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Abstract
In this paper, we consider a Dirichlet problem driven by the anisotropic (p, q)-
Laplacian and a superlinear reaction which need not satisfy the Ambrosetti–
Robinowitz condition. By using variational tools together with truncation and
comparison techniques and critical groups, we show the existence of at least five
nontrivial smooth solutions, all with sign information: two positive, two negative and
a nodal (sign-changing).
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1 Introduction

In this paper we study the following anisotropic (p, q)-equation

{−�p(z)u(z) − �q(z)u(z) = f (z, u(z)) in �

u = 0 on ∂�
, (1)

where � ⊂ R
N is a bounded domain with a C2-boundary ∂�. Given r ∈ C(�̄)

with r− = min
�̄

r > 1, by �r(z) we denote the r(z)-Laplace differential operator with

variable exponent r(·) defined by

�r(z)u = div(|Du|r(z)−2Du) for all u ∈ W 1,r(z)
0 (�).

This operator, in contrast to the isotropic r -Laplacian, is not homogeneous and this is a
source of difficulties in the study of anisotropic equations. In problem (1), we have the
sum of two such operators with different exponents. So, even in the isotropic case (that
is, p(·) and q(·) are constants), the differential operator is not homogeneous as well.
The reaction f (z, x) is a Carathéodory function (that is, for all x ∈ R, z �→ f (z, x)
is measurable in �, and for a.a. z ∈ �, x �→ f (z, x) is continuous). Moreover, we
assume that for a.a. z ∈ �, f (z, ·) is (p+−1)-superlinear (here p+ = max

�̄
p), but need

not satisfy the Ambrosetti–Robinowitz condition (the AR-condition, for short), which
is common in the literaturewhen studying “superlinear” problems. In the presentwork,
instead, we employ a less restrictive condition, which incorporates in our framework
also nonlinearities with “slower” growth near ±∞, and which fail to satisfy the AR-
condition.

Using variational tools from the critical point theory together with truncation and
comparison techniques as well as critical groups, we prove a multiplicity theorem
for problem (1), producing five nontrivial smooth solutions all with sign information,
namely, two positive solutions, two negative solutions and a nodal (sign-changing)
solution. Our work here extends those of Gasiński and Papageorgiou [7] and of Tan
and Fang [20]. In both these works, the authors considered equations driven by the
anisotropic p-Laplacian andwith a superlinear reactionwhich need not satisfy theAR-
condition. They provedmultiplicity theorems producing three nontrivial solutions, but
do not obtain nodal solutions (see Theorem 4.4 of [7] and Theorems 1.2 and 1.3 of
[20]). Moreover, in [20] the hypotheses on the reaction f (z, x) are more restrictive.

The study of variational problems and partial differential equations with nonstan-
dard growth conditions, was motivated by various applications. There are materials
whose study requires such a more general theory. Electrorheological fluids are the
fluids whose viscosity depends on the electric field in the fluid (for example, lithium
polymetachrylate). The viscosity is inversely proportional to the strength of the elec-
tric field. The study of such fluids requires the use of the equations with nonstandard
growth conditions. In the context of continuum mechanics, these fluids are treated
as non-Newtonian fluids and have been used in robotics and space technology. For
details, we refer to the book of Ruzicka [18]. On the other hand, boundary value prob-
lems involving a combination of several differential operators of different nature (such
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as (p, q)-equations), arise in many mathematical models of physical processes. We
mention the works of Benct et al. [2] (models of elementary particles and soliton-type
solutions),Cherfils and Ilyasov [3] (stationary reaction-diffusion systems),Zhikov [23]
(problems in nonlinear elasticity theory). Recently such problemswere examined with
variable exponents. We refer to the works of Papageorgiou et al. [9], Papageorgiou et
al. [13], Papageorgiou and Vetro [14], Rǎdulescu [15], Rǎdulescu and Repovš [16],
Ragusa and Tachikawa [17], Vetro [21], Vetro and Vetro [22].

2 Mathematical background and hypotheses

The analysis of problem (1) requires the use of Lebesgue and Sobolev spaces with
variable exponents. These are particular instance of Musielak-Orlicz spaces and a
comprehensive treatment of these spaces can be found in the books of and Cruz-Uribe
and Fiorenza [4] and Diening et al. [5].

Let L0(�) be the vector space of all measurable functions u : � → R. As usual
we identify two such functions which differ only on a Lebesgue null set. Also, let
E1 ={r ∈ C(�̄) | 1<r− =min

�̄
r} (in the sequel for any r ∈ C(�̄), we set r− =min

�̄

and r+ = max
�̄

r ). Then given r ∈ E1, we define the anisotropic Lebesgue space

Lr(z)(�) by

Lr(z)(�) :=
{
u ∈ L0(�) |

∫
�

|u(z)|r(z) dz < ∞
}

.

This space is equipped with the so-called “Luxemburg norm” defined by

‖u‖r(z) = inf

[
λ > 0 |

∫
�

( |u(z)|
λ

)r(z)

dz ≤ 1

]
.

