

say ‘‘mind’’) since the universal hets going each way between the ‘‘organism’’ and

‘‘environment’’ are part of the definition of left and right representations. In par-

ticular, it should be noted how the ‘‘turn-around-the-arrows’’ category-theoretic

duality provides a mathematical model for the type of ‘‘duality’’ between:

• sensory or afferent systems (brain furnishing the left representation of the

environment to organism heteromorphisms), and

• motor or efferent systems (brain furnishing the right representation of the

organism to environment heteromorphisms).

In view of this application, those two universal hets, representing the afferent and

efferent nervous systems, might be denoted aX and eX as in the following diagrams

for the two representations (Fig. 9).

We have seen how the adjunctive square diagram for an adjunction can be

obtained by gluing together the left and right representation diagrams at the

common diagonal &f . The diagram for a brain functor is obtained by gluing

together the diagrams for the left and right representations at the common values of

Fig. 8 Acting brain as a right representation
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the brain functor B(X). If we think of the diagram for a representation as right

triangle, then the adjunctive square diagram is obtained by gluing two triangles

together on the hypotenuses, and the diagram for the brain functor is obtained by

gluing two triangles together at the right angle vertices to form the butterfly diagram

(Fig. 10).

If both the triangular ‘‘wings’’ could be filled-out as adjunctive squares, then the

brain functor would have left and right adjoints. Thus all functors with both left and

right adjoints are brain functors (although not vice-versa). The previous example of

the diagonal functor D : Sets! Sets� Sets is a brain functor since the product

functor � a; bð Þ ¼ a� b is the right adjoint, and the coproduct or disjoint union

functor
U

a; bð Þ ¼ a
U
b is the left adjoint. The underlying set functor (see

‘‘Appendix’’) that takes a group G to its underlying set U Gð Þ is a rather trivial

example of a brain functor that does not arise from having both a left and right

adjoint. It has a left adjoint (the free group functor) so U provides a right

representation for the set-to-group maps or hets X ! G. Also it trivially provides a

left representation for the hets G! X but has no right adjoint.

In the butterfly diagram below, we have labelled the diagram for the brain as the

language faculty for understanding and producing speech (Fig. 11).

Wilhelm von Humboldt recognized the symmetry between the speaker and

listener, which in the same person is abstractly represented as the dual functions of

the ‘‘selfsame power’’ of the language faculty in the above butterfly diagram.

Nothing can be present in the mind (Seele) that has not originated from one’s

own activity. Moreover understanding and speaking are but different effects of

the selfsame power of speech. Speaking is never comparable to the

Fig. 9 Left and right representation diagrams for the brain functor B : X! A

Fig. 10 Butterfly diagram
combining two representations
at the common B Xð Þ
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transmission of mere matter (Stoff). In the person comprehending as well as in

the speaker, the subject matter must be developed by the individual’s own

innate power. What the listener receives is merely the harmonious vocal

stimulus. (von Humboldt 1997, p. 102)

7 A Mathematical Example of a Brain Functor

A non-trivial mathematical example of a brain functor is provided by the functor

taking a finite set of vector spaces fVigi¼1;...;n over the same field (or R-modules

over a ring R) to the product
Q

iVi of the vector spaces. Such a product is also the

coproduct
P

iVi (Hungerford 1974, p. 173) and that space may be written as the

biproduct:

V1 � � � � � Vn ffi
Y

i
Vi ffi

X

i
Vi:

The het from a set of spaces fVig to a single space V is a cocone of vector space

maps fVi ) Vg and the canonical such het is the set of canonical injections fVi )
V1 � � � � � Vng (taking the ‘‘brain’’ as a coproduct) with the ‘‘brain’’ at the point of

the cocone. This brain functor captures the integrative aspects of both perception

and action.

The perception left representation then might be taken as conceptually

representing the function of the brain as integrating multiple sensory inputs into

an interpreted perception (Fig. 12).6

Dually, a het from single space V to a set of vector spaces fVig is a cone

fV ) Vig with the single space V at the point of the cone, and the canonical het is

the set of canonical projections (taking the ‘‘brain’’ as a product) with the ‘‘brain’’ as

the point of the cone: fV1 � � � � � Vn ) Vig. The action right representation then

Fig. 11 Brain functor butterfly diagram interpreted as language faculty

6 The cocones and cones are represented in the diagrams using cone shapes.
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Fig. 12 Brain as integrating sensory inputs into a perception

Fig. 13 Brain as coordinating motor outputs into an action

Fig. 14 Conceptual model of a perceiving and acting brain
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might be taken as conceptually representing the function of the brain as integrating

or coordinating multiple motor outputs in the performance of an action (Fig. 13).

