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ABSTRACT
This paper brings out an analysis of the projection iterative algorithm for
the numerical solution of the Signorini problem. The very closed connec-
tions with the switchingmethod are highlighted. In addition, the relevance
of higher-order discretization for Signorini problem is discussed. Thus, a
specific iterative solver is developed to address the present fourth and
sixth-order compact scheme discretizations. This method is based on a
lower-order preconditioning method. Several numerical experiments have
been performed to bring light to the accuracy of such method, despite the
lack of smoothness at the Signorini boundary.
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1. Introduction

The design of efficient numerical methods for problems arising frommechanics is of primary impor-
tance. Applications are commonly encountered in fluid mechanics, deformable solid mechanics or
heat transfer. Despite that the rapid growth of parallel computing allows computations on finemeshes
with standard discretizations, the higher-order ones can be considered as an alternative to get accurate
solutions while saving computational cost. Nevertheless, their implementation for complex mathe-
matical models, like Signorini problems, remains an open issue because of complex algorithms due
the non-linear equations. In the present paper, the projection iterative method [13,23] involved in
solving the Signorini problem is first analysed. Then, the relevance of the higher-order finite dif-
ference discretizations for this kind of problem is shown, despite the limited differentiability of the
solution at the boundaries.

Signorini problems arise in mathematical modeling of various physical and industrial problems
such as beach percolation, contact problems or electropainting process. These non-linear problems
are featured by two boundary inequalities on the solution and its normal derivative combined with
a complementary equation. Typical approaches to get solutions of this problem are based on numer-
ical approximations. Most of numerical methods involve a linearization strategy of the non-linear
Signorini problem, and is combined with a discretization of the underlying elliptic problem. The
linearization consists in determining the part of the Signorini boundary for which Dirichlet or Neu-
mann/Robin boundary condition are prescribed. The decomposition-coordination method [18], the
switching method [5], the optimization method [11,16] and the linear complementary method [24]
have been proposed to this purpose.
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The Dirichlet/Neumann partition is computed in an iterative way with the switching method [5].
This partition is evaluated from inequalities that involve the solution and the normal derivative at the
Signorini boundary. Thus, solving the Signorini problem is reduced to a sequence of elliptic equation
for which the boundary condition kind switches fromDirichlet to Neumann until convergence of the
iterative method. This specificity is shared with the semi-smooth Newton method for the Signorini
problem [10]. In this approach, the use of the semi-smooth Newton method to address the Signorini
non-linearity leads to an algorithm for which each non-linear iteration involve simultaneously Neu-
mann andRobin boundary conditions. This partition of the Signorini boundary condition introduces
active set nodes which define the Signorini boundary [10]. This method also introduces a shift solu-
tion computed in a preprocessing stage, and depends on a positive parameter c. Recently, a projection
iterative method has been developed to address the Signorini problem [23]. The key point of this
approach is an equivalence between the Signorini boundary condition and a fixed point equation. The
resulting algorithms share some features with the switching [5] and the active set methods [10]. The
Signorini boundary is defined as a convergent sequence of Dirichlet/Robin [23] or Neumann/Robin
[13] boundary partition. As in [10] the projection iterative method, a parameter c> 0 is introduced
and is closely associated to the Robin boundary condition. It should bementioned that thesemethods
have some similarities, as discussed in the context of contact mechanics of deformable bodies [2].

The linear problems resulting from these linearization methods have been discretized in several
ways. Finite elements is the common discretization, although other approximations can be found in
the literature. The FiniteDifferences [10], the Finite Elements [2], or themovingKriging interpolation
[13] and the recent Hybrid High-Order discretization [7] outline the diversity of the available dis-
crete approximations. One can also note the recent contribution based on the element-free Galerkin
method [14]. In [7], a fourth-order discretization has been developed and successfully tested with
a smooth solution of a Signorini problem. According to our knowledge, this work seems to be the
first one involving higher-order discretization for the Signorini problem.Higher-order discretizations
may be considered as method for saving computational cost. Indeed, it is expected that less degrees of
freedom are needed to approximate a solution in comparison with the low-order one. However, their
implementation turns out to be a tricky problem. High-order compact scheme (HOCS) discretiza-
tions belong to this category of higher-order discretizations. They have a relative ease of use despite
their implicit formulation. For instance, by using multigrid defect correction, we can build efficient
linear solvers for HOCS discretizations of Poisson’s equation [3]. According to our knowledge, there
is no work reporting a such discretization for the Signorini problem.