With this norm Lr(z)(�) is a Banach space, which is separable and reflexive (in fact
uniformly convex). If r ′ ∈ E1 is defined by r ′(z) = r(z)

r(z)−1 for all z ∈ �̄ (that is,
1

r(z) + 1
r ′(z) = 1 for all z ∈ �̄), then we have

Lr(z)(�)∗ = Lr ′(z)(�).

Moreover, the following variant of Hölder’s inequality holds,

∫
�

|uv|dz ≤
[
1

r−
+ 1

r ′−

]
‖u‖r(z)‖v‖r ′(z)

for all u ∈ Lr(z)(�) and all v ∈ Lr ′(z)(�). Also, if r , r0 ∈ E1 and r(z) ≤ r0(z) for all
z ∈ �̄, then the embeddings

Lr0(z)(�) ↪→ Lr(z)(�) ↪→ L1(�) are all continuous.
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In addition to the norm ‖·‖r(z), we consider also the modular function ρr : Lr(z)(�)

→ R+ := [0,+∞) defined by

ρr (u) :=
∫

�

|u(z)|r(z) dz for all u ∈ Lr(z)(�).

The Luxemburg norm and this modular function are closely related.

Proposition 1 If r ∈ E1, {un}n∈N ⊆ Lr(z)(�) and u ∈ Lr(z)(�), then we have

(a) ‖u‖r(z) = λ ⇔ ρr (
u
λ
) = 1;

(b) ‖u‖r(z) < 1 ⇒ (resp. = 1 and > 1) ⇔ ρr (u) < 1(resp. = 1, and > 1);
(c) ‖u‖r(z) ≤ 1 ⇒ ‖u‖r+r(z) ≤ ρr (u) ≤ ||u||r−r(z), and ‖u‖r(z) ≥ 1⇒ ‖u‖r−r(z) ≤ ρr (u)

≤ ‖u‖r+r(z);
(d) ‖un‖r(z) → 0 (resp. → +∞) ⇔ ρr (un) → 0(resp. → +∞);
(e) ‖un − u‖r(z) → 0 ⇔ ρr (un − u) → 0.

Using the variable exponent Lebesgue spaces, we can define the variable exponent
Sobolev spaces. So, let r ∈ E1. We define

W 1,r(z)(�) :=
{
u ∈ Lr(z)(�) | |Du| ∈ Lr(z)(�)

}
.

We equip this space with the following norm

‖u‖1,r(z) = ‖u‖r(z) + ‖Du‖r(z) for allu ∈ W 1,r(z)(�),

where ‖Du‖r(z) = ‖|Du|‖r(z). Suppose that r ∈ E1 ∩ C0,1(�̄) (that is r ∈ E1 is
Lipschitz continuous). We define

W 1,r(z)
0 (�) := C∞

c (�)
‖·‖1,r(z)

.

The spaces W 1,r(z)(�) and W 1,r(z)
0 (�) are both Banach spaces which are separable

and reflexive (in fact uniformly convex). For the space W 1,r(z)
0 (�), we know that the

Poincaré inequality holds, namely,

‖u‖r(z) ≤ ĉ‖Du‖r(z) for all u ∈ W 1,r(z)
0 (�)

for some ĉ > 0.
Given r ∈ E1 ∩ C0,1(�̄), we consider r∗(·) the critical Sobolev exponent corre-

sponding to r(·), defined by

r∗(z) =
{ Nr(z)

N−r(z) if r(z) < N
+∞ if N ≤ r(z)

for all z ∈ �̄.
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Consider q ∈ C(�̄) and assume that 1 ≤ q− ≤ q(z) ≤ r∗(z) (resp. 1 ≤ q− ≤ q(z)
≤ q+ < r∗(z)) for all z ∈ �̄. Set X = W 1,r(z)(�) or X = W 1,r(z)

0 (�). Then we have

X ↪→ Lq(z)(�) continuously (resp.X ↪→ Lq(z)(�) compactly).

This is the so-called “anisotropic Sobolev embedding theorem”. Moreover, if r ∈
E1 ∩ C0,1(�̄), then

W 1,r(z)
0 (�)∗ = W−1,r ′(z)(�).

Let us introduce the nonlinear operator Ar(z) : W 1,r(z)
0 (�) → W−1,r ′(z)(�) defined

by

〈Ar(z)(u), h〉 =
∫

�

|Du|r(z)−2(Du, Dh)RN dz for all u, h ∈ W 1,r(z)
0 (�).

The next proposition summarizes the main properties of this operator (see Gasiński
and Parpagerogiou [7] (Proposition 2.5) and Rǎdulescu and Repovš [16] (p.40)).

Proposition 2 The operator Ar(z)(·) is bounded (that is, it maps bounded sets in

W 1,r(z)
0 (�) to bounded sets in W−1,r ′(z)(�)), continuous, strictly monotone (thus,

maximal monotone too) and type (S)+, i.e.,

if un
w−→ u in W 1,r(z)

0 (�) and lim sup
n→∞

〈Ar(z)(un), un − u〉 ≤ 0,

then un → u in W 1,r(z)
0 (�).

On account of the anisotropic regularity theory, we will also use the Banach space

C1
0(�̄) :=

{
u ∈ C1(�̄) | u|∂� = 0

}
.