Putting the two representations together gives the butterfly diagram for a brain

(Fig. 14).

This gives a conceptual model of a single organ that integrates sensory inputs

into a perception and coordinates motor outputs of an action, i.e., a brain.

8 Conclusion

In view of the success of category theory in modern mathematics, it is perfectly

natural to try to apply it in the life and cognitive sciences. Many different

approaches need to be tried to see which ones, if any, will find ‘‘where theory

lives’’ (and will be something more than just applying biological names to bits of

pure math). The approach developed here differs from other approaches in

several ways, but the most basic difference is the use of heteromorphisms to

represent interactions between quite different entities (i.e., objects in different

categories).

Heteromorphisms also provide the natural setting to formulate universal mapping

problems and their solutions as left or right representations of hets. In spite of

abounding in the wilds of mathematical practice, hets are not recognized in the

orthodox presentations of category theory. One consequence is that the notion of an

adjunction appears as one atomic concept that cannot be factored into separate parts.

But that is only a artifact of the homs-only treatment. The heteromorphic treatment

shows that an adjunction factors naturally into a left and right representation of the

hets going from one category to another–where, in general, one representation might

exist without the other.

One benefit of this heteromorphic factorization is that the two atomic concepts of

left and right representations can then be recombined in a new way to form the

cognate recombinant concept of a brain functor. The main conclusion of the paper is

that this concept of a brain functor seems to fit very well as an abstract and

conceptual but non-trivial description of the dual universal functions of a brain,

perception (using the sensory or afferent systems) and action (using the motor or

efferent systems).

Mathematical Appendix: Are Hets Really Necessary in Category
Theory?

Since the concept of a brain functor requires hets for its formulation, it is important

to consider the role of hets in category theory. The homomorphisms or homs

between the objects of a category X are given by a hom bifunctor

HomX : Xop �X! Sets. In the same manner, the heteromorphisms or hets from
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the objects of a category X to the objects of a category A are given by a het

bifunctor Het : Xop �A! Sets.7

The Het-bifunctor gives the rigorous way to handle the composition of a het

f : x! a in Het x; að Þ [thin arrows ! for hets] with a homomorphism or hom

g : x0 ¼) x in X [thick Arrows ¼) for homs] and a hom h : a ¼) a0 in A. For

instance, the composition x0¼)
g
x!f a is the het that is the image of f under the map:

Het g; að Þ : Het x; að Þ ! Het x0; að Þ. Similarly, the composition x!f a¼)
h
a0 is the het

that is the image of f under the map: Het x; hð Þ : Het x; að Þ ! Het x; a0ð Þ (Fig. 15).8
This is all perfectly analogous to the use of Hom-functors to define the

composition of homs. Since both homs and hets (e.g., injection of generators into a

group) are common morphisms used in mathematical practice, both types of

bifunctors formalize standard mathematical machinery.

Chimeras in the Wilds of Mathematical Practice

The homs-only orientation may go back to the original conception of category

theory ‘‘as a continuation of the Klein Erlanger Programm, in the sense that a

geometrical space with its group of transformations is generalized to a category with

its algebra of mappings.’’ (Eilenberg and MacLane 1945, p. 237) While chimeras do

not appear in the orthodox ‘‘ontological zoo’’ of category theory, they abound in the

wilds of mathematical practice. In spite of the reference to ‘‘Working Mathemati-

cian’’ in the title of MacLane’s text (MacLane 1971), one might seriously doubt that

any working mathematician would give, say, the universal mapping property of free

groups using the ‘‘device’’ of the underlying set functor U instead of the traditional

description given in the left representation diagram (which does not even mention

Fig. 15 Composition of a het
with a hom on either end

7 Although often with a somewhat different interpretation, the Sets-valued profunctors (Kelly 1982),

distributors (Benabou 1973), or correspondences (Lurie 2009, p. 96) are formally the same as het

bifunctors.
8 The definition of a bifunctor also insures the associativity of composition so that schematically:

hom 	ðhet 	 homÞ ¼ ðhom 	hetÞ 	 hom.
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U) as can be seen in most any non-category-theoretic text that treats free groups. For

instance, consider the following description in Nathan Jacobson’s text (Jacobson

1985, p. 69).