The aim of this paper is twofold. First, we propose an analysis of the iterative projection method.
We show that in the limit of large c> 0 parameter, the projection iterative method is practically the
same as the switching method. Next, we present a fourth and a sixth-order accurate discretizations of
the Signorini problem bymaking use of HOCS. Finally, several numerical experiments are performed
to verify and to highlight the numerical properties which result from the present analysis.

2. Numerical method of solutions for the signorini problem

2.1. Problem description

Let � ⊂ R
2 be a bounded domain of boundary � and an outward unit normal n. This boundary

consists of three disjoint parts, a Dirichlet type boundary �d, a Neumann type boundary �n and a
Signorini type boundary �s. The Signorini problem is defined by:

− ∇ · ∇u = 0 in � (1)

u = ū on �d (2)

∂nu = q̄ on �n (3)

u ≥ f , ∂nu ≥ g, (u − f )(∂nu − g) = 0 on �s (4)
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where ū, q̄, f and g are known functions defined on � and �. We assume that the problem satisfies
�d �= ∅ or

∫
�n

q̄d� + ∫
�s
gd� < 0. Then according to the theory of variational inequalities, the Sig-

norini problem has admits unique solution [8]. The non-linear boundary condition Equation (4) is
an intrinsic part of the Signorini problem and consists in two inequalities for the unknown u and its
derivative q = ∂nu combined to a complementary equation. The problem Equations (1)–(4) results
from the mathematical modelling of an elastic membrane submitted to gravity forces and such that
the Signorini boundary moves freely up to with the obstacle modeled by f. In other hand, one have to
determine the part of the Signorini boundary �s on which Neumann boundary condition �sn occurs
and the remaining part where the Dirichlet boundary �s/�sn condition is prescribed. To this end,
the non-linear boundary conditions Equation (4) necessitates a specific design [5,10,13,23]. The pro-
jection iterative methods [21–23] are such approaches. In the next section we provide an heuristic
analysis to outline the connections with the switching method [5]. This analysis mainly consider the
existence and uniqueness of the solution for the projection iterative method provided in [23].

2.2. An analysis of the projection iterative algorithm

The projection iterative algorithm was detailed in [23] to solve the Signorini problem Equa-
tions (1)–(4). The method relies on a way to linearize the non-linear boundary conditions
Equation (4). This consists in subtly reformulating the Signorini boundary conditions in a fixed
point equation, which is solved in an iterative way. Several similarities with the active set method
or switching algorithm can be noted: it shares a strategy to find the correct subsets of �s for which
the Dirichlet, Neumann/Robin boundary conditions are prescribed [2,5]. In the following, starting
from the projection iterative method, we we propose an iterative scheme which is free of penalization
parameter/Then we discuss the connections with the switching method [5].

The projection iterative method is based on an equivalent form of the Signorini boundary
conditions Equation (4). It is rewritten as a fixed point equation [13,23]:

(
u − f

) − [(
u − f

) − c
(
∂nu − g

)]
+ = 0 (5)

with c> 0 and [a]+ = max(0, a) denoting the projection operator. Thus, the solution of Equa-
tions (1)–(4) could be addressed with an iterative scheme using the Equation (5). This scheme for
k ≥ 0 is reported hereafter:

(
uk+1 − f

)
−

[(
uk − f

)
− c

(
∂nuk+1 − g

)]
+

= 0 (6)

Thus, according to the iteration equation Equation (6), and identically to [10], the following algorithm
denoted by (A1) has been derived in [23]:

⎧⎨
⎩

−∇ · ∇uk+1 = s on �

uk+1 = f in �̄k+1
sn

uk+1 + c∂nuk+1 = uk + cg in �k+1
sn

(7)

where, �k+1
sn = {x ∈ �s :

(
uk − f

) − c
(
∂nuk − g

)
> 0} and �̄k+1

sn = �s/�k+1
sn . The convergence

proof of the algorithm (A1) is detailed in [23]. Indeed, the mentioned algorithm (A1) introduces
a constant c> 0 and affirms that the convergence proof holds for all c> 0. Therefore, the numerical
experiments show that the best convergence results are obtained for large values of c [13,23]. Next, we
can note that the boundary conditions in Equation (7) are derived from writing down Equation (6).
However, the definition of the set �k+1

sn in Equation (7) is not equivalent to Equation (6) since the
term ∂nu is evaluated at the iteration k. Thus, the present investigation is motivated by the follow-
ing two remarks. First, we give an equivalent definition of the set �k+1

sn . Indeed, from the definition
x ∈ �k+1

sn , the condition
(
uk − f

) − c
(
∂nuk − g

)
> 0 is fulfiled. Two different cases depending on the
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status of the node x at the Signorini boundary for the previous iteration k have to be considered. If
x ∈ �k

sn then uk − uk−1 = −c(∂nuk − g) because of the algorithm (A1) definition. Thus, the condi-
tion

