
Numer. Math. Theor. Meth. Appl. Vol. 13, No. 2, pp. 353-371
doi: 10.4208/nmtma.OA-2019-0109 May 2020

A Dynamical Method for Solving the Obstacle
Problem

Qinghua Ran1,2,∗, Xiaoliang Cheng1 and Stéphane Abide3
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Abstract. In this paper, we consider the unilateral obstacle problem, trying to find
the numerical solution and coincidence set. We construct an equivalent format of
the original problem and propose a method with a second-order in time dissipative
system for solving the equivalent format. Several numerical examples are given to
illustrate the effectiveness and stability of the proposed algorithm. Convergence
speed comparisons with existent numerical algorithm are also provided and our
algorithm is fast.
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1. Introduction

The obstacle problem is a typical variational inequality of the first kind [1]. It
appeared in many fields, such as elastoplastic torsion problems in lubrication theory,
membranes in elastic theory, optimal control and option pricing, which means that re-
search into numerical methods for solving the obstacle problem is of great significance.

Let Ω be a bounded domain with a Lipschitz boundary ∂Ω. Given f ∈ L2(Ω) and
ψ ∈ H1(Ω) with ψ ≤ 0 on ∂Ω. The obstacle problem, e.g., describes the equilibrium
position of an elastic membrane occupying the domain Ω. The elastic membrane (1)
passes through the boundary of Ω; (2) lies above an obstacle of height ψ; and (3) is
subject to the action of a vertical force which is proportional to f [2].

We denote by u the vertical displacement component of the membrane. The set of
admissible displacements is K = {u ∈ H1

0 (Ω)|u ≥ ψ a.e. in Ω}, which is a closed and
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convex set. According to the principle of energy minimization, the obstacle problem
for the membrane can be stated as follows

Find u ∈ K : E(u) = inf
v∈K

{
1

2

∫
Ω
|∇v|2dx−

∫
Ω
fvdx

}
. (1.1)

It has a unique solution u that belongs to H1
0 (Ω) [3]. In addition, if ψ ∈ H2(Ω), then

u ∈ H2(Ω)∩H1
0 (Ω). It is well known that the solution of (1.1) is also characterized by

the variational inequality

u ∈ K,
∫

Ω
∇u · ∇(v − u)dx ≥

∫
Ω
f(v − u)dx, ∀v ∈ K. (1.2)

If the solution u ∈ H2(Ω) ∩H1
0 (Ω), then the following relations hold [2]:

u− ψ ≥ 0, −∆u− f ≥ 0, (u− ψ)(−∆u− f) = 0 a.e. in Ω. (1.3)

Consequently, we have Ω = Ω1
⋃

Ω2 and

u− ψ > 0 and −∆u− f = 0 in Ω1,

u− ψ = 0 and −∆u− f > 0 in Ω2.

Here Ω2 denotes the coincidence set where the elastic membrane contacts with the
obstacle and Ω1 denotes the non-coincidence set.

Various algorithms have been proposed for solving the obstacle problem. In the
following, we provide a brief review of some of the existing methods. The most well-
known solution techniques are projected methods such as the relaxation method [4]
and multigrid method [5–7], whose convergence rate depend on the mesh refine-
ment. [8] gave active set strategies which can be efficiently implemented by the multi-
grid approach. [9] proposed a moving obstacle method which considered iterative ap-
proximation of the contact region. [10, 11] investigated iterative solution of piecewise
linear systems for the numerical solution of the obstacle problem. [12] proposed a di-
rect algorithm with a penalization parameter. [1] studied virtual element method which
can work on very general polygonal elements, etc..

The idea of using dynamic systems to solve mathematical problems is well known.
Recently, there has been increasing evidence that second-order in time dissipative sys-
tems enjoy remarkable optimization properties [13]. They have been developed for
solving a variety of problems, e.g., the inverse source problem [13] and nonlinear
Schrödinger equation [14]. Combined with the particle method, [15] proposed the
dynamical functional particle method (DFPM) and this method is well used in solving
many problems such as large linear equations [16] and eigenvalue problems [14]. It
was found that this approach is very efficient. The convergence rate of DFPM is fast in
all cases (exponential time) [15]. In this paper, we consider the applicability of DFPM
for solving the obstacle problem.