To summarize: given the set X ¼ fx1; . . .; xrg we have obtained a map xi ! �xi
of X into a group FG rð Þ such that if G is any group and xi ! ai; 1
 i
 r is any

map of X into G then we have a unique homomorphism of FG rð Þ into G,

making the following diagram commutative:

X

# &
FG rð Þ ¼) G

:

In Jacobson’s diagram, only the FG rð Þ ¼) G morphism is a group homomorphism;

the vertical and diagonal arrows are called ‘‘maps’’ and are set-to-group hets so it is

the diagram for a left representation.9

Hets as ‘‘Homs’’ in a Collage Category

The notion of a homomorphism is so general that hets can always be recast as

‘‘homs’’ in a larger category variously called a directly connected category (Pareigis

1970, p. 58) (since Pareigis calls the het bifunctor a ‘‘connection’’), a cograph

category (Shulman 2011), or, more colloquially, a collage category (since it

combines quite different types of objects and morphisms into one category in total

disregard of any connection to the Erlangen Program). The collage category of a het

bifunctor Het : Xop �A! Sets, denoted XF
HetA (Lurie 2009, p. 96), has as

objects the disjoint union of the objects of X and A. The homs of the collage

category are defined differently according to the two types of objects. For x and x0

objects in X, the homs x) x0 are the elements of HomX x; x0ð Þ, the hom bifunctor

for X, and similarly for objects a and a0 in A, the homs a) a0 are the elements of

HomA a; a0ð Þ. For the different types of objects such as x from X and a from A, the

‘‘homs’’ x) a are the elements of Het x; að Þ and there are no homs a) x in the

other direction in the collage category.

Does the collage category construction show that ‘‘hets’’ are unnecessary in

category theory and that homs suffice? Since all the information given in the het

bifunctor has been repackaged in the collage category, any use of hets can always be

repackaged as a use of the ‘‘X-to-A homs’’ in the collage category XF
HetA. In any

application, like the previous example of the universal mapping property (UMP) of

the free-group functor as a left representation, one must distinguish between the two

types of objects and the three types of ‘‘homs’’ in the collage category.

Suppose in Jacobson’s example, one wanted to ‘‘avoid’’ having the different

‘‘maps’’ and group homomorphisms by formulating the left representation in the

9 We modified Jacobson’s diagram according to our het-hom convention for the arrows. Similar

examples of hets can be found in the MacLane–Birkhoff’s text (MacLane and Birkhoff 1988).
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collage category formed from the category of Sets, the category of groups Grps, and

the het bifunctor, Het : Setsop � Grps! Sets, for set-to-group maps. Since the UMP

does not hold for arbitrary objects and homs in the collage category, SetsFHetGrps,

one would have to differentiate between the ‘‘set-type objects’’ X and the ‘‘group-

type objects’’ G as well as between the ‘‘mixed-type homs’’ in Hom X;Gð Þ and the

‘‘pure-type homs’’ in Hom FGðrÞ;G
� �

. Then the left representation UMP of the free-

group functor could be formulated in the het-free collage category SetsFHetGrps as

follows.

For every set-type object X, there is a group-type object F Xð Þ and a mixed-

type hom gX : X ) F Xð Þ such that for any mixed-type hom f : X ) G from

the set-type object X to any group-type object G, there is a unique pure-type

hom f� : F Xð Þ ) G such that f ¼ f�gX .

Thus the answer to the question ‘‘Are hets really necessary?’’ is ‘‘No!’’–since one

can always use sufficient circumlocutions with the different types of ‘‘homs’’ in a

collage category. Jokes aside, the collage category formulation is essentially only a

reformulation of the left representation UMP using clumsy circumlocutions.

Working mathematicians use phrases like ‘‘mappings’’ or ‘‘morphisms’’ to refer to

hets in contrast to homomorphisms–and ‘‘mixed-type homs’’ does not seem to be

improved phraseology for hets.

There is, however, a more substantive point, i.e., the general UMPs of left or

right representations show that the hets between objects of different categories can

be represented by homs within the codomain category or within the domain

category, respectively. If one conflates the hets and homs in a collage category, then

the point of the representation is rather obscured (since it is then one set of ‘‘homs’’

in a collage category being represented by another set of homs in the same

category).

What About the Homs-Only UMPs in Adjunctions?