This is an ordered Banach space with positive (order) cone

C+ :=
{
u ∈ C1

0(�̄) | u(z) ≥ 0 for all z ∈ �̄
}

.

This cone has a nonempty interior given by

intC+ :=
{
u ∈ C+ | u(z) > 0 for all z ∈ � with

∂u

∂n
|∂� < 0

}
,

with n(·) being the outward unit normal on ∂�.
Suppose u, v : � → R are measurable functions such that u(z) ≤ v(z) for a.a.

z ∈ �. We define the following order interval in W 1,r(z)
0 (�),

[u, v] :=
{
h ∈ W 1,r(z)

0 (�) | u(z) ≤ h(z) ≤ v(z) for a.a. z ∈ �
}

.
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By intC1
0 (�̄)[u, v] we denote the interior in C1

0(�̄) of [u, v] ∩ C1
0(�̄). For every mea-

surable function u : � → R, we define u±(z) = max{±u(z), 0} for all z ∈ �. We
have u = u+ − u−, |u| = u+ + u−, and if u ∈ W 1,r(z)

0 (�), then u± ∈ W 1,r(z)
0 (�).

Let X be a Banach space and ϕ ∈ C1(X). We set

Kϕ = {u ∈ X : ϕ′(u) = 0} (the critical set of ϕ).

Besides, we say that ϕ(·) satisfies the “C-condition”, if it has the following property:

• if {un}n∈N ⊆ X is such that {ϕ(un)}n∈N ⊆ R is bounded, and

(1 + ‖un‖X )ϕ′(un) → 0 in X∗ as n → ∞,

then {un}n∈N admits a strongly convergent subsequence.

Let (Y1,Y2) be a topological pair such that Y2 ⊆ Y1 ⊆ X . For every k ∈ N0, by
Hk(Y1,Y2) we denote the kth-relative singular homology group with integer coeffi-
cients for the pair (Y1,Y2). Let û ∈ Kϕ be isolated and c = ϕ(û). Then, the critical
groups of ϕ at û are defined by

CK (ϕ, û) := Hk(ϕ
c ∩U , ϕc ∩U \ {û})) for all k ∈ N0,

with ϕc = {u ∈ X | ϕ(u) ≤ c} and U a neighborhood of û such that Kϕ ∩ ϕc ∩U =
{û}. The excision property of singular homology, implies that this definition of critical
groups is independent of the choice of the isolating neighborhood U .

We end the section by introducing the hypotheses of the data of problem (1).

H0: p, q ∈ C0,1(�̄) are such that 1 < q− ≤ q+ < p− ≤ p+ < +∞.
H1: f : � × R → R is a Carathéodory function such that f (z, 0) = 0 for a.a. z ∈ �

and

(i) | f (z, x)| ≤ α(z)
[
1 + |x |r(z)−1

]
for a.a. z ∈ �, all x ∈ R, with α ∈ L∞(�),

r ∈ E1 and p+ < r(z) < p∗(z) for all z ∈ �̄;
(ii) there exist a, c > 0 such that

f (z, a) ≤ −λ̂ < 0 < λ0 ≤ f (z,−c) for a.a. z ∈ �;

(iii) if F(z, x) = ∫ x
0 f (z, s) ds, then

lim
x→±∞

F(z, x)

|x |p+ = +∞ uniformly for a.a. z ∈ �;

(iv) there exists τ ∈ C(�̄) such that

τ(z) ∈
(

(r+ − p−)max

{
N

p−
, 1

}
, p∗(z)

)
for all z ∈ �̄,
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and

0 < β0 ≤ lim inf
x→±∞

f (z, x)x − p(z)F(z, x)

|x |τ(z)
uniformly for a.a. z ∈ �;

(v) there exist θ, μ ∈ E1 and δ ∈ (0,min{a, c}) such that

1 < θ(z) ≤ μ(z) < q− for all z ∈ �̄,

c0|x |μ(z) ≤ f (z, x)x for a.a. z ∈ �, all |x | ≤ δ,

lim sup
x→0

f (z, x)

|x |θ(z)−2x
≤ c∗uniformly for a.a. z ∈ �;

(vi) there exists ε̂ > 0 such that for a.a. z ∈ �, the function

x �→ f (z, x) + ε̂|x |p(z)−2x

is nondecreasing on [−m0,m0] with m0 = max{a, c}.
Remark 3 Hypotheses H1(ii)–(iii) imply that for a.a. z ∈ �, f (z, ·) is (p+ − 1)-
superlinear, but without satisfying theAR-condition (seeAmbrosetti–Rabinowitz [1]).
For example the function

f (z, x) =
{ |x |μ(z)−2x − 2|x |θ(z)−2 if |x | ≤ 1

|x |p+−2x ln |x | − |x |p(z)−2 if 1 < |x | ,

satisfies hypotheses H1 but fails to satisfy the AR-condition. Hypotheses H1(ii) and
(iv) dictate an oscillatory behavior near zero for f (z, ·).

In what follows by ‖ · ‖ we denote the norm of the anisotropic Sobolev space
W 1,p(z)

0 (�). On account of the Poincaré inequality ‖u‖ = ‖Du‖p(z) for all u ∈
W 1,p(z)

0 (�).