Let us introduce the notations used in this paper firstly. Given a bounded domain
D ∈ Rd (here d = 1, 2) and two positive integers m and p, Wm,p(D) is the Sobolev
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space with the corresponding usual norm which is denoted by ‖ · ‖m,p,D. When p = 2,
Wm,2(D) is written as Hm(D) and the norm is simplified to ‖ · ‖m,D. The closure of
C∞0 (D) in Hm(D) is denoted by Hm

0 (D). Rm is the m-dimensional Euclidean space
with the inner product (u, v) =

∑m
i=1 uivi and norm ‖u‖2 =

√
(u, u). Throughout the

text, we adopt ‖ · ‖ to denote the above norm in Rm. In most of the paper, we omit to
write the spatial variable x for functions.

The rest of the paper is organized as follows. The idea of the dynamical functional
particle method is outlined in Section 2. In Section 3 we introduce dynamical method
for solving the obstacle problem, where we give an equivalent description of the obsta-
cle problem. Section 4 contains numerical experiments to illustrate the effectiveness
and stability of our algorithm. Finally, a summary is given in the last section.

2. The dynamical functional particle method

Let H be a functional, z : X → Rk, k ∈ N . The dynamical functional particle
method’s main idea is to solve the original equation H(z(x)) = 0, which could be,
e.g., a differential, integral or integro-differential equation and possibly nonlinear, by
instead defining a dynamical system z = z(x, t) : X × [0,+∞) → Rk and solving the
following second-order dynamic system

z̈ + ηż = H(z) (2.1)

in such a way that ż, z̈ → 0, as t increases, i.e., z(x, t) approaches to z(x), the solution
of H(z(x)) = 0 [15]. Here the dots are standard notation for time derivatives. The
symbol η is damping parameter, which can be constant or function related to time and
space depending on the specific problem. For simplicity, we assume that η is a constant
here.

Discretizing Eq. (2.1) such that zi(t) = z(xi, t) for i = 1, · · · , n, the corresponding
discrete equation is

z̈i(t) + ηżi(t) = Hi(z1(t), · · · , zn(t)), i = 1, · · · , n.

The total notes I = {1, · · · , n} can be viewed as a set of n “particles” where the position
of particle i is zi. The “force” on this particle is given by Hi and may depend on the
position of other particles. When the particles become stationary at t = tH , the discrete
function zzz(t) = (z1(t), z2(t), · · · , zn(t))T represents the discrete approximation to z(x).

The numerical algorithm based on (2.1) has used to solve some special problems,
such as large linear equations, eigenvalue problems and nonlinear Schrödinger prob-
lem [14,16]. The algorithm’s stability and cost efficiency is promising [17].
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3. The dynamical method for the obstacle problem

3.1. Equivalent description of the obstacle problem

It is well known that solving the obstacle problem according to (1.3) is more difficult
than (1.1) and (1.2). But this form is also very important. Inspired by [18], we derived
the equivalent form of (1.3), which makes the problem easier to solve.

Let [·]+ denotes the positive part of a scalar quantity x ∈ R :

[x]+ =

{
x, if x > 0,

0, otherwise.

In the following, we will make use of the property: |[a]+ − [b]+| ≤ |a − b|, ∀a, b ∈ R,
where |a| denotes the absolute value of a.

Lemma 3.1. Let ε > 0, the following complementary problem in Ω
(i) u− ψ ≥ 0,

(ii) −∆u− f ≥ 0,

(iii) (u− ψ)(−∆u− f) = 0,

(3.1)

is equivalent to

−∆u− f − 1

ε
[ψ − u− ε(∆u+ f)]+ = 0. (3.2)

Proof. Let u be a solution of (3.1). The condition (3.1)(ii) yields either

−∆u− f > 0 or −∆u− f = 0.