There is another het-avoidance device afoot in the homs-only treatment of

adjunctions. For instance, the left-representation UMP of the free-group functor can,

for each X 2 Sets, be formulated as the natural isomorphism:

HomGrps F Xð Þ;Gð Þ ffi Het X;Gð Þ. But if we fix G and use the underlying set functor

U : Grps! Sets, then there is trivially the right representation:

Het X;Gð Þ ffi HomSets X;U Gð Þð Þ. Putting the two representations together, we have

the heteromorphic treatment of an adjunction first formulated by Pareigis (1970):

HomGrps F Xð Þ;Gð Þ ffi Het X;Gð Þ ffi HomSets X;U Gð Þð Þ:

If we delete the het middle term, then we have the usual homs-only formulation of

the free-group adjunction,

HomGrps F Xð Þ;Gð Þ ffi HomSets X;U Gð Þð Þ;

without any mention of hets. Moreover, the het-avoidance device of the underlying
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set functor U allows the UMP of the free group functor to be reformulated with

sufficient circumlocutions to avoid mentioning hets.

For each set X, there is a group F Xð Þ and a set hom gX : X ) U F Xð Þð Þ such
that for any set hom f : X ) U Gð Þ from the set X to the underlying set U Gð Þ
of any group G, there is a unique group hom f� : F Xð Þ ) G over in the other

category such that the set hom image U f�ð Þ of the group hom f� back in the

original category satisfies f ¼ U f�ð ÞgX(Fig. 16).10

Such het-avoidance circumlocutions have no structural significance since there is

a general adjunction representation theorem (Ellerman 2006, p. 147) that all

adjoints can be represented, up to isomorphism, as arising from the left and right

representations of a het bifunctor.

Are all UMPs Part of Adjunctions?

Even though the homs-only formulation of an adjunction only ignores the

underlying hets (due to the adjunction representation theorem), is that formulation

sufficient to give all UMPs? Or are there important universal constructions that are

not either left or right adjoints?

Probably the most important example is the tensor product. The universal

mapping property of the tensor product is particularly interesting since it is a case

where the heteromorphic treatment of the UMP is forced (under one disguise or

another). The tensor product functor � : A;Bh i �! A� B is not a left adjoint so the

usual device of using the other functor (e.g., a forgetful or diagonal functor) to avoid

mentioning hets is not available.

For A, B, C modules (over some commutative ring R), one category is the

product category ModR �ModR where the objects are ordered pairs A;Bh i of R-
modules and the other category is just the category ModR of R-modules. The values

of the Het-bifunctor Het A;Bh i;Cð Þ are the bilinear functions A� B! C. Then the

tensor product functor � : ModR �ModR ! ModR given by A;Bh i �! A� B gives

a left representation:

HomModR A� B;Cð Þ ffi Het A;Bh i;Cð Þ

that characterizes the tensor product. The canonical het g A;Bh i : A� B! A� B is

Fig. 16 Over-and-back diagram
for free group adjunction

10 Even the ‘‘over-and-back’’ formulation using two different categories could be avoided by using the

further circumlocutions of the only pure-type homs in the single collage category.
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the image under the left-representation isomorphism of the identity hom 1A�B
obtained by taking C ¼ A� B, so we have:

A;Bh i
g A;Bh i # &f

A� B ¼)
9!f�

C

Left representation diagram to characterize tensor products

where the single arrows are the bilinear hets and the thick Arrow is a module

homomorphism within the category ModR.

For instance, in MacLane and Birkhoff’s Algebra textbook (MacLane and

Birkhoff 1988), they explicitly use hets (bilinear functions) starting with the special

case of an R-module A (for a commutative ring R) and then stating the universal

mapping property of the tensor product A� R ffi A using the left representation

diagram (MacLane and Birkhoff 1988, p. 318)–like any other working mathemati-

cians. For any R-module A, there is an R-module A� R and a canonical bilinear het

h0 : A� R! A� R such that given any bilinear het h : A� R! C to an R-module

C, there is a unique R-module hom t : A� R ¼) C such that the following diagram

commutes.

A� R

h0 # &h

A� R ¼)
9!t

C

Left representation diagram of special case of tensor product:

References

Awodey S (2006) Category theory. Clarendon Press, Oxford

Benabou J (1973) Les distributeurs, vol 33, Institut de Mathmatique Pure et Applique

Boolos G (1971) The iterative conception of set. J Philos 68(April 22):215–231

Ehresmann AC, Vanbremeersch JP (2007) Memory evolutive systems: hierarchy, emergence, cognition.

Elsevier, Amsterdam

Eilenberg S, MacLane S (1945) General theory of natural equivalences. Trans Am Math Soc

58(2):231–294

Ellerman D (1988) Category theory and concrete universals. Erkenntnis 28:409–429

Ellerman D (2006) A theory of adjoint functors with some thoughts on their philosophical significance.