3 Constant sign solutions

In this section, we search for constant sign solutions. We show the existence of four
such smooth solutions (two positive and two negative). We also obtain the existence of
extremal constant sign solutions, that is, we prove the existence of a smallest positive
solution and the existence of a biggest negative solution. These extremal constant sign
solutions will be used in Sect. 4, to generate a nodal solution.

For the purpose we introduce the energy (Euler) functional ϕ : W 1,p(z)
0 (�) → R

for problem (1) defined by

ϕ(u) :=
∫

�

1

p(z)
|Du|p(z) dz +

∫
�

1

q(z)
|Du|q(z) dz −

∫
�

F(z, u) dz
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for all u ∈ W 1,p(z)
0 (�). It is not difficult to see that ϕ ∈ C1(W 1,p(z)

0 (�)) (see, for
example, [16]). Also, in order to produce constant sign solutions, we introduce the
positive and negative truncations of ϕ(·), respectively. More precisely, we consider
the C1- functionals ϕ± : W 1,p(z)

0 (�) → R defined by

ϕ±(u) :=
∫

�

1

p(z)
|Du|p(z) dz +

∫
�

1

q(z)
|Du|q(z) dz −

∫
�

F(z,±u±) dz

for all u ∈ W 1,p(z)
0 (�).

First we produce two positive solutions.

Proposition 4 If hypotheses H0 and H1 hold, then problem (1) has at least two positive
solutions,

u0, û ∈ intC+ and u0 �= û.

Proof We introduce the Carathéodory function f̂+ : � × R → R defined by

f̂+(z, x) =
{
f (z, x+) if x ≤ a
f (z, a) if a < x .

(2)

Set F̂+(z, x) := ∫ x
0 f̂+(z, s) ds and consider theC1-functional ψ̂+ : W 1,p(z)

0 (�) → R

defined by

ψ̂+(u) :=
∫

�

1

p(z)
|Du|p(z) dz +

∫
�

1

q(z)
|Du|q(z) dz −

∫
�

F̂+(z, u) dz

for all u ∈ W 1,p(z)
0 (�). From (2), it is clear that ψ̂+(·) is coercive. Also, using the

anisotropic Sobolev embedding theorem (see Sect. 2), we see that ψ̂+(·) is sequentially
weakly lower semicontinuous. Hence, by theWeierstrass-Tonelli theorem, we can find
u0 ∈ W 1,p(z)

0 (�) such that

ψ̂+(u0) = min
{
ψ̂+(u) | u ∈ W 1,p(z)

0 (�)
}

. (3)

Let u ∈ intC+ and δ > 0 be as postulated by hypotheses H1(v). We choose
t ∈ (0, 1) small such that 0 ≤ tu(z) ≤ δ for all z ∈ �̄. Because of t ∈ (0, 1) and
q− < p+, then, we have

ψ̂+(tu) ≤ t p−

p−
ρp(Du) + tq−

q−
ρq(Du) − tμ+

μ+
c0ρμ(u) ≤ c̃0t

p− + c1t
q− − c2t

μ+

for some c̃0, c1, c2 > 0. By hypothesis H1(v), we have μ+ < q− < p−. So choosing
t ∈ (0, 1) even smaller if necessary, we see that

ψ̂+(tu) < 0 ⇒ ψ̂+(u0) < 0 = ψ̂+(0) (see (3)) ⇒ u0 �= 0.
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From (3), we have ψ̂ ′+(u0) = 0, i.e.,

〈Ap(z)(u0), h〉 + 〈Aq(z)(u0), h〉 =
∫

�

f̂+(z, u0)h dz for all h ∈ W 1,p(z)
0 (�). (4)

In (4) first we choose h = −u−
0 ∈ W 1,p(z)

0 (�). From (2), Proposition 1 and the
assumption f (z, 0) = 0 for a.a. z ∈ �, we have

ρp(Du−
0 ) + ρq(Du−

0 ) = 0 ⇒ u0 ≥ 0, u0 �= 0 (see Proposition 1).

Next in (4) we use the test function h = [u0 − a]+ ∈ W 1,p(z)
0 (�). Then, we have

〈Ap(z)(u0), (u0 − a)+〉 + 〈Aq(z)(u0), (u0 − a)+〉 =
∫

�

f (z, a)(u0 − a)+ dz ≤ 0,

so, it holds u0 ≤ a, where we have used (2) and hypothesis H1(ii). So, we have proved
that

u0 ∈ [0, a] and u0 �= 0. (5)

From Theorem 1.2 of Fan [6] (see also [20, Corollary 3.3] and Lieberman [8] (p.
320), for the isotropic case), we have that u0 ∈ C+\{0}. Moreover, from Proposition 4
of Papageorgiou et al. [9], we have that u0 ∈ [0, a]∩ intC+. Let ε̂ > 0 be as postulated
by hypothesis H1(vi). Using (5) and H1(vi), we have

−�p(z)u0 − �q(z)u0 + ε̂u p(z)−1
0 = f (z, u0) + ε̂u p(z)−1

0

≤ f (z, a) + ε̂a p(z)−1 (see (5)) and hypothesis H1 (vi))

≤ −λ̂ + ε̂a p(z)−1 < −�p(z)a − �q(z)a + ε̂a p(z)−1.