Firstly, if −∆u− f > 0. Then (3.1)(iii) implies that u− ψ = 0. In this case we get

−∆u− f − 1

ε
[ψ − u− ε(∆u+ f)]+ = −∆u− f − 1

ε
[−ε(∆u+ f)]+ = 0.

Secondly, if −∆u − f = 0. According to (3.1)(i) we get [ψ − u − ε(∆u + f)]+ = 0. In
this case

−∆u− f − 1

ε
[ψ − u− ε(∆u+ f)]+ = −∆u− f = 0.

Conversely, let u such that (3.2) holds. This implies

−∆u− f =
1

ε
[ψ − u− ε(∆u+ f)]+ ≥ 0,

so that (3.1)(ii) holds. Consider first the case−∆u−f > 0, i.e., [ψ−u−ε(∆u+f)]+ > 0.
Then (3.2) can be rewritten as

0 = −∆u− f − 1

ε
(ψ − u− ε(∆u+ f)) = −1

ε
(ψ − u),
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which implies that ψ − u = 0. Therefore, (i)-(iii) of (3.1) are satisfied.
We now consider the case −∆u − f = 0, which implies ψ − u − ε(∆u + f) ≤ 0, so

that ψ − u ≤ 0. Therefore (3.1)(i)(ii)(iii) are satisfied. �

Suppose f ∈ L2(Ω), ψ ∈ H2(Ω) with the compatibility condition ψ|∂Ω ≤ 0, it is
known that the solution of (1.1) satisfies the regularity property u ∈ H2(Ω). In this
case, by Lemma 3.1 the obstacle problem can be formulated as the following equation:

F (u) = −∆u− f − 1

ε
[ψ − u− ε(∆u+ f)]+ = 0 a.e. in Ω, (3.3)

where ε > 0 is any constant. This format transforms the original complementary prob-
lem into an equation which is easier to solve. Obversely the choice of parameter ε is
more flexible than the penalty method [12]. We don’t need to select the parameter
sufficiently small.

In order to obtain a numerical solution of u(x), we discretize the problem (3.3) by
using a finite difference five-point scheme (it is possible to use finite elements or any
other method). Let I = {1, · · · ,m} (m ∈ N) denotes the set of the total nodes. The
discretization scheme yields the following finite dimensional problem:

FFF (uuu) = Auuu− fff − 1

ε
[ψψψ − uuu+ ε(Auuu− fff)]+ = 000. (3.4)

Here, uuu = (u1, · · · , um)T , ψψψ = (ψ1, · · · , ψm)T and fff = (f1, · · · , fm)T are vectors in Rm.
The ith (i ∈ I) subentries of uuu, ψψψ and fff are the value of u(x), ψ(x) and f(x) at node i,
respectively. A = (aij) ∈ Rm×m is the stiffness matrix which is symmetric and positive
definite [19]. For simplicity of statements, in the following we also use notations F, u,
ψ and f to denote their corresponding vectors in Rm.

3.2. DFPM for the F (u) = 0 problem

In order to solve the problem (3.4) effectively, an artificial scalar time t is introduced
to study the following second-order (in time) dynamical system

ü(t) + ηu̇(t) = F (u(t)) in [0,+∞), (3.5)

where η > 0 is a damping parameter keeping constant here and the dots are standard
notation for time derivatives. Under the proper parameter η > 0, the solution u(t) of
(3.5) converges to u as t → ∞, where u is the solution of (3.4). In contrast to the
gradient descent method, the system (3.5) introduces the inertial term ü, which allows
to overcome some of the shortcomings of the gradient descent method, such as the
zig-zag phenomenon.

It is noted that the above equation hold in componentwise sense. That is

üi(t) + ηu̇i(t) = Fi(u(t)), i = 1, · · · ,m. (3.6)
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Then total nodes’ set I = {1, · · · ,m} can be viewed as a set of m “particles”, where the
position of particle i is ui. The “force” on this particle is given by Fi(u). Under the force
of Fi, the particle position ui evolve in order to approach the steady state solution.

Denote u̇(t) = v(t) and rewrite the second-order Eq. (3.5) into an equivalent system
which is first-order in time:{

v̇(t) = F (u(t))− ηv(t),

u̇(t) = v(t),
in [0,+∞). (3.7)

This allows to consider Eq. (3.5) when F is non-smooth or subject to constraints [17].