(
uk − f

) − c
(
∂nuk − g

)
> 0 leads to 2uk − uk−1 > f . Next, if x ∈ �̄k

sn, then uk = f implies that
the condition

(
uk − f

) − c
(
∂nuk − g

)
> 0 reduces to

(
∂nuk − g

)
< 0. One can summarize this with

the following definition set of �k+1
sn :

�k+1
sn =

{
x ∈ �k

sn : 2uk − uk−1 > f
}

∪
{
x ∈ �̄k

sn :
(
∂nuk − g

)
< 0

}
(8)

From x ∈ �̄k+1
sn , the condition

(
uk − f

) − c
(
∂nuk − g

)
< 0 leads to:

�̄k+1
sn =

{
x ∈ �k

sn : 2uk − uk−1 ≤ f
}

∪
{
x ∈ �̄k

sn :
(
∂nuk − g

)
≥ 0

}
(9)

Obviously, these two sets are a partition of �s: �k+1
sn ∩ �̄k+1

sn = ∅ and �k+1
sn ∪ �̄k+1

sn = �s. The present
formulation of �k+1

sn avoids the parameter c> 0 and could be summarized as follow:

• If the boundary condition was Dirichlet: Check if ∂nuk > g. If true, retain the Dirichlet boundary
condition for the next iteration. If false, switch to the Robin condition given in Equation (7).

• If the boundary condition was Robin: Check if 2uk − uk−1 > f . If true, retain the Robin boundary
condition of Equation (7) for the next iteration. If false, switch to the Dirichlet condition.

This algorithm has important similarities with the switching method [5]. The only difference is
the test 2uk − uk−1 > f instead of uk > f for the switching method. It should be mentioned that the
algorithm is initialized (k = 0) by prescribing Dirichlet boundary condition. The first inequality of
the test involves only the normal derivative at the iteration k = 0. Indeed, the iterative sequence is
well defined.

Next, the numerical experiments [23] show that the large values c lead to the best convergence rate
of the iterative scheme Equation (7). Therefore the scheme Equation (7) reduces, under the limit of
large c> 0, to:

⎧⎨
⎩

−∇ · ∇uk+1 = s on �

uk+1 = f in �̄k+1
sn

∂nuk+1 = g in �k+1
sn

(10)

with, �k+1
sn = {x ∈ �k

sn : 2uk − uk−1 > f } ∪ {x ∈ �̄k
sn :

(
∂nuk − g

)
< 0}. This heuristic argumenta-

tion allows us to get a formulation which is free of parameter c> 0. This feature simplifies the
implementation which consists in solving successive linear problems that the boundary condition
kind evolves with respect to the iterations. In the following, this algorithm is denoted by (A2) and a
more detailed version including the higher-order discretization is given in the Section 2.4.

2.3. Compact scheme discretization

Higher-order accuracy for the space discretization can be achieved by using compact finite differ-
ence schemes [12]. This discretization is retained hereafter while proposing a way to include it in
the present non-linear solver described by the algorithm (A2). For sake of clarity, we detail the
discretization for a 2d cartesian system coordinates using a cell-centred layout for the variable u.
Thus, the first-derivatives are defined in staggered way. Let 0 ≤ x, y ≤ 1 denotes the domain bound
and h = 1/N the uniform space step. If ξ stands for x or y, the centers and faces of the mesh cells
are ξ c = {ξi = (i − 1/2)h, 1 ≤ i ≤ N} and ξ f = {ξi+1/2 = ih, 0 ≤ i ≤ N} respectively. To take into
account the staggered grid, cell-to-face and face-to-cell derivative and interpolation have to be defined.
For instance, the compact scheme relations which define face-to-cell derivative and interpolation can
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Table 1. Third-order compact scheme boundary relations.

u′
0 + 23u′

1 = −25u1/2 + 26u3/2 − u5/2 u0 + 5u1 = 15/4u1/2 + 5/2u3/2 − 1/4u5/2
u′
1/2 − u′

3/2 = −u0 + 2u1 − u2 u1/2 + u3/2 = 1/4u0 + 3/2u1 + 1/4u2

be written as [12]:

αu′
i−1 + u′

i + αu′
i+1 = a

ui+1/2 − ui−1/2

h
+ b

ui+3/2 − ui−3/2

2h
(11)

and

αui−1 + ui + αui+1 = a
ui+1/2 + ui−1/2

2
+ b

ui+3/2 + ui−3/2

2
(12)

for which the order of accuracy depends on the constants α, a and b. Hence, (α, a, b) =
(1/22, 12/11, 0) or (α, a, b) = (9/62, 63/62, 17/62) lead to the fourth and sixth-order accuracy of
the derivative, and (α, a, b) = (1/6, 2/3, 0) or (α, a, b) = (3/10, 3/4, 1/20) lead to the fourth and
sixth-order approximation of the interpolation. The cell-to-face are written by using the shift form
of Equations (11) and (12). The boundary relations are obtained by upwinding the discretization;
they are detailed in the Table 1.

It is worth mentioning that from Equations (11) and (12), the computation of the derivatives
involves the solution of tridiagonal linear systems. Discrete derivatives can be rewritten in a generic
way asMU′ = BU. Indeed, the discrete derivatives are formulated in an explicit wayU ′ = M−1BU =
δU, which leads to a dense matrix operators δ. Hence, by using the tensorial notation, the compact
finite difference discretization of the elliptic problem Equation (10) is rewritten as follow:

−
(
δ
fc
x δ

cf
x ⊗ Iy + Ix ⊗ δ

fc
y δ

cf
y

)
u = Lu = s (13)

where Iξ stands for the identity operator in the ξ -direction and L for the matrix which represents
the linear system. Numerical solutions of Equation (13) is based on a regularity assumption due to
the compact scheme derivation [12]. However, as experimented in [15,19], a local lack of regular-
ity, as involved in solution of Signorini problems, can be accepted without compromising the overall
accuracy of the solution. The successive diagonalizations method [3] is a way to get a solution for
such dense linear systems. Nevertheless, the need to prescribe simultaneously Dirichlet and Neu-
mann boundary conditions on �s implies that the Equation (10) is not separable, prohibiting the
diagonalization method. Moreover, despite the dense pattern of the matrix L, the computation of the
residual r = Lu−s involves only tridiagonal linear systems. Thus, a natural way to get the solutions
of such linear systems are the iterative methods. This point is detailed in the next section.

2.4. Lower-order preconditioning

Within the framework of higher-order accurate discretizations of elliptic equations, the lower-order
preconditioning method consists in building a preconditioner based on a lower-order accurate
discretization of the same problem [9]. In case of the compact scheme discretizationsAbide andZegh-
mati [4] or Abide [1] shown that a preconditioner build on a second-order finite difference scheme
can lead to an iterative solver that the number of iteration does not depend on the mesh size or vari-
able coefficient. In other hand, the convergence rate of the residual behaves like multigrid method.
Here, a variant is proposed by using Preconditioned Conjugate Residual instead of the Richardson
method as used in [1,4]. This allows us to avoid the introduction of the optimal relation factor. The
PCR method is detailed in [6] pp. 154. The two main steps of the PCR are the evaluation matrix vec-
tor product Lu and the evaluation of the preconditioning Hz = r, where H is a sparse linear system
resulting in the second-order finite differences Equation (13). The matrix/vector product Lu, which
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is the discrete evaluation of the Poisson’s equation, is performed with a linear complexity for compact
scheme [3]. The preconditioning step Hz = r is solved with the semicoarsening multigrid [17]. In
practice, the convergence of PCR is achieved by using only some multigrid iterations. In the follow-
ing, the linear solver to compute the solution of Equation (10) is denoted by PCR(uk+1, s, εi), where
εi is the stopping criterion based on the L2-norm of the relative residual.

The full version of the algorithm (A2) to solve the Signorini problem is detailed hereafter:

Set �0
sn = ∅ ;

Compute the initial guess by solving Eq. (10) with PCR(u1, s, εi);
Set k = 1;
while ‖uk − uk−1‖ > εo do

Compute: �k+1
sn = {

x ∈ �k
sn : 2uk − uk−1 > f

} ∪ {
x ∈ �̄k

sn :
(
∂nuk − g

)
< 0

}
;

Solve Eq. (10) by using PCR(uk+1, s, εi);
k = k + 1;

end
Algorithm 1: Detailed algorithm of the present method (A2).