Since λ̂ > 0 and a > 0, from Proposition 2.4 of Papageorgiou et al. [13], we infer
that

u0(z) < a for all z ∈ �̄ ⇒ u0 ∈ intC1
0 (�̄)[0, a]. (6)

From (2) it is clear that

ϕ+|[0,a] = ψ̂+|[0,a].

Thus, from (3) and (6), it follows that

u0 is a local C
1(�̄) − minimizer o f ϕ+(·).

Hence,

u0 is a local W
1,p(z)
0 (�) − minimizer of ϕ+(·)(see [7, 20]). (7)
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Using the definition of ϕ+(·), the anisotropic regularity theory and the anisotropic
maximum principle, we have that Kϕ+ \ {0} ⊆ intC+. So, we may assume Kϕ+ is
finite or otherwise we already have an infinity of positive smooth solutions of (1), and
so we are done. So, u0 ∈ Kϕ+ is isolated and this together with (7) and Theorem 5.7.6,
p.449, of Papageorgiou et al. [12], imply that we can find η ∈ (0, 1) small such that

ϕ+(u0) < inf {ϕ+(u) | ‖u − u0‖ = η} = m+. (8)

If u ∈ intC+, then an account of hypothesis H1(iii), we have

ϕ+(tu) → −∞ as t → +∞. (9)

Finally reasoning as in the proof of Proposition 4.1 in Gasiński and Papageorgiou [7],
we infer that

ϕ+(·) satisfies the C-condition. (10)

Then (8)–(10) permit the use of the mountain pass theorem. So, we obtain û ∈
Kϕ+ ⊆ C+ such that

ϕ+(u0) < m+ ≤ ϕ+(û) (see (1)) ⇒ û �= u0.

Since û is a critical point of ϕ+ of mountain pass type from Theorem 6.5.8, p. 527, of
Papageorgiou et al. [12], we have

C1(ϕ+, û) �= 0. (11)

On the other hand, hypothesis H1(v) and Proposition 3.7 of Papagerogiou and
Rǎdulescu [10] imply that

Ck(ϕ, 0) = 0 for all k ∈ N0. (12)

Note that |F(z, x)| ≤ c3
[|x |θ(z) + |x |r(z)] for a.a. z ∈ �, all x ∈ R and some

c3 > 0. In addition, we may assume that Kϕ is finite or otherwise we already have
an infinity of smooth solution of (1) and so we are done. The C1-continuity of critical
groups (see [12], Theorem 6.3.4, p. 503) implies that Ck(ϕ+, 0) = Ck(ϕ, 0) = 0
for all k ∈ N0 (see (12)). Then comparing this with (11), we infer that û �= 0. So,
û ∈ intC+ is the second positive solution of (1) distinct from u0. ��

Similarly truncating this time f (z, ·) at −c < 0 and using the functional ϕ−(·) we
obtain a similar multiplicity result for negative solutions.

Proposition 5 If hypotheses H0 and H1 hold, then problem (1) has at least two negative
solutions

v0, v̂ ∈ intC+ and v0 �= v̂.
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Furthermore, we show the existence of extremal constant sign solutions. These
solutions will be used in Sect. 4 to generate a nodal solution. On account of hypotheses
H1(i) and (v), we have

f (z, x)x ≥ c0|x |μ(z) − c4|x |r(z) (13)

for a.a. z ∈ �, all x ∈ R, some c4 > 0. This unilateral growth restriction on f (z, ·),
leads to the following auxiliary anisotropic Dirichlet problem:

{−�p(z)u − �q(z)u = c0|u|μ(z)−2u − c4|u|r(z)−2u in �

u = 0 on ∂�
. (14)

Proposition 6 If hypotheses H0 hold, then problem (14) has a unique positive solution
ū ∈ intC+, and since the problem is odd v̄ = −ū ∈ intC+ is the unique negative
solution of (14).

Proof First we show the existence of a positive solution for problem (14). To this end,
we introduce the C1-function σ+ : W 1,p(z)

0 (�) → R defined by

σ+(u) =
∫

�

1

p(z)
|Du|p(z) dz +

∫
�

1

q(z)
|Du|q(z) dz + c4

∫
�

1

r(z)
(u+)r(z) dz

− c0

∫
�

1

μ(z)
(u+)μ(z) dz

for all u ∈ W 1,p(z)
0 (�). Then, it holds

σ+(u) ≥ 1

p+
ρp(Du) + c4

r+
ρr (u

+) − c0
μ−

ρμ(u+).