Theorem 3.1. Given u0, v0 ∈ Rm, the first order system (3.7) has a unique solution.

Proof. Denote E = Rm ×Rm. We define the space E with linear operations

[u1, v1]T + [u2, v2]T = [u1 + u2, v1 + v2]T , α[u1, v1]T = [αu1, αv1]T ,

scalar product
([u1, v1]T , [u2, v2]T )E = (u1, u2) + (v1, v2)

and the corresponding norm

‖[u1, v1]T ‖E =
√
‖u1‖2 + ‖v1‖2,

where [ui, vi]
T ∈ E, α is any constant, ui, vi ∈ Rm, i = 1, 2. Obviously, under this

definition, E is a Banach space.
As |[a]+ − [b]+| ≤ |a− b|, ∀a, b ∈ R, we can get that

‖[u]+ − [v]+‖ =

(
m∑
i=1

([ui]+ − [vi]+)2

) 1
2

≤

(
m∑
i=1

(ui − vi)2

) 1
2

= ‖u− v‖, ∀u, v ∈ Rm.

Using the above conclusion, we obtain

‖F (u1)− F (u2)‖

=‖Au1 − f −
1

ε
[ψ − u1 + ε(Au1 − f)]+ − (Au2 − f −

1

ε
[ψ − u2 + ε(Au2 − f)]+)‖

≤‖Au1 −Au2 −
1

ε
[ψ − u1 + ε(Au1 − f)]+ +

1

ε
[ψ − u2 + ε(Au2 − f)]+‖

≤‖Au1 −Au2‖+
1

ε
‖[ψ − u2 + ε(Au2 − f)]+ − [ψ − u1 + ε(Au1 − f)]+‖

≤2‖Au1 −Au2‖+
1

ε
‖u1 − u2‖

≤2‖A‖‖u1 − u2‖+
1

ε
‖u1 − u2‖

≤c1‖u1 − u2‖, ∀u1, u2 ∈ Rm.
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Where c1 is a constant and ‖A‖ is induced by the vector norm, i.e.,

‖A‖ = max
x 6=0

‖Ax‖
‖x‖

.

Let z = [u(t), v(t)]T and rewrite (3.7) to be a first-order dynamical system in the
phase space E: {

ż(t) = G(z(t)) in [0,+∞),

z(0) = [u0, v0]T ,
(3.8)

where G(z(t)) = [v(t), F (u(t))− ηv(t)]T .
Now, we show that G is Lipschitz continuous. ∀z1(t), z2(t) ∈ E, we have

‖G(z1(t))−G(z2(t))‖2E
=‖v1(t)− v2(t)‖2 + ‖F (u1(t))− F (u2(t)) + η(v2(t)− v1(t))‖2

≤2‖F (u1(t))− F (u2(t))‖2 + (2η2 + 1)‖v1(t)− v2(t)‖2

≤2c2
1‖u1(t)− u2(t)‖2 + (2η2 + 1)‖v1(t)− v2(t)‖2

≤(2c2
1 + 2η2 + 1) (‖u1(t)− u2(t)‖2 + ‖v1(t)− v2(t)‖2).

Then, there exist a constant L =
√

2c2
1 + (2η2 + 1) satisfying

‖G(z1(t))−G(z2(t))‖E ≤ L‖[u1(t), v1(t)]T − [u2(t), v2(t)]T ‖E .

That is
‖G(z1(t))−G(z2(t))‖E ≤ L‖z1(t)− z2(t)‖E .