One can note that the algorithmA2 consists in an outer and inner loop associated to the non-linear
and the linear iterations. The stopping criterion is based on this loop. The inner loop, associated to
the PCR, is stopped when the L2-norm of the residual achieves an user defined threshold εi. The
second criterion helps to monitor the convergence of the non-linear loop. Zhang et al. [23] retained
‖uk+1 − uk‖�S < εo as a stopping criterion, which is the difference between two successive iterations
at the Signorini boundary. Here, a similar criterion is retained, however we extend it to the difference
deined in the domain �, that is ‖uk+1 − uk‖� < εo. Specifically, if a converged solution is obtained
for each non-linear iteration by setting εi < 10−10 for instance, the convergence of the non-linear
system holds for an integer k0 that �

k0+1
sn = �

k0
sn .

An another strategy could be derived by requiring an approximate solution of the linear system
by setting εi < 10−1 for example. In this case, the convergence holds when the non-linear stopping is
encountered. This strategy is rather a merge of the inner and outer loops. This point is experimented
in Section 3.3.

From a practical point of view, the high-order accurate solutions of the linearized elliptic problem
are addressed using our research code devoted to the computational fluid dynamics [3]. This code
is written in F90 and has been ported on several high performance computing centers. In this way,
numerical experiments could benefit from parallel computing.

3. Numerical experiments

3.1. Manufactured smooth solutions

First, we check the accuracy of the space discretization. Indeed, if the solution of the problem
Equation (1) is sufficiently differentiable, the fourth and sixth-order of accuracy are expected from
the compact scheme definition Equation (11). To this end, we refer to the work of Wigley [20] and
Cascavita [7], which concerns the design of a manufactured solution for the Signorini problem. Let
us consider the following function expressed in cylindrical coordinates:

u(r, θ) = −r(2k+1)/2 sin ((2k + 1)/2θ) (14)

defined on a domain � =] − 0.5, 0.5[×] − 1, 0[ and with the source term s = 0. Following Cascav-
ita [7], one can note that Equation (14) fulfils the Signorini boundary conditions at the top of the
domain �s = [−0.5, 0.5] × {0}. The transition between the constraint u = 0 and ∂nu = 0 occurs at
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Table 2. Order of accuracy: solution Equation (14) k = 11.

2th-FD 4th-CS 6th-CS

h error rate error rate error rate

0.0625 1.081e−02 5.802e−05 2.106e−07
0.0312 3.054e−03 1.823 3.917e−06 3.889 3.978e−09 5.727
0.0156 8.089e−04 1.917 2.541e−07 3.946 8.496e−11 5.549
0.0078 2.080e−04 1.959 1.617e−08 3.974 1.850e−12 5.521

Table 3. Order of accuracy: solution Equation (14) k = 7.

2th-FD 4th-CS 6th-CS

h error rate error rate error rate

0.0625 3.396e−03 − 4.525e−06 − 1.494e−06 −
0.0312 9.679e−04 1.811 4.614e−07 3.294 1.317e−07 3.503
0.0156 2.630e−04 1.880 4.344e−08 3.409 1.173e−08 3.490
0.0078 6.947e−05 1.921 3.973e−09 3.450 1.040e−09 3.495

Table 4. Order of accuracy: solution Equation (14) k = 4.

2th-FD 4th-CS 6th-CS

h error rate error rate error rate

0.0625 4.729e−04 − 1.590e−04 − 1.841e−04 −
0.0312 1.730e−04 1.450 5.725e−05 1.473 6.796e−05 1.438
0.0156 6.276e−05 1.463 2.043e−05 1.487 2.463e−05 1.464
0.0078 2.247e−05 1.482 7.255e−06 1.493 8.818e−06 1.482

the node (0, 0). Here, we consider three solutions obtained with k = 3, 7 and k = 11, leading to a set
of solutions with increasing differentiability.

The L2-norm of the numerical error εh is computed for several meshes of size h. The order of accu-
racy is estimated by p = log(ε2h/εh)/ log 2. The results for k = 11 are reported in the Table 2 for the
fourth and sixth-order compact schemes, and the centred second-order finite difference scheme. The
order of accuracy matches the expected accuracy for the three discretizations. The same numerical
experiments are performed with the exact solution Equation (14) k = 7 and k = 3. The numerical
errors are reported in Tables 3 and 4. Obviously, the order of accuracy is worsen for a less smooth
solution. Hence, only 3.5 order is noted for the fourth and the six-order schemes. The exact solution
Equation (14) k = 3 leads to a stall of the accuracy to 1.5 for the three discretizations. This feature
has been noted in the work of Cascavita [7], for which a similar Signorini problem is addressed with
the Hybrid High-Order discretization.