Recall that μ(z) < p(z) < r(z) for all z ∈ �̄. So, it follows that σ+(·) is coercive (see
Proposition 1). Also, it is sequentially weakly lower semicontinuous. So, we can find
ū ∈ W 1,p(z)

0 (�) such that

σ+(ū) = inf
{
σ+(u) | u ∈ W 1,p(z)

0 (�)
}

. (15)

Let u ∈ intC+ and t ∈ (0, 1). Keeping in mind that t ∈ (0, 1) and q− < p− < r−,
it yields

σ+(tu) ≤ t p−

p−
ρp(Du) + tq−

q−
ρq(Du) + c4tr−

r−
ρr (u) − c0tμ+

μ+
ρμ(u) ≤ c5t

q− − c6t
μ+

for some c5, c6 > 0. Since t ∈ (0, 1) and μ+ < q− (see hypothesis H1(v)), choosing
t ∈ (0, 1) small, it finds

σ+(tu) < 0 ⇒ σ+(ū) < 0 = σ+(0) (see (15)) ⇒ ū �= 0.
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From (15), we have σ ′+(ū) = 0. This means that

〈Ap(z)(ū), h〉 + 〈Aq(z)(ū), h〉 =
∫

�

c0(ū
+)μ(z)−1h dz −

∫
�

c4(ū
+)r(z)−1h dz (16)

for all h ∈ W 1,p(z)
0 (�). In (16), we use the test function h = −ū− ∈ W 1,p(z)

0 (�) and
obtain that ū ≥ 0 and ū �= 0. Therefore, ū is a positive solution of (14) and then the
anisotropic regularity theory and the anisotropic maximum principle, as before, imply
that ū ∈ intC+.

Nowweshow theuniqueness of this positive solution. For this purpose,we introduce
the integral functional j : L1(�) → R̄ = R ∪ {+∞} defined by

j(u) =
⎧⎨
⎩

∫
�

1

p(z)
|Du

1
q− |p(z) dz +

∫
�

1

q(z)
|Du

1
q− |q(z) dz, if u ≥ 0, u

1
q− ∈ W 1,p(z)

0 (�),

+∞ otherwise .

From Theorem 2.2 of Takáč and Giacomoni [19], we have that the functional j(·) is
convex. Let dom j = {u ∈ L1(�) | j(u) < +∞} (the effective domain of j(·)).
Suppose that v̄ ∈ W 1,p(z)

0 (�) is another positive solution of (14). Again we have
v̄ ∈ intC+. On account of Proposition 4.1.22, p. 274, of Papagerogiou et al. [12], we
have

ū

v̄
,
v̄

ū
∈ L∞(�).

Hence, if h = ūq− − v̄q− , then for |t | < 1 small enough, we have

ūq− + th ∈ dom j and v̄q− + th ∈ dom j .

Then, the convexity of j(·) implies the Gâteaux differentiability at ūq− and at v̄q− in
the direction h, respectively. Moreover, the chain rule and Green’s theorem imply that

j ′(ūq−)(h) = 1

q−

∫
�

−�p(z)ū − �q(z)ū

ūq−−1 h dz

= 1

q−

∫
�

[
c0ū

μ(z)−q− − c4ū
r(z)−q−

]
h dz,

and

j ′(v̄q−)(h) = 1

q−

∫
�

−�p(z)v̄ − �q(z)v̄

v̄q−−1 h dz

= 1

q−

∫
�

[
c0v̄

μ(z)−q− − c4v̄
r(z)−q−

]
h dz.
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Whereas, the convexity of j(·) implies the monotonicity of j ′(·). Therefore, it gives

0 ≤
∫

�

c0[ūμ(z)−q− − v̄μ(z)−q−](ūq− − v̄q−) dz

−
∫

�

c4[ūr(z)−q− − v̄r(z)−q−](ūq− − v̄q−)dz ≤ 0,

so, ū = v̄.
This proves the uniqueness of the positive solution ū ∈ intC+ of (14). Since the

equation is odd, v̄ = −ū ∈ −intC+ is the unique negative solution of (14). ��
These solutions provide bounds for the constant sign solutions of problem (1). We

introduce the following two sets:

S+ = set of positive solutions of problem(1),

S− = set of negative solutions of problem(1).

From Propositions 4 and 5, we have

∅ �= S+ ⊆ intC+ and ∅ �= S− ⊆ −intC+.

Proposition 7 If hypotheses H0 and H1 hold, then the statements hold true:

(a) ū ≤ u for all u ∈ S+;
(b) v ≤ v̄ for all v ∈ S−.

Proof (a) Let u ∈ S+ and consider the Carathéodory function k+ : � × R → R

defined by

k+(z, x) :=
{
c0(x+)μ(z)−1 − c4(x+)r(z)−1 if x ≤ u(z)
c0u(z)μ(z)−1 − c4u(z)r(z)−1 if u(z) < x

. (17)

Weset K+(z, x) := ∫ x
0 k+(z, s) ds and consider theC1-functionalγ+ : W 1,p(z)

0 (�)

→ R defined by

γ+(u) :=
∫

�

1

p(z)
|Du|p(z) dz +

∫
�

1

q(z)
|Du|q(z) dz −

∫
�

K+(z, u) dz

for all u ∈ W 1,p(z)
0 (�).