Therefore, by the Cauchy-Lipschitz-Picard theorem [20], the first-order dynamical sys-
tems (3.8) (then (3.7)) has a unique solution. �

As the implicit Euler method is all-damping stability [21], we use the scheme to
solve ODE (3.7) {

vn+1 = vn + ∆t(F (un+1)− ηvn+1),

un+1 = un + ∆tvn+1,
(3.9)

where vn = v(tn), un = u(tn) and ∆t is a fixed time step size. It is possible to use the
damped symplectic Euler schemes [21] to solve (3.7), such as{

vn+1 = vn + ∆t(F (un+1)− ηvn),

un+1 = un + ∆tvn+1.
(3.10)

Both formats yield good results, but we only discuss the format (3.9) in this article.
Obviously, a convergent result u in Eq. (3.9) is indeed a solution to the original prob-
lem F (u) = 0. Since the high numerical precision of the multi-particle system is not
necessary during its evolution towards the stationary state and the only desired char-
acteristic is to approach equilibrium as fast as possible, a large time step ∆t can be
allowed [16].
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For simplify of Eq. (3.9), we can get vn+1 =
1

1 + ∆tη
vn +

∆t

1 + ∆tη
F (un+1),

un+1 = un + ∆tvn+1.
(3.11)

Since F (un+1) is nonlinear, let’s do some processing on it. Based on Eq. (3.4), we
propose a kind of Picard iterative algorithm as follows:

F (un+1) = Aun+1 − f − 1

ε
Rn[ψ − un+1 + ε(Aun+1 − f)], (3.12)

where Rn = diag(r1, r2, · · · , rm) and

ri =

{
1, if ψi − (un)i + ε(Aun − f)i > 0,

0, otherwise,
i = 1, 2, · · · ,m.

If the sequence {un} is the solution of F (u) = 0, where F (u) is shown in (3.12). Then,
we can get the following conclusion.

Theorem 3.2. For some k ≥ 0, if Rk = Rk+1, then uk+1 is an exact solution of Eq. (3.4).

Proof. Since Rk = Rk+1, then

Auk+1 − f − 1

ε
Rk+1[ψ − uk+1 + ε(Auk+1 − f)]

=Auk+1 − f − 1

ε
Rk[ψ − uk+1 + ε(Auk+1 − f)] = 0,

that is uk+1 satisfying

Au− f − 1

ε
[ψ − u+ ε(Au− f)]+ = 0.

Therefore, uk+1 is an exact solution of Eq. (3.4). �

Substitute (3.12) into (3.11), the problem (3.4) reduces to the following algebraic
system {

(i) (E −∆tbB)vn+1 = avn + bBun − bRn(ψ − εf)− bf,

(ii) un+1 = un + ∆tvn+1,
(3.13)

where a = 1
1+∆tη , b = ∆t

1+∆tη , B = A + Rn − εRnA, E is the identity matrix of Rm×m.
Obvirously, E−∆tbB is a strictly diagonally-dominant matrix when ∆t is not too large.
So, in this case, the algebraic system (3.13) always has a solution.
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3.3. Algorithm

Based on the previous theoretical analysis, we will give the steps of the dynamical
algorithm for solving the problem (1.1) below.

Algorithm 3.1.
Input : Damping parameter η. Time step size ∆t. Parameter ε. The permissible region

Ω. The mesh size h. Precision number ε0. Initial values: u0, v0. Iterative
index : n← 0.
Output : un.

1. error ← 2ε0

2. while error > ε0 do

3. solve (3.13)(i) with known source un, vn to get vn+1

4. un+1 ← un + ∆tvn+1

5. error ← ‖un+1 − un‖

6. n← n+ 1

7. end while

Remark 3.1. In practice, one may start the algorithm with a random guess for the
vector u0 and simply let v0 = 0.

Remark 3.2. According to Theorem 3.2, it is reasonable to set ‖un+1−un‖< ε0 as stop
criterion.

Remark 3.3. Without loss of generality, we divide the region Ω into a uniform mesh
with a mesh size h, where the grid lines are perpendicular to the coordinate axes.

4. Numerical simulations

In this section, several numerical examples are implemented to illustrate the fea-
sibility and effectiveness of our proposed algorithm. All the computations were per-
formed on a dual core personal computer with 8 GB RAM with Matlab version R2018b.
To evaluate the accuracy of the approximate solutions, we define the relative error for
the approximate solution uh :

Err2 := log2(‖uh − u∗‖/‖u∗‖).