3.2. The Signorini problem in a semi-annular domain

Additional numerical experiments are performed to assess the equivalence between the projection
iterative method and the present formulation for large c coefficients. Thus, the Signorini problem
in a semi-annular domain [13,18] is considered. This problem admits an exact solution with a non-
homogeneous Signorini boundary condition, which also contributes to a more general validation.
The notations of this Signorini problem are:

⎧⎨
⎩

−∇ · ∇u = 0 in �

u = uex on �d
u ≥ φ, ∂nu ≥ ϕ (u − φ)(∂nu − ϕ) = 0 on �s

(15)
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Figure 1. The Signorini problem in a semi-annular domain: solution and numerical errors. (a) Exact solution, (b) Second-order, (c)
Fourth-order, (d) Sixth-order.

with � the semi-annular domain of inner radius 0.1 and outer radius 0.25 [see Figure 1(a)]. The Sig-
norini boundary conditions are prescribed at the inner radius boundary �s, and the Dirichlet at the
remaining boundary�d. The expressions for the solution u, the boundary values ϕ and ϕ are detailed
in [23] and are not reported here. Figure 1(a) presents the solution on the semi-annular domain. The
switching points that feature the transition between the conditions u = φ and ∂nu = ϕ are located
at the angles π/4 and 3π/4. Figure 1(b) shows the numerical error of the second-order discretiza-
tion with a mesh of size 64. We can note that the maximum error is located inside the computational
domain. At the switching points, two peaks of the numerical error can be observed. This former
as a lower level than the discretization error inside the domain. Figures 1(c) and 1(d) present the
numerical error resulting from the fourth and the sixth-order discretizations. The numerical error
is of high value at the switching points with a local peak. Inside the domain, the high-accuracy
of the compact scheme discretizations provides a low level of numerical error, in comparison with
second-order finite differences. The numerical error for a similar test case is reported in [14]. It can
be noted that the present fourth and six-order discretizations compares favourably with the element-
freeGalerkinmethod[14]. In the following, we focus on the history of the convergence of the sequence
Equation (10). The L2-norm of the difference between two iterations is monitored for the projection
iterative method, the switching method and the present algorithm (A2). The tests are carried out on
a mesh of size 64, using the second-order FD scheme and with the threshold of the inner loop set
to εi = 10−10. Such a threshold means that the linear problem is solved at each non-linear iteration.
The iteration history is presented in the Figure 2. As previously noted by Zhang [23], we find that
the number of iterations used with the projection iterative method decreases for the largest values
of c. It is noted that the convergence curve for the proposed formulation Equation (10) is perfectly
aligned with those of the projection iterative method with c = 107 and with the switching method.
These numerical experiments support the equivalence between the projection iterative method and
the present algorithm, which avoids the parameter c> 0.
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Figure 2. Iteration history of the relative difference δk = ‖uk − uk−1‖2.

3.3. The electropainting problem

Additional numerical experiments are performed to discuss the iterative strategy. Indeed, as men-
tioned in the Section 2.4 one can look at the meaning of merging the linear with the non-linear loop.
To this purpose, the electropainting problem is considered. This Signorini problem [13] is defined as:

⎧⎪⎪⎨
⎪⎪⎩

−∇ · ∇u = 0 in � = (0, 0.5) × (0, 1)
u = 1 on �d = [0, 0.5] × {0}

∂nu = 0 on �n = {0} × [0, 1]
u ≥ 0, ∂nu ≥ ε, u(∂nu + ε) = 0 on �s = [0, 1] × {1} ∪ {0.5} × [0, 1]

(16)