From (17) it is clear that γ+(·) is coercive. Also, it is sequentially weakly lower
semicontinuous. So, we can find ũ ∈ W 1,p(z)

0 (�) such that

γ+(ũ) = inf
{
γ+(u) | u ∈ W 1,p(z)

0 (�)
}

. (18)

Let v ∈ intC+. Since u ∈ S+ ⊆ intC+, we can find t ∈ (0, 1) small enough such
that tv < u (see [12], Proposition 4.1.22, p. 274). Since μ+ < q−, as in the proof
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of Proposition 6, we have γ+(tv) < 0. Hence

γ+(ũ) < 0 = γ+(0) (see (18)) ⇒ ũ �= 0. (19)

Using (17), we easily show that

Kγ+ ⊆ [0, u] ∩ C+ ⇒ ũ ∈ [0, u] ∩ C+ and ũ �= 0 ⇒ ũ = ū ∈ intC+,

where we have applied (17)–(19) and Proposition 6. So, we conclude that ū ≤ u
for all u ∈ S+.

(b) Similarly, we show that v ≤ v̄ for all v ∈ S−. ��
Using these bounds, we can produce the extremal constant sign solutions for prob-

lem (1).

Proposition 8 If hypotheses H0 and H1 hold, then we can find u∗ ∈ S+ ⊆ intC+ and
v∗ ∈ S− ⊆ −intC+ such that

u∗ ≤ u f or all u ∈ S+ and v ≤ v∗ f or all v ∈ S−.

Proof From Papageorgiou et al. [11] (see the proof Proposition 7), we know that the
solution set S+ is downward directed (that is, if u1, u2 ∈ S+, then we can find u ∈ S+
such that u ≤ u1 and u ≤ u2). Also, from the proof of Proposition 4, we can restrict
ourselves to the set S+ ∩ [0, a]. Then, we can find a sequence {un}n∈N ⊆ S+ ∩ [0, a]
such that

inf S+ = inf
n∈N un .

For each n ∈ N, we have

〈Ap(z)(un), h〉 + 〈Aq(z)(un), h〉 =
∫

�

f (z, un)h dz (20)

for all h ∈ W 1,p(z)
0 (�). Choosing h = un ∈ W 1,p(z)

0 (�) and recalling that un ∈ [0, a]
for all n ∈ N, we obtain

ρp(Dun) ≤ c7‖un‖ for somec7 > 0alln ∈ N,

⇒ {un}n∈N ⊆ W 1,p(z)
0 (�) is bounded (see Proposition 1).

So, we may assume that

un
w−→ u∗ in W 1,p(z)

0 (�) and un → u∗ in L p(z)(�). (21)

In (20) we use the test function h = un − u∗ ∈ W 1,p(z)
0 (�), pass to the limits as

n → ∞ and apply (21). Then, we have

lim
n→∞[〈Ap(z)(un), un − u∗)〉 + 〈Aq(z)(un), un − u∗)〉] = 0.
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But, the monotonicity of Aq(z)(·) reveals that

lim sup
n→∞

[〈Ap(z)(un), un − u∗)〉 + 〈Aq(z)(u
∗), un − u∗)〉] ≤ 0.

The latter combined with the (S)+-property of A and (21) imply that

un → u∗ in W 1,p(z)
0 (�). (22)

If in (20) we pass to the limit as n → ∞ and use (22), then we have

〈Ap(z)(u
∗), h〉 + 〈Aq(z)(u

∗), h〉 =
∫

�

f (z, u∗)h dz (23)

for all h ∈ W 1,p(z)
0 (�). From Proposition 7 and (22)–(23), we have

ū ≤ un for all n ∈ N ⇒ ū ≤ u∗ ⇒ u∗ ∈ S+ ⊆ intC+ and u∗ = inf S+.

Similarly, we produce v∗ ∈ S− and v∗ = sup S−. We mention that the set S− is
upward directed (that is, if v1, v2 ∈ S−, we can find v ∈ S− such that v1 ≤ v and
v2 ≤ v). Also on account of the proof of Proposition 4, we can restrict ourselves to
S− ∩ [−c, 0]. ��

4 Nodal solutions

In this section we show the existence of a nodal solution to problem (1). To obtain
such a solution, we will focus on the order interval [v∗, u∗] by using truncations. More
precisely, observe that any nontrivial solution of problem (1) in this order interval
distinct from u∗ and v∗, is nodal on account of the extremality of u∗ and v∗.

So, we introduce the Carathéodory function ĝ : � × R → R defined by

ĝ(z, x) =
⎧⎨
⎩

f (z, v∗(z)) if x < v∗(z)
f (z, x) if v∗(z) ≤ x ≤ u∗(z)
f (z, u∗(z)) if u∗(z) < x

. (24)

Alsowe consider the positive and negative truncations of ĝ(z, ·), namely, theCarathéo-
dory functions

ĝ±(z, x) = ĝ(z,±x±). (25)

Then we set Ĝ(z, x) = ∫ x
0 ĝ(z, s) ds and Ĝ±(z, x) = ∫ x

0 ĝ±(z, s) ds and introduce

the C1-functionals β̂, β̂± : W 1,p(z)
0 (�) → R defined by

β̂(u) =
∫

�

1

p(z)
|Du|p(z) dz +

∫
�

1

q(z)
|Du|q(z) dz −

∫
�

Ĝ(z, u) dz,
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and

β̂±(u) =
∫

�

1

p(z)
|Du|p(z) dz +

∫
�

1

q(z)
|Du|q(z) dz −

∫
�

Ĝ±(z, u) dz

for all u ∈ W 1,p(z)
0 (�).