Note in cases where the exact solution u∗ is not available, the last iterative result un is
applied. As we all know, ‖v‖L2(Ω) ≈ h‖vh‖, where vh is the discrete form of v discussed
in this paper. To make the calculation more accurate, we adopt the absolute error
en+1 := h‖un+1 − un‖ ≤ ε0 = 10−7 as the stop criterion in the following tests. In
order to enhance persuasiveness, we also attach the residual error eF := h‖F (un)‖ as
a reference.
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4.1. Test 1

The purpose of this test is to explore the dependence of the solution accuracy and
the convergence speed on damping parameter η, time step size ∆t and parameter ε
and thus to give a guide on the choices of them in the following tests. In this test,
we consider the torsion of an elastic-plastic cylinder of cross-section [22] shown in
Example 4.1.

Example 4.1. The cross-section of the prism is Ω = [0, 1]× [0, 1],

u ∈ K1,

∫
Ω
∇u · ∇(v − u)dx ≥ C

∫
Ω

(v − u)dx, ∀v ∈ K1, (4.1)

where
K1 =

{
v ∈ H1

0 (Ω)||∇v(x)| ≤ 1 a.e. in Ω
}
. (4.2)

By the result of [23], the problem (4.1) and (4.2) can be equivalently expressed as

u = Arg inf
v∈K

{
1

2

∫
Ω
|∇v|2dx−

∫
Ω
Cvdx

}
, (4.3)

where
K =

{
v ∈ H1

0 (Ω)| v ≥ ψ a.e. in Ω
}
. (4.4)

If we choose the constant twist angle C < 0, then (4.3) and (4.4) form a lower obstacle
problem with ψ(x, y) = −dist((x, y), ∂Ω).

Let f(x, y) = C = −8, we use the new algorithm to obtain an approximated solution
with size h = 1

64 and u0 = v0 = 0. The results are shown in Fig. 1. In Fig. 1(b), we
show the plastic region (|∇u| = 1) in white and its complement represents the elastic
region.
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Figure 1: The solution of Example 4.1.
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Figure 2: Evolution of Err2 versus n for different values of ε.

We first investigate the influence of ε on the convergence rate. For this purpose, we
fix ∆t = 10, η = 1. The evolutions of Err2 with respect to the iterative number for the
different values of ε are shown in Fig. 2. The iterative number n, absolute error en and
residual error eF for different values of ε are shown in Table 1. The results show that
for all ε > 0, the iteration converges. As ε gets smaller, the iterative number, error en
and eF remain the same. Comparably, we set ε = 0.05 in the following tests.

We next consider the influence of damping parameter η on the convergence rate.
Similarly, we fix ∆t = 10 and ε = 0.05. The evolutions of Err2 with respect to the
iterative number for the different values of η are shown in Fig. 3. The iterative number
and error for different values of η are shown in Table 2. According to Table 2 and
Fig. 3, we can get that the convergence rate depends less on the values of η. Thus, we
set η = 1 in all numerical experiments below.

We finally consider the influence of time step size ∆t on the convergence rate. Here,
we fix η = 1 and ε = 0.05. The evolutions of Err2 with respect to the iterative number
for the different values of ∆t are shown in Fig. 4. The iterative number and error for

Table 1: Error and iteration number for different values of ε.

ε 2 1 0.5 0.1 0.05 0.01 0.005 0.001
n 16 16 16 16 12 16 17 17
en 7.5823e-08 4.7137e-09 4.7155e-09 4.7155e-09 1.8907e-09 4.7365e-09 4.7155e-09 4.7155e-09
eF 5.8872e-08 6.4374e-08 6.4375e-08 6.4375e-08 6.3844e-08 6.4461e-08 6.4375e-08 6.4375e-08

Table 2: Error and iteration number for different values of η.