The computational domain and the boundary conditions are plotted in Figure 3(a).
The solution is first computed on a uniform mesh of size 128 × 64 using the fourth-order accu-

rate discretization and the present algorithm (A2). The solution is obtained by setting the parameter
ε = 0.55. The value of u at the Signorini boundary is reported in Figure 3(b), using the arc-length s as
abscissa. The results are compared with the solution computed with theMeshless Projection Iterative
Method (MPIM) [13]. Using this specific value of ε, the solution exhibits a plateau at the vicinity to the
top-right corner s = 1.5. The results agree the recent literature [13], and give an additional argument
for the validation of the present method. In the remaining part of the section, we address the effect
of the stopping criterion εi to the efficiency of the algorithm (A2). The efficiency is measured by the
total number of PCR iterations ntotpcr to achieve the non-linear stopping criterion εo = ‖δu‖ < 10−12.
The Figure 4 represents ntotpcr with respect to the stopping criterion εinner . According to Figure 4, a
decrease in εi value leads to an increase of ntotpcr , and consequently to the computational cost. Specif-
ically, it is observed that the lower values of εi minimize the total number of PCR iterations. In this
case, only one PCR iteration per non-linear iteration is necessary to achieve the convergence, which
leads to 12, 24 and 29 PCR iterations per second for the fourth and sixth-order discretization. The rise
of the iterations number with respect to the order of accuracy can be explained by the lower-order
preconditioning approach [1]. This shows that the linear and the non-linear loops can be merged. It
is should be mentioned that this property contributes to the computational efficiency of the overall
method since exact solution of the linearized problem is not required.
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Figure 3. The electropainting problem: sketch of the configuration (a), solution u on �s for ε = 0.55 (b).

Figure 4. Total number of PCR iterations versus the inner loop stopping criterion εi .

4. Conclusion

Anewmethodology for the solutions of Signorini problems has been provided. Specifically two points
have been discussed. First, a heuristic argumentation of the equivalence between the projection iter-
ative method and the switching method is proposed. Indeed, the switching method can be viewed as
a limit case of the projection iterative method. Nevertheless, a slight discrepancy with the definition
of the active set nodes has been outlined. Then, the fourth and sixth-order compact scheme finite
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difference solvers have been deviced to deal with the non-linear Signorini problem. The difficulties
associated to the implicit formalism inherent to compact scheme finite differences has been overcome
by making use of a lower-order preconditioning method.

Several numerical experiments are performed to validate the proposed method and to outline
its efficiency. The fourth and sixth-order accuracy have been demonstrated on a Signorini prob-
lem having an exact solution while selecting the differentiability. The effective accuracy deterioration
associated to the solution regularity is clearly pointed out. Also, it is shown that the accuracy deterio-
ration is associated to the Dirichlet/Neumann singularity which occurs with the Signorini boundary
conditions. The numerical experiments also focus on the convergence rate of the proposed method.
Thus, numerical solutions of the electropaint problem has allowed a detailed investigation of the
iterative method convergence. It has been shown that the linear loop can be merged with the outer
non-linear loop, which leads us to conclude that the proposed method is efficient. This should allows
us to consider an extension of this to three-dimensional configurations.

Because of the loss of accuracy remains confined to the Dirichlet/Neumann singularity, the
present work opens up some perspectives on high-order discretization for Signorini problems. For
instance, approaches based on singularity removing could be investigated to fully benefit from the
high-accuracy of the compact scheme discretizations.

Acknowledgements
The project has received funding from the EuropeanUnion’sHorizon 2020 Research and Innovation Programme under
the Marie Sklodowska-Curie grant agreement No. 823731 - CONMECH. This work was also realized with the support
of HPC@LR, a Center of competence in High-Performance Computing from the Languedoc-Roussillon region.

Disclosure statement
No potential conflict of interest was reported by the authors.

Funding
The project has received funding from the European Commission Horizon 2020 Research and Innovation Programme
under the Marie Sklodowska-Curie grant agreement No. 823731 - CONMECH. This work was also realized with the
support ofHPC@LR, aCenter of competence inHigh-PerformanceComputing from the Languedoc-Roussillon region.

ORCID
S. Abide http://orcid.org/0000-0002-5448-3525

References
[1] S. Abide, Finite difference preconditioning for compact scheme discretizations of the Poisson equation with variable

coefficients. J. Comput. Appl. Math. 379 (2020), p. 112872.
[2] S. Abide, M. Barboteu and D. Danan, Analysis of two active set type methods to solve unilateral contact problems,

Appl. Math. Comput. 284 (2016), pp. 286–307.
[3] S. Abide, M. Binous and B. Zeghmati, An efficient parallel high-order compact scheme for the 3d incompressible

navier–stokes equations, Int. J. Comut. Fluid. Dyn. 31 (2017), pp. 214–229.
[4] S. Abide and B. Zeghmati, Multigrid defect correction and fourth-order compact scheme for poissons equation,