Using (24)–(25), the anisotropic regularity theory and the extremality of u∗ and v∗,
we obtain the following result.

Proposition 9 If hypotheses H0 and H1 hold, then K
β̂

⊆ [v∗, u∗] ∩ C1
0(�̄), K

β̂+ =
{0, u∗}, K

β̂− = {0, v∗}.
The next observation, will allow the use of the mountain pass theorem.

Proposition 10 If hypotheses H0 and H1 hold, then u∗ ∈ intC+ and v∗ ∈ −intC+ are
local minimizers of the functional β̂(·).

Proof From (24) and (25) it is clear that β̂+(·) is coercive. Also it is sequentially
weakly lower semicontinuous. So, we can find ũ∗ ∈ W 1,p(z)

0 (�) such that

β̂+(ũ∗) = inf
{
β̂+(u) | u ∈ W 1,p(z)

0 (�)
}

. (26)

Since u∗ ∈ intC+, if u ∈ intC+ for t ∈ (0, 1) small we will have that
tu ≤ min{u∗, δ} (see hypothesis H1(v) and [12], p. 274). Therefore as in the proof of
Proposition 6, since μ+ < q−, we have

β̂+(tu) < 0 ⇒ β̂+(ũ∗) < 0 = β̂+(0) (see (26)) ⇒ ũ∗ �= 0. (27)

From (26) and (27) we have ũ∗ ∈ K
β̂+ \ {0}, hence ũ∗ = u∗ ∈ intC+ (see Proposi-

tion 9). Notice that

β̂|C+ = β̂+|C+ ⇒ u∗ is a local C1
0(�̄)-minimizer of β̂(·).

The latter together with [7] and [20] implies that

u∗ is a localW 1,p(z)
0 (�̄)-minimizer of β̂(·). (28)

Similarly for v∗ ∈ −intC+ we can obtain the desired conclusion by using the
functional β̂−(·). ��

Now we are ready to produce a nodal solution to problem (1).

Proposition 11 If hypotheses H0 and H1 hold, thenproblem (1)admits a nodal solution
y0 ∈ [v∗, u∗] ∩ C1

0(�̄).

123



Anisotropic (p, q)-equations with superlinear reaction

Proof On account of Proposition 9, we may assume that K
β̂
is finite. Otherwise we

already have an infinity of smooth nodal solutions (see Proposition 9) and so we are
done. So, we may assume that

β̂(v∗) ≤ β̂(u∗).

The analysis is similar if the opposite inequality holds. Since u∗ ∈ intC+ is a local
minimizer of β̂(·) (see Proposition 10) and K

β̂
is finite, using [12,Theorem 5.7.6, p.

449], we can find η ∈ (0, 1) small such that

β̂(v∗) ≤ β̂(u∗) < inf
{
β̂(u) | ‖u − u∗‖ = η

}
= m̂ and ‖v∗ − u∗‖ > η. (29)

Recall that β̂(·) is coercive (see (24)). So, from [12], Proposition 5.1.15, p. 369, we
have that

β̂(·) satisfies the C-condition. (30)

Then (28)–(30) permit the use of the mountain pass theorem. So, we can find y0 ∈
W 1,p(z)

0 (�) such that

{
y0 ∈ K

β̂
⊆ [v∗, u∗] ∩ C1

0(�̄) see Proposition 9,

y0 /∈ {v∗, u∗}, C1(β̂, y0) �= 0 see [11], p. 527

}
. (31)

Since 0 ∈ infC1
0 (�̄)[v∗, u∗], through a standard homotopy invariance argument, we

infer that

Ck(β̂, 0) = Ck(ϕ, 0) = 0, for all k ∈ N0 (see [[9]]). (32)

From (30) and (32), we infer that

y0 /∈ {0, u∗, v∗}, y0 ∈ [v∗, u∗] ∩ C1
0(�̄),

⇒ y0 ∈ C1
0(�̄) is a nodal solution of problem (1).

This completes the proof of the proposition. ��

So, summarizing, we can state the following multiplicity theorem for the problem
(1), which provides the exact sign information for all the solutions produced.

Theorem 12 If hypotheses H0 and H1 hold, then problem (1) has at least five nontrivial
solutions

u0, û ∈ intC+ with u0 �= û, v0, v̂ ∈ −intC+ with v0 �= v̂ and y0 ∈ C1
0(�̄) nodal .
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16. Rǎdulescu, V.D., Repovš, D.D.: Partial differential equations with variable exponents: variational
methods and qualitative analysis. CRC Press, Taylor Frances Group, Boca Raton (2015)

17. Ragusa, M.A., Tachikawa, A.: Regular for minimizer for functions of double phase with variable
exponents. Adv. Nonlinear Anal. 9, 710–728 (2020)

18. Ruzicka, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Math-
ematics, vol. 1748. Springer, Berlin (2000)

123



Anisotropic (p, q)-equations with superlinear reaction
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