η 10 5 1 0.5 0.1 0.05 0.01 0.005
n 12 12 12 12 12 12 12 12
en 4.2964e-08 2.0629e-08 1.8907e-09 8.4496e-10 2.6185e-09 2.8560e-09 3.0467e-09 3.0706e-09
eF 1.0001e-07 7.1571e-08 6.3844e-08 6.3780e-08 6.3874e-08 6.3895e-08 6.3913e-08 6.3915e-08
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Figure 3: Evolution of Err2 versus n for different values of η.

different values of ∆t are presented in Table 3. The results show that with the decrease
of ∆t, the convergence speed slows down when ∆t < 1. It may even lead to non-
convergence due to the continuous accumulation of errors along with the increasing
iterative times. So ∆t can not be too small. Inspite of this, our algorithm is not af-
fected. Since the high numerical precision of the multi-particle system is not necessary
during its evolution towards the stationary state and the only desired characteristic is
to approach equilibrium as fast as possible, a large time step ∆t can be allowed [16].
We also can get that the bigger the time step size ∆t is, the faster the iteration is. How-
ever, our experiments suggest that too big value of ∆t is not necessary. For example,
∆t = 10, 15 and 20 almost have the same convergence rate. By comparing with each
other, we set ∆t = 10 in the following tests.

Table 3: Error and iteration number for different values of ∆t.

∆t 20 15 10 5 1 0.8 0.6
n 12 12 12 12 14 20 44
en 1.6697e-09 1.8958e-09 1.8907e-09 3.3947e-09 8.8247e-08 4.7474e-08 9.3329e-08
eF 1.6015e-08 2.8438e-08 6.3844e-08 2.5385e-07 4.0812e-07 2.9671e-07 7.7774e-07

4.2. Test 2

In this test, we still consider the problem of the torsion of an elastic-plastic cylinder
shown in Example 4.1. We first investigate the stability of approximate solutions with
respect to the selection of initial values u0 and v0. As indicated by Test 1, we set
ε = 0.05, η = 1, ∆t = 10 and the mesh size h = 1

64 . Then we set different values of
u0 and v0 and implement algorithm repeatedly. As is shown in Table 4 where randi,
(i = 1, 2, · · · , 5) means random value, the iteration numbers, en and eF changed barely,
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Figure 4: Evolution of Err2 versus n for different values of ∆t.

which indicates that our algorithm is quite stable. The evolutions of Err2 with respect
to the iterative number for the different values of u0 and v0 are shown in Fig. 5, which
shows that no matter how we choose the initial values, the method proposed in this
paper will quickly (about 2 to 4 steps) determine the approximate coincidence and
non-coincidence sets and then refine the interface between the coincidence and non-
coincidence parts, so there isn’t much difference in the number of iterations under
different initial conditions.

We finally set ε = 0.05, η = 1, ∆t = 10 and u0 = v0 = 0. Then we implement
algorithm repeatedly with different values of h. The iterative result showed in Table 5.
We can see that iterative number n is independent of mesh size and the algorithm is
robust.

Table 4: Error and iteration number for different values of u0 and v0.

u0 and v0 0 rand1 rand2 rand3 rand4 rand5

n 12 15 16 15 16 16
en 1.8907e-09 2.2129e-09 2.2130e-09 4.7232e-09 4.7236e-09 4.7261e-09
eF 6.3844e-08 3.9813e-08 3.9813e-08 6.4408e-08 6.4408e-08 6.4419e-08

Table 5: Error and iteration number for different values of h.

h 1/8 1/16 1/32 1/50 1/64 1/128
n 6 6 7 10 12 20
en 1.5209e-09 2.3770e-09 4.5019e-08 4.6321e-09 1.8907e-09 1.9356e-10
eF 6.1958e-09 1.0704e-09 1.1736e-08 3.0316e-08 6.3844e-08 2.2907e-08
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Figure 5: Evolution of Err2 versus n for different values of u0 and v0.

4.3. Test 3

The above experiments show the good behavior of our proposed method. In this
test, we compare the convergence rates between the method proposed in this paper
and the penalization method [12] by solving other four problems. Indicated by Test
1 and Test 2, for our method, we set ∆t = 10, η = 1, ε = 0.05, u0 = v0 = 0 and
h = 1

64 . We firstly give the other four examples and their numerical results are shown
in Figs. 6-9 respectively, which show that our algorithm is accurate and convergent.