Comput. Math. Appl. 73 (2017), pp. 1433–1444.
[5] J. Aitchison and M. Poole, A numerical algorithm for the solution of signorini problems, J. Comput. Appl. Math. 94

(1998), pp. 55–67.
[6] C. Canuto, M.Y. Hussaini, A. Quarteroniet al., Spectral Methods in Fluid Dynamics, Springer-Verlag, New York,

1986.
[7] K.L. Cascavita, F. Chouly and A. Ern,Hybrid high-order discretizations combined with nitsche’s method for dirichlet

and signorini boundary conditions, IMA J. Numer. Anal. (2020), doi:10.1093/imanum/drz038.
[8] R. Glowinski, Lectures on Numerical Methods for Non-linear Variational Problems, Springer, Secaucus, New Jersey,

USA, 2008.
[9] P. Haldenwang, G. Labrosse, S. Abboudi and M. Deville, Chebyshev 3-d spectral and 2-d pseudospectral solvers for

the helmholtz equation, J. Comput. Phys.55 (1984), pp. 115–128.

http://orcid.org/0000-0002-5448-3525
http://doi.org/10.1093/imanum/drz038


INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 591

[10] K. Ito and K. Kunisch, Semi-smooth newtonmethods for the signorini problem, Appl. Math. 53 (2008), pp. 455–468.
[11] A. Karageorghis, D. Lesnic and L. Marin, The method of fundamental solutions for solving direct and inverse

signorini problems, Comput. Struct. 151 (2015), pp. 11–19.
[12] S.K. Lele, Compact finite difference schemes with spectral-like resolution, J. Comput. Phys. 103 (1992), pp. 16–42.
[13] X. Li and S. Li, A meshless projection iterative method for nonlinear signorini problems using the moving kriging

interpolation, Eng. Anal. Bound. Elem.98 (2019), pp. 243–252.
[14] X. Li and H. Dong, Analysis of the element-free galerkin method for Signorini problems, Appl. Math. Comput. 346

(2019), pp. 41–56.
[15] P. Parnaudeau, J. Carlier, D. Heitz and E. Lamballais, Experimental and numerical studies of the flow over a circular

cylinder at reynolds number 3900, Phys. Fluids 20 (2008), pp. 085101-1–085101-14.
[16] O. Piermatei Filho and A. Leontiev, An optimization approach for unconfined seepage problem with semipermeable

conditions, Struct. Multidiscipl. Optim.39 (2009), pp. 581.
[17] S. Schaffer, A semicoarsening multigrid method for elliptic partial differential equations with highly discontinuous

and anisotropic coefficients, SIAM J. Sci. Comput.20 (1998), pp. 228–242.
[18] W. Spann, On the boundary element method for the Signorini problem of the laplacian, Numerische Mathematik

65 (1993), pp. 337–356.
[19] A. Tyliszczak and E. Szymanek,Modeling of heat and fluid flow in granular layers using high-order compact schemes

and volume penalization method, Numer. Heat Trans., Part A: Appl. 76 (2019), pp. 737–759.
[20] N.M. Wigley, An efficient method for subtracting off singularities at corners for laplace’s equation, J. Comput. Phys.

78 (1988), pp. 369–377.
[21] S. Zhang, Projection and self-adaptive projection methods for the Signorini problem with the BEM, Comput. Math.

Appl. 74 (2017), pp. 1262–1273.
[22] S. Zhang, Two projection methods for the solution of Signorini problems, Appl. Math. Comput. 326 (2018), pp.

75–86.
[23] S. Zhang, J. Zhu, A projection iterative algorithm boundary element method for the signorini problem. Eng. Anal.

Bound. Elem. 37(1) (2013), pp. 176–181.
[24] S. Zhang and J. Zhu, The boundary element-linear complementarity method for the signorini problem, Eng. Anal.

Bound. Elem. 36 (2012), pp. 112–117.



Copyright of International Journal of Computer Mathematics is the property of Taylor &
Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.


	1. Introduction
	2. Numerical method of solutions for the signorini problem
	2.1. Problem description
	2.2. An analysis of the projection iterative algorithm
	2.3. Compact scheme discretization
	2.4. Lower-order preconditioning

	3. Numerical experiments
	3.1. Manufactured smooth solutions
	3.2. The Signorini problem in a semi-annular domain
	3.3. The electropainting problem

	4. Conclusion
	Acknowledgements
	Disclosure statement
	Funding
	ORCID
	References