In: Sica G (ed) What is category theory?. Polimetrica, Milan, pp 127–183

Ellerman D (2007) Adjoints and emergence: applications of a new theory of adjoint functors. Axiomathes

17(1 March):19–39

Goldblatt R (2006) Topoi: the categorical analysis of logic (revised ed.). Dover, Mineola

Halford GS, Wilson WH (1980) A category theory approach to cognitive development. Cogn Psychol

12(3):356–411

Hungerford TW (1974) Algebra. Springer, New York

Jacobson N (1985) Basic algebra I, 2nd edn. W.H. Freeman, New York

Kainen PC (2009) On the Ehresmann–Vanbremeersch theory and mathematical biology. Axiomathes

19:225–244

Kan D (1958) Adjoint functors. Trans Am Math Soc 87(2):294–329

Axiomathes

123

Author's personal copy



Kelly M (1982) Basic concepts of enriched category theory. Cambridge University Press, Cambridge

Lambek J (1981) The influence of Heraclitus on modern mathematics. In: Agassi J, Cohen RS (eds)

Scientific philosophy today: essays in honor of Mario Bunge. D. Reidel, Boston, pp 111–121

Lawvere FW (1969) Adjointness in foundations. Dialectica 23:281–295

Louie AH (1985) Categorical system theory. In: Rosen R (ed) Theoretical biology and complexity: three

essays on the natural philosophy of complex systems. Academic Press, Orlando, pp 68–163

Louie AH, Poli R (2011) The spread of hierarchical cycles. Int J Gen Syst 40(3 April):237–261

Lurie J (2009) Higher topos theory. Princeton University Press, Princeton

MacLane S (1948) Groups, categories, and duality. Proc Nat Acad Sci USA 34(6):263–267

MacLane S (1971) Categories for the working mathematician. Springer, New York

MacLane S, Birkhoff G (1988) Algebra, 3rd edn. Chelsea, New York

Magnan F, Reyes GE (1994) Category theory as a conceptual tool in the study of cognition. In:

Macnamara J, Reyes GE (eds) The logical foundations of cognition. Oxford University Press, New

York, pp 57–90

Makkai M (1999) Structuralism in mathematics. In: Jackendoff R, Bloom P, Wynn K (eds) Language,

logic, and concepts: essays in memory of John Macnamara. MIT Press (A Bradford Book),

Cambridge, pp 43–66

Pareigis B (1970) Categories and functors. Academic Press, New York

Philips S (2014) Analogy, cognitive architecture and universal construction: a tale of two systematicities.

PLOS One 9(2):1–9

Philips S, Wilson WH (2014) Chapter 9: a category theory explanation for systematicity: universal

constructions. In: Calvo P, Symons J (eds) Systematicity and cognitive architecture. MIT Press,

Cambridge, pp 227–249

Rosen R (1958) The representation of biological systems from the standpoint of the theory of categories.

Bull Math Biophys 20(4):317–342

Rosen R (2012) Anticipatory systems: philosophical, mathematical, and methodological foundations, 2nd

edn. Springer, New York

Russell B (2010) Principles of mathematics. Routledge Classics, London

Samuel P (1948) On universal mappings and free topological groups. Bull Am Math Soc 54(6):591–598

Shulman M (2011) Cograph of a profunctor

Taylor P (1999) Practical foundations of mathematics. Cambridge University Press, Cambridge

von Humboldt W (1997) The nature and conformation of language. In: Mueller-Vollmer K (ed) The

hermeneutics reader. Continuum, New York, pp 99–105

Wood RJ (2004) Ordered sets via adjunctions. In: Pedicchio MC, Tholen W (eds) Categorical

foundations. Encyclopedia of mathematics and its applications, vol 97. Cambridge University Press,

Cambridge, pp 5–47

Zafiris E (2012) Rosen’s modelling relations via categorical adjunctions. Int J Gen Syst 41(5):439–474

Axiomathes

123

Author's personal copy


	On Adjoint and Brain Functors
	Abstract
	Category Theory in the Life and Cognitive Sciences
	The Ubiquity and Importance of Adjoints
	Adjoints and Universals
	The Hom-Set Definition of an Adjunction
	Heteromorphisms and Adjunctions
	Brain Functors
	A Mathematical Example of a Brain Functor
	Conclusion
	Mathematical Appendix: Are Hets Really Necessary in Category Theory?
	Chimeras in the Wilds of Mathematical Practice
	Hets as ‘‘Homs’’ in a Collage Category
	What About the Homs-Only UMPs in Adjunctions?
	Are all UMPs Part of Adjunctions?

	References