Example 4.2. This two-dimensional unilateral obstacle problem has been reported
in [24,25]. Let Ω = [0, 1]× [0, 1], ψ(x, y) = −dist((x, y), ∂Ω), and

f(x, y) =


300, if (x, y) ∈ S = {(x, y) ∈ Ω : |x− y| ≤ 0.1 and x ≤ 0.3} ,
−70eyg(x), if x ≤ 1− y and (x, y) /∈ S,
15eyg(x), if x > 1− y and (x, y) /∈ S,

where

g(x) =



6x, if 0 < x ≤ 1

6
,

2(1− 3x), if
1

6
< x ≤ 1

3
,

6
(
x− 1

3

)
, if

1

3
< x ≤ 1

2
,

2
(

1− 3
(
x− 1

3

))
, if

1

2
< x ≤ 2

3
,

6
(
x− 2

3

)
, if

2

3
< x ≤ 5

6
,

2
(

1− 3
(
x− 2

3

))
, if

5

6
< x ≤ 1.
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Figure 6: The solution of Example 4.2.
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Figure 7: The solution of Example 4.3.

Example 4.3. Let Ω = [0, 1] × [0, 1], ψ(x, y) = −dist((x, y), ∂Ω), and set f(x, y) =
11(x+ y − 1) [26].

Example 4.4. This one-dimensional unilateral obstacle problem has been reported
in [9]. Set Ω = [0, 1], f(x) = 0 and

ψ(x) =


100x2, if 0 ≤ x ≤ 0.25,

100x(1− x)− 12.5, if 0.25 < x ≤ 0.5,

ψ(1− x), if 0.5 < x ≤ 1.

In Fig. 8(a), the dotted line represents the numerical solution u and the solid line
represents the obstacle ψ. In Fig. 8(b), the abscissa of the part whose function value is
1 represents the coincidence part.
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Figure 8: The solution of Example 4.4.
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Figure 9: The solution of Example 4.5.

Example 4.5. Let Ω = [0, 1]× [0, 1]. The load and obstacle function are f(x, y) = −20
and ψ(x, y) = 10x(1− x)y(1− y)− 1

2 , respectively [27].

For the sake of understanding, we briefly introduce the penalization method. More
details can be found in [12,26]. The penalization method’s idea is writing the obstacle
problem as a multi-valued equation

−∆u+ β(u− ψ) 3 f in Ω, where β(x) =


[−∞, 0], if x = 0,

0, if x > 0,

∅, if x < 0,
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Table 6: Iteration number of different examples for different methods.

Example 4.1 Example 4.2 Example 4.3 Example 4.4 Example 4.5
our method 12 23 16 10 17

penalization method 19 25 17 21 20

and use

βε(x) =


1

ε
x, if x ≤ 0,

0, if x > 0,

to approximate β(x). At step n of iteration, the authors use finite element method to
solve a linear elliptic equation

−∆un +
1

εn
χΩ\Ωn(un − ψ) = f in Ω,

then they let un = max {un, ψ}, Ωn+1 = {x ∈ Ω : un(x) > ψ(x)}, εn+1 = εn
2 and iter-

ated until ‖un − un−1‖1,Ω < 10−3. In this method, how the parameter ε is selected is
critical. Based on this process, we set an algorithm for the penalization method which
keeps its original process and optimal parameter ε. For comparison, we use finite dif-
ference five-point scheme to solve the linear elliptic equation at each iteration and set
en = h‖un− un−1‖ ≤ 10−7 as the stop criterion and h = 1

64 , u0 = 0 for the penalization
method. The iterative numbers for different methods are shown in Table 6. Obviously,
our algorithm is as fast as the penalization method. But the choice of parameter ε is
more flexible than the penalization method. Our method converges quickly in many
cases.

5. Conclusions

We construct a equivalent format of the well-known elliptic obstacle problem and
propose a robust algorithm based on the dynamical functional particle method (DFPM).
Several numerical experiments illustrate the effectiveness of the algorithm. The exper-
imental results show that our algorithm converges as fast as the penalization method
under the condition of more flexible selection of parameter. And our algorithm barely
depend on the parameters and initial values.
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